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ABSTRACT
Mining data warehouses is still an open problem as few approaches
really take the specificities of this framework into account (e.g.
multidimensionality, hierarchies, historized data). Multidimensional
sequential patterns have been studied but they do not provide any
way to handle hierarchies. In this paper, we propose an original se-
quential pattern extraction method that takes the hierarchies into ac-
count. This method extracts more accurate knowledge and extends
our preceding M2SP approach. We define the concepts related to
our problems as well as the associated algorithms. The results of
our experiments confirm the relevance of our proposal.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Miscellaneous; H. [Information Sys-
tems]: General

General Terms
Algorithms, Design, Theory.

Keywords
Multidimensional Sequential Patterns, Hierarchies, OLAP.

1. INTRODUCTION
Data mining techniques can be of a considerable help in the

OLAP framework ([5]) where the user must make the best suit-
able decisions in a minimum amount of time. More precisely, data
mining is a key step in the decision process when large volumes
of multidimensional data are involved. Indeed, mined patterns or
rules provide another outlook on the original data. However, some
parameters are required to discover these rules. In particular, this
mining requires minimal support that corresponds to the minimal
frequency at which the patterns occur within the database. If the se-
lected minimal support is too high, the number of rules discovered
is small and the rules are too general to be useful. If the support
is too low, the number of mined rules is very high, thus compli-
cating their analysis. The decision maker is then faced with the
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following problem: how can the minimal support be lowered with-
out revealing non-relevant rules? Or how can the minimal support
be increased without losing the useful rules? Is it then necessary
to make a trade-off between the quality of the extracted knowledge
and the minimal support? It is thus difficult to mine intersting rules
[15].

In this context, using hierarchies can help to solve this dilemma.
It makes it possible to discover rules within several hierarchy lev-
els. Thus, even if a high support is used, important knowledge with
a too weak support in the database can be included in more general
knowledge which is frequent. We thus wish to extend our previ-
ous proposal [13] to mine multidimensional sequential patterns by
taking hierarchies into account.

Sequential patterns have been studied for more than 10 years [1],
with a lot of research and industrial applications (e.g. user behav-
ior, web log analysis, discovery of patterns from protein sequences,
security). Algorithms have been proposed, based on the Apriori-
based framework [18, 10, 2], or on other approaches [11, 7]. Some
other work has been conducted on the discovery of frequent episods
[9]. Sequential patterns have recently been extended to multidi-
mensional sequential patterns by Pinto et al. [12], Plantevit et al.
[13], and Yu et al. [17]. They aim at discovering patterns that take
time into account and that involve several dimensions. For instance
in [13], rules like A customer who bought a surfboard with a bag
in NY later bought a wetsuit in SF are discovered.

Some approaches use hierarchies in the extraction of sequential
patterns. Nevertheless, to our best knowledge, no work has com-
bined the extraction of multidimensional sequential patterns and
hierarchy management. No current method can extract knowledge
like: When the sales of soft drinks increase in Europe, exports of
Perrier later increase in France and exports of soda later increase
in the USA, where Perrier is a kind of French carbonated soft drink.
We propose a novel HYPE (HierarchY Pattern Extension) approach
which is an extension of our previous M2SP proposition [13]. The
main unique feature of our approach is that no single hierarchy
level is considered and that several levels can be mixed. Extracted
sequential patterns are automatically associated with the most rele-
vant hierarchy levels.

In this paper, we present concepts related to traditional sequen-
tial patterns and multidimensional ones, as well as approaches for
managing hierarchies during knowledge extraction. We then intro-
duce fundamental concepts related to our HYPE approach as well
as algorithms allowing its implementation. Experiments carried out
on synthetic data are reported and confirm the significance of our
approach. We also show that using the hierarchies allows better
management of joker values defined in the M2SP approach.

2. HIERARCHIES AND DATA MINING



In this section, we present t sequential patterns as well as previ-
ously published approaches dealing with the problem of the extrac-
tion of sequential patterns in a multidimensional framework (sev-
eral analysis dimensions). Then we underline why it is relevant to
use the hierarchies during the process of extraction of sequential
patterns and we make an provide of related work.

