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ABSTRACT
Research in the areas of privacy preserving techniques in
databases and subsequently in privacy enhancement tech-
nologies have witnessed an explosive growth-spurt in recent
years. This escalation has been fueled by the growing mis-
trust of individuals towards organizations collecting and dis-
bursing their Personally Identifiable Information (PII). Dig-
ital repositories have become increasingly susceptible to in-
tentional or unintentional abuse, resulting in organizations
to be liable under the privacy legislations that are being
adopted by governments the world over. These privacy con-
cerns have necessitated new advancements in the field of
distributed data mining wherein, collaborating parties may
be legally bound not to reveal the private information of
their customers. In this paper, we present a new algorithm
PriPSeP (Privacy Preserving Sequential Patterns) for the
mining of sequential patterns from distributed databases
while preserving privacy. A salient feature of PriPSeP is
that due to its flexibility it is more pertinent to mining op-
erations for real world applications in terms of efficiency
and functionality. Under some reasonable assumptions, we
prove that our architecture and protocol employed by our
algorithm for multi-party computation is secure.

1. INTRODUCTION
The increasing use of multi-database technology, such as
computer communication networks and distributed, feder-
ated and homogeneous multi-database systems, has led to
the development of many large distributed transactional data-
bases. For decision-making, large organizations might need
to mine these multiple databases located at disparate branches
and locations. Particularly, as the Web is rapidly becoming
an information flood, individuals and organizations can take
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into account low-cost information and knowledge on the In-
ternet while making decisions. Although this large data en-
ables in the improvement of the quality of decisions, it also
generates a significant challenge in the form of efficiently
identifying quality knowledge from multi-databases [20, 25].
Therefore, large corporations may have to confront the mul-
tiple data-source problem. For example, a retail-chain with
numerous franchisees might wish to collaboratively mine the
union of all the transactional data. Each of the smaller
transactional databases could contain information regarding
the purchasing history of the same set of common customers
transacting through online portals or real stores. However,
the greater challenge of these computations can be the ad-
ditional constraint of adhering to stringent privacy require-
ments laid down by the formulation of new laws such as
HIPAA [15]. These regulatory policies have been the driving
force behind the increased consciousness in organizations to-
wards the protection of privacy. Consequently, there has
been a paradigm shift towards the creation of privacy-aware
infrastructures, which entail all aspects, ranging from data-
collection to analysis [3].
Conventionally, data mining has operated on a data-ware-
housing model of gathering all data into a central site, then
running an algorithm against that data. Privacy considera-
tions may prevent this generic approach. Hence, privacy pre-
serving data mining has gained recognition among academia
and organizations as an important and unalienable area, es-
pecially for highly sensitive data such as health-records. If
data mining is to be performed on these sensitive datasets,
due attention must be given to the privacy requirements.
However, conventional sequential pattern mining methods
based on support do not preserve privacy and are ineffective
for global pattern mining from multiple data sources.
Traditionally, Secure Multi-Party Protocols have been em-
ployed for the secure computation for any generic functions.
However, the complexity and overhead of such secure pro-
tocols would be prohibitive for complex data mining tasks
such as the discovery of sequential patterns. Hence, to al-
leviate the communication and bandwidth overhead of the
Oblivious Transfer required between parties in an SMC, we
employ an alternative architecture consisting of semi-honest
and non-colluding sites [12]. This tradeoff between secu-
rity and efficiency is reasonable as none of the participating
sites learn the intermediate or the final results of the calcu-
lus. Furthermore, due to the uniform random noise in the
datasets, the private information of any individual is also
guarded from any possible leak.
In this paper, we present an alternative privacy preserving



data mining approach - PriPSeP, for finding sequential pat-
terns in the distributed databases of a large integrated orga-
nization. Our novel algorithm, PriPSeP is useful for min-
ing sequential patterns via collaboration between disparate
parties, employing the secure architecture, performing the
secure operations via the underlying protocols.