2.1 Sequential Patterns
An early example of research to discover patterns from sequences

of events can be found in [4]. In this work, the idea is to highlight
rules underlying the generation of a given sequence in order to pre-
dict a plausible sequence continuation. This idea is then extended
to the discovery of interesting patterns (or rules) embedded in a
database of sequences of sets of events (items). A more formal
approach to solving the problem of mining sequential patterns is
the AprioriAll algorithm as presented in [9]. Given a user-defined
threshold and a database of sequences, where each sequence is a
list of transactions ordered by transaction time, and each transac-
tion is a set of items, the goal is to discover all sequential patterns.
A sequential pattern is a sequence with a support greater than a
user-defined one. The support of a pattern is the number of data-
sequences that contain the pattern. In [1], the authors introduce
the problem of mining sequential patterns over large databases of
customer transactions where each transaction consists of customer-
id, transaction time, and the items bought in the transaction. For-
mally, given a set of sequences, where each sequence consists of
a list of elements and each element consists of a set of items, and
given a user-specified minimum support threshold, sequential pat-
tern mining is carried out to find all frequent subsequences, i.e.
subsequences whose occurrence frequency in the set of sequences
is not less than the minimum support. Sequential pattern mining
discovers frequent patterns ordered by time. An example of this
type of pattern is A customer who bought a new television 3 months
ago is likely to buy a DVD player now. The main objective of se-
quential pattern mining methods is then the most effective extrac-
tion. Algorithms have been proposed, based on the Apriori-based
framework [18, 10, 2], or on other approaches [11, 7].

In the traditional framework (only one analysis dimension) for
association rule or sequential pattern extraction, several works have
taken hierarchies into account in order to allow extraction of accu-
rate knowledge. In [16], the beginnings of hierarchy management
in the extraction of association rules and sequential patterns are pro-
posed. The authors suppose that hierarchical relations between the
items are represented by a set of taxonomies. They make it possible
to extract association rules or sequential patterns according to sev-
eral levels of hierarchy. They modify the transactions by adding,
for each item, all of its ancestors in associated taxonomies. Then
they generate the frequent sequences while trying to filter with the
maximun redundant information and by optimizing the process us-
ing several properties. However, this approach cannot be scalable
in a multidimensional context. Indeed, it is unthinkable to add on
each dimension the list of ancestors of one item in taxonomy for
each transaction. In the worst case, that would multiply the size of
the database by the maximum depth of a hierarchy for each analysis
dimension, so it would be too expensive to scan this base.

The approach of J. Han et al. [6] is quite different. The authors
tackle the association rule extraction problem, but this approach
can also be adapted to sequential pattern extraction. Beginning at
the highest level of the hierarchy, they extract rules at each level
while lowering the support when descending in the hierarchy. The
process is reiterated until no rules can be extracted or until the low-
est level of the hierarchy is reached. However, this method does not
make it possible to extract rules containing items of different lev-

els. For example, wine and drinks cannot cohabit in such a rule.
This method thus proposes the extraction of intra level of hierarchy
association rules. It thus does not make it possible to answer gen-
eral problems concerning the extraction of inter levels of hierarchy
sequences. Furthermore, implementation of this approach in a mul-
tidimensional context can be discussed. If several taxonomies exist
(one per dimension), does the user move on the same hierarchy
levels on various taxonomies or combine these levels? This kind of
extraction can be expensive in time since the knowledge discovery
mechanism must be reiterated several times (depth of taxonomy).

We have presented the sequential patterns as well as works that
take hierarchies into account in the knowledge extraction. Nev-
ertheless the sequential patterns are sometimes quite poor in rela-
tion to the data they describe. Indeed, correlations are extracted
within only one dimension (e.g. the product dimension) whereas a
database can contain several other dimensions. This is why several
works try to combine several analysis dimensions in the extraction
of sequential patterns.

2.2 Multidimensional Sequential Patterns
Combining several analysis dimensions makes it possible to ex-

tract knowledge which describes the data in a better way. [12]
is the first paper dealing with several dimensions in the sequen-
tial pattern framework. For instance, purchases are not only de-
scribed by considering the customer ID and the products, but also
by considering the age, type of customer (Cust-Grp) and the city
where he/she lives. Multidimensional sequential patterns are de-
fined over the schema A1, ..., Am, S, where the set of Ai stands for
the dimensions describing the data and S stands for the sequence
of items purchased by the customers ordered over time. A mul-
tidimensional sequential pattern is defined as (id1,(a1, ..., am),s)
where ai ∈ Ai ∪ {∗}. id1,(a1, ..., am) is said to be a multi-
dimensional pattern. For instance, the authors consider the se-
quence ((∗, NY, ∗),〈bf〉) meaning that customers from NY have
all bought a product b and then a product f. Note that the sequences
found by this approach do not contain several dimensions since the
dimension time only concerns products. The product dimension is
the only dimension that can be combined over time, so it is not pos-
sible to have a rule that indicates when b is bought in Boston then
c is bought in NY .

Contrary to [12], [13] proposes to mine such inter pattern multi-
dimensional sequences. Several analysis dimensions can be found
in the sequence, which allows for the discovery of rules as A cus-
tomer who bought a surfboard with a bag in NY later bougth a
wetsuit in LA.