Organization: The remainder of this paper is organized as
follows. Section 2 goes deeper into presenting the problem
statement and provides an extensive description of the prob-
lem at hand. In Section 3, we present an overview of the
related work and give our motivation for a new approach.
Section 4 describes our proposed solution with the descrip-
tion of the architecture and the algorithms for secure multi-
party protocols. Finally, Section 5 concludes the paper with
a roadmap for future work.

2. PROBLEM STATEMENT
In this section, we give the formal definition of the problem
of privacy preserving collaborative sequential pattern min-
ing. First, we provide a brief overview of the traditional
pattern mining problem by summarizing the formal descrip-
tion introduced in [1] and extended in [18]. Subsequently,
we extend the problem by considering distributed databases.
Finally, we formally define the problem of privacy preserving
sequential pattern mining.

2.1 Mining of Sequential Patterns
Let DB be a database containing a set of customer trans-
actions where each transaction T consists of a customer-
id(CID), a transaction time(TID) and a set of items involved
in the transaction.
Let I = {i1, i2...im} be a set of literals called items. An
itemset is a non-empty set of items. A sequence S is a set of
itemsets ordered according to their timestamp. It is denoted
by < s1 s2 ...sn >, where sj , j ∈ 1...n, is an itemset. In the
rest of the paper we will consider that itemsets are merely re-
duced to items. Nevertheless all the proposal could be easily
extended to deal with itemsets. A k-sequence is a sequence
of k items (or of length k). A sequence S′ =< s′1 s′2 ... s′n > is
a subsequence of another sequence S =< s1 s2 ... sm >, de-
noted S′ ≺ S, if there exist integers i1 < i2 < ... ij ... < in
such that s′1 ⊆ si1 , s′2 ⊆ si2, ... s′n ⊆ sin.
All transactions from the same customer are grouped to-
gether and sorted in increasing order and are called a data
sequence. A support value (denoted supp(S)) for a sequence
gives its number of distinct occurrences in DB. Neverthe-
less, a sequence in a data sequence is taken into account only
once to compute the support even if several occurrences are
discovered. In other words, the support of a sequence is de-
fined as the fraction of total distinct data sequences that con-
tain S. A data sequence contains a sequence S if S is a sub-
sequence of the data sequence. In order to decide whether a
sequence is frequent or not, a minimum support value (de-
noted minsupp) is specified by the user, and the sequence
is said to be frequent if the condition supp(S) ≥ minsupp
holds. Given a database of customer transactions, the prob-
lem of sequential pattern mining is to find all the sequences
whose support is greater than a specified threshold (mini-
mum support). Each of these represents a sequential pat-
tern, also called a frequent sequence.

2.2 From Collaborative to Privacy Preserving
Sequential Pattern Mining

Let DB be a database such as DB = DB1

S
DB2 ...

S
DBD.

We consider that all databases DB1, DB2 ... DBD share the
same number of customers (CIDs), which is N . We also
consider that for each customer in the databases, the num-
ber of transaction times (TIDs), K, is the same1. As we
extend the data representation scheme from the SPAM ap-
proach [2], we consider that all transactions are depicted in
the form of vertical bitmaps, which we denote as vectors for
clarity in mathematical formulae.

Definition 1. Let V j
i be a vector where j and i corre-

spond respectively to the ith item and the jth database. V j
i is

defined as follows: V j
i = [Ci,j

1 ...Ci,j
N ] where for u ∈ {1..N},

Ci,j
u = [T i,j,u

1 , ..., T i,j,u
K ]. T i,j,u

v={1..K} corresponds to the trans-

action list of the customer u, from the database DBj and the
item i. It is a K length bit string that has the vth bit as one
if the customer u has bought the item i from the database
DBj.

Given a set of databases DB1, DB2...DBD containing cus-
tomer transactions, the problem of collaborative sequential
pattern mining is to find all the sequences whose support is
greater than a specified threshold (minimum support). Fur-
thermore, the problem of privacy-preserving collaborative
sequential pattern mining is to discover sequential patterns
embedded in the union of databases by considering that the
parties do not want to share their private datasets with each
other.
In order to illustrate this further, let us consider the follow-
ing example.

Example 1. Let us assume that three retail franchisees
Alice, Bob and Carol wish to securely extract the sequen-
tial patterns in the union of their databases without disclos-
ing the identities of any individual customers. Each item is
provided with its timestamp (C.f. table 1).

CID Alice Bob Carol
1 (1)1 (3)5 (2)2 (7)4
2 (2)4 (1)3 (3)6
3 (2)6 (3)7 (1)2 (7)3

Table 1: An example of distributed databases sorted
by CID

Let us assume that the minimal support value is set to 50%.
From the three distributed databases, we can infer that item
(1) is not frequent in any one of the individual databases.
However, by considering the union of all databases (C.f.
table 2 where the superscript depicts the original database,
where the item is derived from), we obtain the sequence of
< (1)(2)(3) >. By considering the constraints for privacy,

1This constraint has been considered purely for readability
reasons. All the described algorithms could be easily ex-
tended to incorporate customer sequences that do not have
the same number of TIDs.



CID Sequences

1 (1)A
1 (2)B

2 (7)C
4 (3)A

5

2 (1)B
3 (2)A

4 (3)C
6

3 (1)C
2 (7)C

3 (2)A
6 (3)A

7

Table 2: Sequences for each customer in the union
of all databases

this sequence has to be obtained by considering Alice, Bob
and Carol are not at liberty to disclose the private transac-
tional history of any of the customers.

3. RELATED WORK
In this section we focus on the various research work closely
related to the domain of privacy preserving data mining and
sequential patterns.

Sequential Patterns: Since its introduction, more than a
decade ago, the sequential pattern mining problem has re-
ceived a great deal of attention and numerous algorithms
have been defined to efficiently find such patterns (e.g. GSP
[18], PSP [14], PrefixSpan [16], SPADE [23], FreeSpan[10],
SPAM [2]). Our data representation scheme has been ex-
tended from the SPAM algorithm [2], wherein for efficient
counting, each customer’s transactions are represented by a
vertical bitmap.

Privacy Preserving Data Mining: Recently, there has
been a spate of work addressing privacy preserving data
mining [17, 5]. This wide area of research includes clas-
sification techniques [7], association rule mining [8], and
clustering [11] with privacy constraints. In early work on
privacy-preserving data mining, Lindell and Pinkas [13] pro-
pose a solution to privacy-preserving classification problem
using oblivious transfer protocol, a powerful tool developed
by SMC research. The techniques based on SMC for effi-
ciently dealing with large data sets have been addressed in
[19], where a solution to the association rule mining prob-
lem for the case of two parties was proposed. Recently, a
novel secure architecture has been proposed in [12], where
the security and accuracy of the data mining results are
guaranteed with improved efficiency.

Secure Multi-Party Computation: A Secure Multi-party
Computation (SMC) problem deals with computing any func-
tion on any input, in a distributed network where each par-
ticipant holds one of the inputs, while ensuring that no more
information is revealed to a participant in the computation
than can be inferred from that participants input and out-
put. Secure two party computation was first investigated by
Yao [21, 22] and was later generalized to multi-party com-
putation (e.g. [6, 9, 4]). It has been proved that for any
polynomial function, there is a secure multiparty computa-
tion solution [9, 4]. The approach used is as follows: the
function f to be computed is firstly represented as a com-
binatorial circuit, and then the parties run a short protocol
for every gate in the circuit. Every participant gets corre-
sponding shares of the input wires and the output wires for
every gate. While this approach is appealing in its general-
ity and simplicity, the protocols it generates depend on the
size of the circuit. This size depends on the size of the input

(which might be huge as in a data mining application), and
on the complexity of expressing f as a circuit (for example,
a naive multiplication circuit is quadratic in the size of its
inputs). Hence this approach, is highly impractical for large
datasets and complicated computations necessary in com-
plex data mining tasks. Our shift away from a traditional
SMC approach has been motivated by [12], describing the
limitations of highly secure, yet practically unviable proto-
cols.