In [17], the authors consider sequential pattern mining in the
framework of Web Usage Mining. Even though they consider three
dimensions (pages, sessions, days), these dimensions are very par-
ticular since they belong to a single hierarchized dimension. More-
over, the sequences found describe correlations between objects
over time by considering only one dimension, which corresponds
to the web pages.

Note also the work of [3], which proposes a first order tempo-
ral logic based approach for multidimensional sequential pattern
mining. [8] also proposes a new method of generation of the mul-
tidimensional sequences embedded in a set of transactions.

To our best knowledge, there is no approach that fully utilizes
the hierarchies during the extraction of multidimensional sequen-
tial patterns. We thus propose to integrate the management of the
hierarchies into M2SP in order to allow a more complete extraction
of knowledge, suitable in the OLAP framework.

2.3 Running Example



In order to illustrate the various concepts and definitions, we pro-
pose the following running example. Table 1 describes the pur-
chases of product carried out in various cities of the world. For
the hierarchies, we choose two dimensions, i.e. cities and products,
whose respective taxonomies are indicated in Figures 1 and 2.

Table 1: Running Example
D B Pl P

(Date) (BlockID) (Place) (Product)
1 1 Germany beer
1 1 Germany pretzel
2 1 Germany M2
3 1 Germany chocolate
4 1 Germany M1
1 2 France soda
2 2 France wine
2 2 France pretzel
3 2 France M2
1 3 UK whisky
1 3 UK pretzel
2 3 UK M2
1 4 LA chocolate
2 4 LA M1
3 4 NY whisky
4 4 NY soda

Figure 1: Taxonomy over the P lace dimension

Figure 2: Taxonomy over the Product dimension

3. CONTRIBUTIONS
In this section, we present our approach for the management of

hierarchies in multidimensional sequential patterns. First, we de-
fine the concepts related to our approach [14]. Then, we propose
then algorithms used to implement our approach.

3.1 Definitions

3.1.1 Dimension Set Partition
In order to allow users to freely customize the extraction, we con-

sider a partition of the dimension set. Let us consider a database
DB where data are described with respect to n dimensions. We

consider a 3-bin partitioning of the dimensions: the set of dimen-
sions that will be contained within the rules (analysis dimensions)
is denoted by DA; the set of dimensions which the counting will
be based on (reference dimensions) is denoted by DR; and the set
of dimensions that are meant to introduce an order between events
(e.g. time)1 is denoted by DT . Each tuple c = (d1, . . . , dn) can
thus be denoted by c = (r, a, t) with r being the restriction on DR,
a the restriction on DA and t the restriction on DT .

Given a table DB, the set of all tuples in DB having the same
value r on DR is said to be a block denoted by BDB,DR on the set
of blocks from table DB. The block concept is necessary to define
the support of a multidimensional sequence. Its application in our
running example is trivial since |DR| = 1 and the different blocks
are described in Figure 3. We can imagine that these blocks have
been built by grouping transcactions that share the same values on
several dimensions (e.g. age, customer-group, etc).

Figure 3: Block Partition of DB (figure 1) according to DR =
{B}

Figure 4: block (1)
D B Pl P

1 1 Germany beer
1 1 Germany pretzel
2 1 Germany M2
3 1 Germany chocolate
4 1 Germany M1

Figure 5: block (2)
D B Pl P

1 2 France soda
2 2 France wine
2 2 France pretzel
3 2 France M2

Figure 6: block (3)
D B Pl P

1 3 UK whisky
1 3 UK pretzel
2 3 UK M2

Figure 7: block (4)
D B Pl P

1 4 LA chocolate
2 4 LA M1
3 4 NY whisky
4 4 NY soda

3.1.2 Taxonomies
In our multidimensional framework, we consider that there are

hierarchical relations on each analysis dimension2. We consider
that these hierarchical relations are materialized in the form of tax-
onomies. A taxonomy is a directed acyclic graph. The edges are
is-a relation. The Specialization relation is then from root to leaves.
Each analysis dimension thus has a taxonomy which makes it pos-
sible to represent hierarchical relations between the elements of its
domain.

1All dimension sets which introduce an order relation can be con-
sidered.
2This relation may be reduced to the tree of depth 1 where the root
is labelled by * if no hierarchy is defined.



Let TDA = {T1, . . . , Tm} be the set of taxonomies associated
with analysis dimensions, where: (i) Ti is the taxonomy represent-
ing hierarchical relations between the elements from the domain of
the analysis dimension Di; (ii) Ti is a direct acyclic graph; (iii)
∀ node ni ∈ Ti, label(ni) ∈ Dom(Di).

We write x̂ an ancestor of x according to the associated taxon-
omy and x̌ one of its descendants. For instance, drinks = ŝoda

means that drinks is an ancestor of soda according to the Gener-
alization/Specialization relation. More precisely, drinks is a more
general instance than soda.