Previous Work: The research area of privacy preserv-
ing sequential pattern mining lies largely unexplored with
only one seminal paper [24]. Zhan et al. have proposed a
approach, which entails the transformation of the databases
of each collaborating party, followed by the execution of a
secure protocol, which results in the preservation of privacy,
as well as the correct results. Theoretically, the approach is
robust and secure, however, it has serious limitations relat-
ing to the initial constraints assumed while developing the
approach. It has been proposed that each of the collabo-
rating parties carries a unique inventory. For instance, con-
sidering our previous example and not taking into account
the possibility of items being shared among the distributed
parties, we do not arrive at the complete results. An item
such as (1), which is not supported by enough customers
in one individual database will not appear in the final re-
sults. This assumption causes serious limitation for real ap-
plications where item sharing between different databases is
imperative as well as a fundamental requirement as shown
earlier. Moreover, employing their new data representation
scheme for sequential data, the same customer buying the
same item more than once from the same database but with
a different TID is not permissible. One other drawback of
mapping each item to a unique code is the additional over-
head incurred while sorting the databases, which might be
significant for large databases.

4. THE PRIPSEP APPROACH
In this section, we propose our novel approach for privacy
preserving sequential pattern mining in distributed and col-
laborative databases. Firstly we focus only on collaborative
sequential pattern mining in order to clearly explain our
methodology. This approach is extended in the next section
in order to consider privacy requirements and finally we pro-
pose a new algorithm and underlying protocols within the
secure architecture.

4.1 Collaborative sequential pattern mining
4.1.1 An overview
As previously seen in Section 2, the challenge with collab-
orative mining lies in the fact that we have to deal with
different databases where the order of items is not known
beforehand (e.g. item (7) of the CID 1 in Bob’s database
occurs before item (3) in Alice’s database).
For brevity, we consider the Data Miner performing the gen-
erating and verifying phases of candidate sequences similar
to the Apriori-based algorithms. We assume that the can-
didate generation is performed conventionally by combining
the k-1 frequent sequences in order to generate k-candidate
sequences (e.g. C.f. GSP [18] generation phase). We extend
the verification phase as follows. As we have to deal with
disparate distributed databases, we assume that the Miner



could request information from the D original databases in
order to obtain a vector corresponding to the specific item

i, i.e. V
[1..D]

i for any candidate sequence.

Let us consider that we are provided with two databases,
namely DB1 and DB2. These databases contain transca-
tions for three customers and each customer has five transac-
tion times or TIDs. The process aims at finding the support
value for the sequence < (1)(2) > in the set of all customers
of the two databases. First, we extract from DB1, the vector
corresponding to the item (1), i.e. V 1

1 , and from DB2 the
vector V 2

1 (left part of figure 1). From the given vectors, two
key operations have to be performed: (i) bitwise OR of the
two vectors, and (ii) transforming the result in order to check
if it could followed by (2). These two vectors are merged to-
gether by applying a bitwise operator (∨): V 1

1 ∨V 2
1 . For the

second operation, similar to the S-step process of the SPAM
algorithm, we consider a function that transforms the vec-
tor(bitmap). For each customer, following the occurrence
of the first bit with value one, every subsequent bit in the
vector is flagged as one. However, since we have to deal with
different databases as well as efficiency issues, we consider
that these two operations are performed through the f func-
tion defined below to obtain a new vector Z1 = f(V 1

1 ∨V 2
1 ).

Definition 2. Let us consider a vector V j
i for a data-

base j and an item i. V j
i is defined as follows: V j

i =

(Ci,j
1 ...Ci,j

N ) where for u ∈ {1..N}, Ci,j
u = (T i,j,u

1 , ..., T i,j,u
K ).

K stands for the number of TIDs and N corresponds to
the number of CIDs. For brevity, we denote this vector as
V . Let f : [0, 1]N×K → [0, 1]N×K be a function such that:
f(V ) = f(C1...CN ) = [fc(C1)fc(C2)...fc(CN )]. For each

u ∈ {1..N}, we have: fc(Cu) =

0
T u

1

T u
1 ∨ T u

2

T u
1 ∨ T u

2 ∨ T u
3

...
T u

1 ∨ ... ∨ T u
k−1

where ∨ is a bitwise operator. We can notice that Card(V ) =
N ×K, Card(Cu) = K, Card(f(V )) = N ×K.