3.1.3 Hierarchies and Data
Each analysis dimension Di from a transaction b of DB cannot

be instantiated with a value di of which the node associated to the
label di in the taxonomy Ti is a leaf. Formally, ∀di ∈ πDi(B),-
∀ node ni such that label(ni) = di@node n′ such that n′ =
ňi (ni leaf). For instance, the transaction database cannot contain
the value drinks since there are some more specific instances in
the taxonomy (soda,wine).

3.1.4 h-generalized Item, Itemset and Sequence
We now define the fundemental concepts of h-generalized item,

itemset and sequence.

DEFINITION 1 (MULTIDIMENSIONAL H-GENERALIZED ITEM).
A multidimensional h-generalized item e = (d1, . . . , dm) is a tu-
ple defined over the set of the m DA dimensions such that di ∈
{label(Ti)}.

Contrary to the transactions of DB, multidimensional h-genera-
lized items can be defined with any value di whose associated node
in the taxonomy is not a leaf. For instance (drinks, USA), (so-
da, France) are some multidimensional h-generalized items that
are defined on the analysis dimensions product and place.

Since multidimensional h-generalized items are instantiated on
various levels of hierarchy, it is possible that two items are compa-
rable, i.e. item is more specific or general than another. In order
to not complicate the notations, we directly use the concept of an-
cestor on the item and the transaction without locating them in the
corresponding taxonomy.

DEFINITION 2 (HIERARCHICAL INCLUSION). Let e and e’
be two different multidimensional h-generalized items, e = (d1, . . . , dm)
and e′ = (d′

1, . . . , d
′
m), we say that:

• e is more general than e′ (e >h e′) if ∀di, di = d̂′
i or di =

d′
i;

• e is more specific than e′ (e <h e′) if ∀di, di = ď′
i or di =

d′
i;

• e and e′ are incomparable if there is no relation between
them (e ≯h e′ and e′ ≯h e).

For instance, we have:

• (USA, drinks) >h (USA, soda);

• (France, wine) <h (EU, Alcoholic drinks);

• (France, wine) and (USA, soda) are incomparable.

DEFINITION 3. A transaction b supports an item e if
ΠDA(b) <h e.

As an example, the transaction (1, 1, F rance,wine) supports
the item (EU, alcool).

DEFINITION 4 (MULTIDIMENSIONAL H-GENERALIZED ITEMSET).
A multidimensional h-generalized itemset i = {e1, . . . , ek} is a
non-empty set of multidimensional h-generalized items where all
items are incomparable.

Two comparable items cannot be present in the same itemset
since we adopt a set-theoretic point of view. Moreover we prefer to
represent the most precise possible information within an itemset.
For instance, {(France, wine), (USA, soda)} is a multidimen-
sional h-generalized itemset whereas {(France,wine), (EU,Alco-
holic drinks)} is not such an itemset because (France, wine) <h

(EU, Alcoholic drinks).

DEFINITION 5 (MULTIDIMENSIONAL H-GENERALIZED SEQUENCE).
A multidimensional h-generalized sequence s = 〈i1, . . . , ij〉 is a
non-empty ordered list of multidimensional h-generalized itemsets.

For instance, 〈{(France, wine), (USA, soda)}, {(Germany,-
beer)}〉 is a multidimensional h-generalized sequence. Multdi-
mensional sequences can be included into another one:

DEFINITION 6 (SEQUENCE INCLUSION). A multdimensional
sequence ς = 〈a1, . . . , al〉 is said to be a subsequence of ς ′ =
〈b1, . . . , bl′ 〉 if there are integers 1 ≤ j1 ≤ j2 ≤ . . . ≤ jl ≤ l′

such that a1 ≤h bj1 , a2 ≤h bj2 , . . . , al ≤h bjl
.

The inclusion of the multidimensional sequences must respect
the hierarchical inclusion of the multidimensional h-generalized
items. As an example:

• The sequence 〈{(France, wine)}, {(Germany, beer)}〉 is
a subsequence of 〈{(France,wine), (USA, soda)}, {(Ger-
many, beer)}〉;

• The sequence 〈{(France, wine)}, {(Germany, beer)}〉 is
a subsequence of 〈{(France,Alcoholic drinks), (USA-
, drinks)}, {(EU, Alcoholic drinks)}〉;

• The sequence 〈{(EU, wine)}, {(Germany, beer)}〉 is not
a subsequence of the sequence 〈{(France, wine), (USA, so-
da)}, {(Germany, beer)}〉 because (EU, wine) �h (Fran-
ce, wine), the hierarchical inclusion between item is not re-
spected here.

3.1.5 Support
Computing the support of a multidimensional h-generalized se-

quence is equivalent to counting the number of blocks defined over
the reference dimensions DR which support the sequence. A block
supports a multidimensional h-generalized sequence if it is possi-
ble to find a set of tuples which satisfies it. All itemsets from the
multidimensional h-generalized sequence must be found on various
dates within the domain of Dt such that the order of the itemsets
respects the sequentiality.

DEFINITION 7. A block B supports a sequence 〈i1, . . . , il〉 if
∀j = 1 . . . l, ∃dj ∈ Dom(Dt), for each item e from ij , ∃t =
(r, e, dj) where t = (r, ě, dj) ∈ B and d1 < d2 < . . . < dl.

Thus, the support of a multidimensional h-generalized sequence
is the number of blocks defined over DR which contain this se-
quence.

According to a user-defined minimal treshold, a multidimensional
h-generalized sequential pattern is a sequence whose support is
greater than the minimal threshold.



EXAMPLE 1. According to our running example database DB,
let us consider DR = {Bid}, DA = {P lace, Product}, DT =
{Date}, minimal support = 2, and ς = 〈{(EU, Alcoholic -
drinks), (EU, pretzel)}{(EU,M2)}〉. The sequence is frequent
if at least two blocks of the partition of DB support the sequence.
1. block (1) (Fig. 4). According to the taxonomies, Germany is
more specific than EU and beer is an instance of Alcoholic drinks.
Thus, at the date 1, there is the first itemset {(EU, Alcool), (EU -
, pretzel)} of ς . The last itemset {(EU, M2)} is contained at a
date later (2). The sequence ς is supported by this block.
2. block (2) (Fig. 5). France is an instance of EU and wine is
more specific than Alcoholic drinks. The sequence ς is supported
by this block.
3. block (3) (Fig. 6). UK is an instance of EU and whisky is an
instance of Alcoholic drinks. This block then supports the sequence
ς .
4. block (4) (Fig. 7). This block does not support the sequence ς

since the place dimension does not contain any instance of EU.
The support of ς is 3. The sequence is thus frequent.

3.2 The HYPE Algorithm Proposal

3.2.1 Overview
We briefly describe the general behavior of our approach before

presenting the algorithms that allow the extraction of multidimen-
sional h-generalized sequential patterns.

HYPE is divided into two phases. Firstly, the maximally specific
items are extracted (we say an item is maximally specific if there
are no more specific items). We think the maximally specific items
are an alternative to the huge amount of extracted knowledge. In-
deed, they make it possible to factorize knowledge. The user can
infer more general knowledge in a post-processing step. Secondly,
the multidimensional h-generalized sequences are mined in a fur-
ther step. These sequences are generated and validated from the
frequent maximally specific items.

However, the fact of using maximally specific items to generate
the frequent sequences does not enable us to extract all knowledge
embedded in the database. Indeed, some sequences whose first
items are not maximally specific cannot be mined. Some longer
sequences cannot then be mined (blocks quickly support more gen-
eral knowledge). However, this deficiency is relative because these
non-mined sequences often describe too general knowledge and
provide little information to the user.

It is not necessary to prune the taxonomies in a preprocessing
step. Indeed, this operation can easily be carried out during the
multidimensional h-generalized sequential pattern mining process.

3.2.2 Generation of frequent items
Multidimensional h-generalized items are the basis of multidi-

mensional h-generalized sequential pattern mining. They are se-
quences whose length is 1. For scalability, items cannot be mined
in only one scan. Indeed, the cartesian product of analysis dimen-
sion domains cannot be considered in applications where the num-
ber of dimensions and the cardinality of their domains can be very
large. If the number of analysis dimensions is m, then the number
of generated items χ is exponential according to m:

2m ≤ χ ≤
m

X

i=1

“m

i

”

i
k

where k = max |Dom(Di)|

We thus consider that such an approach can jeopardize the scalabil-
ity of the extraction. It is thus necessary to define a method which
limits the number of candidate items and the number of database
scans. In order to generate the multidimensional h-generalized

items, we adopt a levelwise algorithm that only considers items
that have at least some probabilty of being frequent. To this end,
we consider a lattice whose lower bound is the (∗, . . . , ∗) multidi-
mensional item3. This lattice is partially built from (∗, . . . , ∗) up
to the frequent items4 containing as few ∗ as possible. At level i,
i values are specified. Then items at level i are combined to build
a set of candidates at level i + 1. The process is iterated m times
until the complete set of multidimensional h-generalized items is
obtained. Two frequent items are combined to build a candidate if
they are 1-compatible, i.e. they share a sufficient number of val-
ues over analysis dimensions (Definition 8). For instance, (a, ∗, c)
and (∗, b, c) are 1-compatible. Items (a, b, ∗) and (a, b, ∗) are not
compatible.