Let g : [0, 1]N×K → [0, 1]N be a function such that: g(V ) =
g(C1...CN ) = [gc(C1)gc(C2)...gc(CN )]. For each u ∈ {1..N},
we have: gc(Cu) = 1 if there exists at least one bit with
value 1 in the customer transactions. It can be noted that
Card(g(V )) = N .

In conjunction with the computation of the function f , the
vectors corresponding to the item (2) are extracted from
DB1 and DB2 (V 1

2 and V 2
2 respectively). Similar to the

previous step the vector (Z2 = V 1
2 ∨ V 2

2 ) is computed. Fol-
lowing that, the bitwise operator ∧ is used to calculate
Z1 ∧ Z2 and the g function is used to calculate the count
for each customer, for the sequence < (1)(2) >, i.e. Z3 =
g(f(V 1

1 ∨ V 2
1 ) ∧ (V 1

2 ∨ V 2
2 )). As the resulting vector Z3 has

a cardinality corresponding to the number of customers, i.e.
N , the last operation to be performed is a summation of the
number of bits with the value 1 in the vector Z3. This is
performed by the

P
operation.

4.1.2 The collaborative support counting algorithm
The Collaborative Frequency algorithm (see Algorithm
1) has been developed as follows. For each item i of the can-
didate sequence to be tested, a new vector Xi is generated
by applying the ∨ bitwise operator on all the corresponding
vectors from the original databases. Hence, by considering
the result of the previous operation, the f function is ap-
plied, followed by the bitwise operator ∧ for each item. At
the end of this iteration, a new vector Z of cardinality N×K
is produced. Consequently, the g function is applied to the
intermediate result for generating a vector of cardinality N ,
i.e. Y . Finally, the number of bits which are 1 in Y are
summated to compute the final value of support.

Algorithm 1: The Collaborative Frequency algo-
rithm
Data: S = < it1 ... itq > a sequence to be tested;

DB = DB1

S
DB2...

S
DBD a set of databases; N

the number of customers shared by all databases; K
the number of date shared by all customers of all
databases.

Result: The support of the sequence S in DB.

foreach i ∈ 1..|S| do
Xi ← V 1

iti

W
...
W

V D
iti

;

Z ← X1;
foreach i ∈ 2..|S| do

Z ← f(Z)
V

Xi;

Y ← g(Z);

return

NX
i=1

Yi;

Complexity: Let Vs = N×K be the size of the vectors which
are sent and S be the candidate sequence to be verified. The
transfers that is performed by the algorithm are: (Vs×D×S)
for
W

and (Vs×S) for both the f function and
V

operation.
There are (N(K − 2))

W
computations performed by f . If

f is already available, i.e. precomputed and stored, we have
(N)

W
operations, otherwise (N(K − 1))

W
operations are

performed by g.

4.2 From collaborative to privacy-preserving
sequential pattern mining

4.2.1 A brief overview of the architecture
In this section we describe an architecture where secure
multi-party techniques developed in the cryptographic do-
main can be easily extended for data mining purposes[12].
Previous work [9] has described that Secure Multi-party pro-
tocols can be used directly to solve with total security, any
generic data mining task. However, the drawback is the
complexity of the protocol and the requirements that all
parties need to be online during the entire duration of the
lengthy process. Hence, it is potentially unviable for com-
plex data mining tasks, particularly relating to cases with
a large number of participants. The communication com-
plexity prohibits efficient scalability and for situations that
all parties cannot remain online for the entire process, the
SMC protocols are rendered useless.
Hence, as proposed in [12], we deploy a safe architecture for
performing the data mining task without leaking any useful
or sensitive information to any of the intermediate parties.