DEFINITION 8 (1-COMPATIBILITY). Let e1 = (d1, . . . , dn)
and e2 = (d′

1, . . . , d
′
n) be two distinct multidimensional items

where di and d′
i ∈ dom(Di) ∪ {∗}. e1 and e2 are said to be

1-compatible if ∃∆ = {Di1 , . . . , Din−2
} ⊂ {D1, . . . , Dn} such

that for every j ∈ [1, n − 2], dij = d′
ij
6= ∗ with din−1

= ∗ and
d′

in−1
6= ∗ and din 6= ∗ and d′

in
= ∗.

The join operation is defined as follows:

DEFINITION 9 (JOIN). Let e1 = (d1, . . . , dn) and e2 =-
(d′

1, . . . , d
′
n) be two 1-compatible multidimensional items. We de-

fine e1 1 e2 = (v1, . . . , vn) where vi = di if di = d′
i, vi = di

if d′
i = ∗ and vi = d′

i if di = ∗. Let E and E′ be two sets
of multidimensional items of size n, we define E 1 E′ = {e 1

e′ s.t. (e, e′) ∈ E ×E′ ∧ e and e’ are 1-compatible}

For instance, suppose there are 3 items with only one value in-
stantiated: (a, ∗, ∗), (∗, b, ∗) and (∗, ∗, c). Items (a, ∗, ∗) and (∗, b, ∗)
are 1-compatible, then (a, ∗, ∗) is joined with (∗, b, ∗) into item
(a, b, ∗). The join operation is applied on all 1-compatible items.
So the result of the join operations are: (a, b, ∗), (a, ∗, c) and (∗, b, c).
The process is reiterated to give item (a, b, c).

3.2.3 Generation of Frequent Sequences
The frequent items give all frequent sequences containing one

itemset consisting of a single item. To mine the frequent multi-
dimensional h-generalized sequences, we follow the Apriori-like
paradigm. Indeed, the multidimensional framework keeps the anti-
monotony of the support (all subsets of a frequent set are frequent).
Once 1-frequent items are mined, the candidate sequences of size
k (k ≥ 2) are generated and validated to keep the frequent items.
We use a prefixed-tree-like structure as [10] to efficiently maintain
the set of frequent sequences.

3.2.4 Counting the Support of a Sequence
Support counting is one of the main operations of the data mining

process.
The reference dimensions enable to identify all blocks which

may support a sequence ς . The enumeration of all blocks is es-
sential to compute the support of a sequence and thus determine if
the sequence is frequent. Algorithm 1 checks whether each block
of DB supports the sequence by calling the function supportBlock
(Algorithm 2). If the sequence is supported, then its support is in-
cremented. The algorithm then returns the relative support of the
sequence.
3* on dimension Di can be seen as the root of the taxonomy Ti.
4By definition, an h-generalized item is instantiated over all its di-
mensions. By misnomer, we use the term of item to describe the
frequent tuples which are instantiated in a levelwise method in or-
der to mine multidimensional h-generalized items.



Algorithm 2 checks if a sequence ς is supported by a block B.
To achieve it, the algorithm combines recursivity and anchoring
operations. The anchoring operation is used to reduce the space
search. This algorithm attempts to find a tuple from the block that
matches the first item of the first itemset of the sequence in order
to anchor the sequence. This operation is repeated recursively until
all itemsets from the sequence are found (return true) or until there
is no way to go further (return false). Several possible anchors may
be tested if the first ones do not work.

Algorithm 1: SupportCount: Compute the support of a se-
quence

Data: Sequence ς , database DB, reference dimension set DR

Result: The support of the sequence ς

begin
Integer support←− 0;
Boolean supportedSeq;
BDB,DR ←− {blocks identified over DR};
foreach B ∈ BDB,DR do

supportedSeq←− supportBlock(ς,B) ;
if supportedSeq is true then

support←− support + 1;

return
“

support

|BDB,DR
|

”

;

end

In order to study the complexity of these algorithms, we adopt
the following notations: nB is the number of tuples in B, m =
|DA| is the number of analysis dimensions, Pmax is the maximal
depth of a taxonomy.
SupportBlock (algorithm 2) The block B is ordered w.r.t. DT , the
anchoring operation is implemented in O(log nB). It is sufficient
to carry out a dichotomic search to find all the tuples w.r.t. the date
condition. Checking if a tuple supports an item takes, in the worst
case, O(Pmax × m). We should compare the m dimensions of
the item to those of the tuple. In the worst case, the complexity is
O(nB × Pmax ×m× log nB).
SupportCount (algorithm 1) The previous function is called for
each of the l blocks Bi from {BDB,DR}. Let nmax = maxnBi ,
the complexity in the worst case is then: O(l)×O(nmax×Pmax×
m× log nmax) = O(l × nmax × Pmax ×m× log nmax)

3.3 HYPE Against M2SP
Managing hierarchies can be seen as a better way to manage the

joker values previously defined in [13]. Indeed, M2SP does not
consider hierarchical relations between elements from the analy-
sis dimensions. Then, if there is no possible value instantiation,
M2SP uses a joker value (*). This joker value can be seen as the
root of a one-depth taxonomy. So, M2SP directly goes from the
leaf to the root of the taxonomy (Figure 8.B) by using the joker
value.

Thanks to HYPE, more accurate knowledge is mined. Indeed,
taxonomies are an alternative when M2SP is not able to instantiate
a dimension. We do not directly go from leaf to root. We try to
instantiate the dimension with the most specific ancestor of the leaf
(Figure 8.A).

Comparison with M2SP
Given a user-defined threshold, taking hierarchies into account (HYPE)
makes it possible to mine knowledge which is not mined by M2SP.
M2SP:
• (∗, chocolate), (∗, pretzel), (∗, M1), (∗, soda), (∗, M2),

Algorithm 2: SupportBlock: Checking if a sequence is sup-
ported by a block

Data: Sequence ς , block B

Result: Boolean
begin

/* initialization */
boolean foundItemSet←− false

sequence←− ς

itemset←− sequence.first()
item←− itemset.first()
/* Condition to stop the recursivity */
if ς = ∅ then

return (true)
/* Scanning the block */
while tuple←− B.next 6= ∅ do

if tuple supports item then
followingItem←− itemset.second()
if followingItem = ∅ then

foundItemSet←− true

/* Searching for all the items of
the itemset */

else
/* Anchoring w.r.t. item

(date) */
B′ ←− σdate=cell.date(B)
while tuple′ ←− B′.next() 6=
∅ ∧ foundItemSet = false do

if tuple′ supports followingItem then
followingItem←−
itemset.next()
if followingItem = ∅ then

foundItemSet←− true

if foundItemSet is true then
/* Searching for the other

itemsets */
return
(SupportBlock(sequence.tail(), σdate>tuple.date(B)))

else
itemset←− sequence.first()
/* Reducing the search space */
C ←− σdate>cell.date(B)

/* ς is not supported */
return (false)

end

Figure 8: Hierarchy management with HYPE and joker value
(*) management with M2SP



(∗, whisky)

• 〈{(∗, chocolate)}{(∗, M1)}〉, 〈{(∗, pretzel)}{(∗, M2)}〉

HYPE:
• (P lace, chocolate),(EU, pretzel), (P lace, M1), (P lace,-

soda), (EU, M2), (P lace,Whisky), (EU, Alcoholic drinks),

• 〈{(P lace, chocolate)}{(P lace, M1)}〉
〈{(EU, pretzel)}{(EU,M2)}〉
〈{(EU, Alcoholic drinks)}{(EU, M2)}〉

• 〈{(EU, Alcoholic drinks), (EU,Pretzel)}{(EU,M2)}〉

Taking hierarchies into account makes it possible to mine more
finer sequences than in the M2SP approach.

4. EXPERIMENTS
In this section, we report experiments performed on synthetic

data. These experiments aim at showing the relevance of our ap-
proach, especially for hierarchy management. The synthetic data-
base contains 5, 000 tuples defined over 5 analysis dimensions.
These first experiments compare the number of frequent mined
sequences over the depth of the taxonomies (specialisation level)
and the user defined threshold. We compared our results to the
M2SP results in order to study the quality of the mined knowl-
edge.

Figure 9: Number of frequent sequences over the depth of the
taxonomies (minsup=0.3, DA = 5, average number of sons = 3)
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Figure 10: Number of frequent sequences over the depth of the
taxonomies (minsup=0.4, DA = 5, average number of sons = 4)

0

50

100

150

200

250

300

2 2.5 3 3.5 4 4.5 5

SE
Q

UE
NC

ES

DEPTH

M2SP-alpha
HYPE

Figures 9 and 10 show the number of frequent mined sequences
over the depth of the taxonomies. Increasing the size of the tax-
onomies generates an additional specialization level (drinks be-
come alcoholic drinks or sodas). When the data becomes more
specific, M2SP mines less frequent sequences until it cannot mine
any more knowledge. Taking hierarchies into account provides ro-
bustness to deal with the specialization phenomena. Indeed, the
sequences are mined among several hierarchy levels.

Figure 11: Number of frequent sequences over the minimal
support ( DA = 5, average number of sons = 3, highly cor-
related data)
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Figure 12: Number of frequent sequences over the minimal
support ( D15, average number of sons = 4, depth= 4)
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Figure 11 shows the number of frequent mined sequences over
the user-defined threshold in a highly correlated database (lower
cardinality of analysis dimensions). As soon as the minimal sup-
port becomes too low, M2SP extracts too many frequent sequences.
Taking hierarchies into account introduces a powerful subsumption
ability which prevents HYPE from mining too many sequences.

Furthermore, in poorly correlated databases, the number of fre-
quent mined sequences is simular to that in highly correlated da-
tabases whereas M2SP mined a very low number of sequences.
This highlights the relevance of our approach accordig to the data
quality (highly or poorly correlated databases).

5. CONCLUSIONS
In this paper, we have defined multidimensional h-generalized

sequential patterns. We take hierarchies into account through tax-
onomies on analysis dimensions. This makes possible to build mul-
tidimensional sequences defined over several hierarchy levels.

We have defined the different concepts (multidimensional h-ge-
neralized item, itemset and sequence) and algorithms used to im-
plement our approach. Experiments on synthetic data are reported
and highlight the significance of HYPE. These experiments par-
ticulary show its ability to subsume knowledge and its strength in
dealing with data diversity (density, specialization, etc).

This work offers several perspectives. The efficiency of the ex-
traction could be enhanced by using condensed representations of
mined knowledge (closed, free, non-derivable). The use of con-
densed representations can allow additional pruning and thus en-
hance the extraction process. Other proprosals can be put forward
concerning the hierarchy management. We can imagine modular
hierarchy management where some dimensions would not have the
same behiavour as other ones in order to meet to the user’s needs
(prohibition to exceed the hierarchy level λ over the dimension ξ,



. . .). Hierarchy management can allow us to define a novel auto-
matic method to help users to navigate in data cubes.

6. ACKNOWLEDGEMENT
We thank Pr. Dominique Laurent for preliminary discussions on

the topic of this paper.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Mining sequential patterns. In

Proc. 1995 Int. Conf. Data Engineering (ICDE’95), pages
3–14, 1995.

[2] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential
pattern mining using a bitmap representation. In KDD, pages
429–435. ACM, 2002.

[3] S. de Amo, D. A. Furtado, A. Giacometti, and D. Laurent.
An apriori-based approach for first-order temporal pattern
mining. In XIX Simpósio Brasileiro de Bancos de Dados,
18-20 de Outubro, 2004,Brası́lia, Distrito Federal, Brasil,
Anais/Proceedings, pages 48–62, 2004.

[4] T. Dietterich and R. Michalski. Discovering patterns in
sequences of events. Artificial Intelligence, 25(2):187–232,
1985.

[5] J. Han. OLAP mining: Integration of olap with data mining.
In DS-7, pages 3–20, 1997.

[6] J. Han and Y. Fu. Mining multiple-level association rules in
large databases. IEEE Trans. Knowl. Data Eng.,
11(5):798–804, 1999.

[7] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
candidate generation. In SIGMOD Conference, pages 1–12,
2000.

[8] C.-H. Lee. An entropy-based approach for generating
multi-dimensional sequential patterns. In PKDD, pages
585–592, 2005.

[9] H. Mannila, H. Toivonen, and A. Verkamo. Discovering
frequent episodes in sequences. In Proc. of Int. Conf. on
Knowledge Discovery and Data Mining, pages 210–215,
1995.

[10] F. Masseglia, F. Cathala, and P. Poncelet. The PSP Approach
for Mining Sequential Patterns. In Proc. of PKDD, volume
1510 of LNCS, pages 176–184, 1998.

[11] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. Mining sequential patterns by
pattern-growth: The prefixspan approach. IEEE Transactions
on Knowledge and Data Engineering, 16(10), 2004.

[12] H. Pinto, J. Han, J. Pei, K. Wang, Q. Chen, and U. Dayal.
Multi-dimensional sequential pattern mining. In CIKM,
pages 81–88. ACM, 2001.

[13] M. Plantevit, Y. W. Choong, A. Laurent, D. Laurent, and
M. Teisseire. M2SP: Mining sequential patterns among
several dimensions. In PKDD, pages 205–216, 2005.

[14] M. Plantevit, A. Laurent, and M. Teisseire. HY PE : Prise
en compte des hiérarchies lors de l’extraction de motifs
séquentiels multidimensionnels.(french version). In EDA,
pages 155–173, 2006.

[15] S. Sahar. Interestingness via what is not interesting. In KDD,
pages 332–336, 1999.

[16] R. Srikant and R. Agrawal. Mining sequential patterns:
Generalizations and performance improvements. In EDBT,
pages 3–17, 1996.

[17] C.-C. Yu and Y.-L. Chen. Mining sequential patterns from
multidimensional sequence data. IEEE Transactions on

Knowledge and Data Engineering, 17(1):136–140, 2005.
[18] M. J. Zaki. SPADE: An efficient algorithm for mining

frequent sequences. Machine Learning, 42(1/2):31–60, 2001.