V 1
1 V 2

1

C1

T1 0 0
T2 0 1
T3 1 1
T4 0 0
T5 1 0

C2

T1 0 1
T2 1 0
T3 0 0
T4 0 0
T5 1 0

C3

T1 0 0
T2 0 0
T3 1 1
T4 1 0
T5 1 0

Z1 = f(V 1
1 ∨ V 2

1 )
=⇒

S-Step

Z1

0
0
1
1
1
0
1
1
1
1
0
0
0
1
1

∧

Z2 = V 1
2 ∨ V 2

2

0
0
0
0
1
1
1
1
1
1
0
0
0
0
0

g(Z1 ∧ Z2

=⇒

Z3

1

1

0

P
=⇒ 2

Figure 1: Processing of vectors for collaborative mining

These independent sites collect, store and evaluate informa-
tion securely. PriPSeP requires three non colluding and
semi honest [9] sites which follow the protocol correctly but
can utilize the information collected by them. In effect, all
parties correctly follow the protocols, but then are free to
use whatever information they see during the execution of
the protocols in any way. These are also referred to as hon-
est but curious sites.
The detailed functions of each of these sites are described:

• Data Miner Site DM : The Data Miner is a ran-
domly chosen collaborator between the original data-
bases. Certainly, the Data Miner could be a third
party instead of one of the databases. It’s purpose
is to perform the mining operations, to interact with
NC1 and NC2, and to receive the final result of the
computation from the PS. It should be noted that the
final result is also sent to all the original databases.

• Non Colluding Sites NC1 and NC2: These sym-
metric sites collect the noisy data from each database
including the Data Miner and perform a series of se-
cure operations without inferring any intermediate or
final result.

• Processing Site PS: This site is utilized by both
NC1 and NC2 sites for computing securely the various
functions and operations underlying PriPSeP. Similar
to NC1 and NC2, PS learns no actual results.

Let us consider Figure 2 illustrating the sites and, for each
operator, the different exchanges performed between the
sites. Initially the following preprocessing steps are per-
formed on the databases individually:

1. Each database DB1, DB2...DBD adds the same num-
ber ε of customers with fake transactions and employ a
non-secure counting strategy (this count could be per-
formed by any conventional algorithm since this step
is independent of the privacy) to note the number of
customers, ε′, that have to be pruned from the final
result.

2. Let ϕ be a random number. Each database permutes
individually their vector of transactions (V j

i ) according
to the value of ϕ .

3. One of the collaborating parties is randomly elected to
perform the data mining steps. This party is termed
as the Data Miner (DM).

At the end of the preprocessing we are provided with data-
bases having fake customer transactions and permuted list
of vertically aligned vectors. Subsequently, the Data Miner
can apply an Apriori-like algorithm for generating candidate
sequences as previously mentioned in Section 4.1. This step
is immediately followed by the counting phase. For simplic-
ity, let us take the case of counting the value of support
for the two-length sequence < (1)(2) >. Now, each data-
base DBj sends its V j

1 vector to NC1 and NC2 (dashed
arrows numbered 1 in figure 2). In order to minimize the
risk of network attacks, we propose a hypothetical function
SendS ×DBd(it) which securely transmits the item vector
Vit from database DBd to NC1 and NC2. Furthermore,
in order to make sure that NC1 and NC2 receive minimal
information, for each database DBi, we generate a random
vector RDBi having the same size than Vit and then calcu-
late a vector: ZDBi = Vit

L
RDBi and send either ZDBi to

NC1 and RDBi to NC2 or vice versa. It has been proved in
[5], that any data mining task (h) defined on a vector X =
[x1, x2, ...xn], it suffices to evaluate h(X

L
R) = h(X) since

R = [r1, r2, ...rn] and X
L

R = [x1 ⊕ r1, x2 ⊕ r2, ...xn ⊕ rn].
In this case, for NC1 and NC2 sites we have some RDBi

vectors and since the other vectors are XOR-ed
L

with a
random vector, they are indistinguishable from a uniform
random distribution.
Similar to Algorithm 4.1, the bitwise operator (∨) has to be
applied between every vector. As these vectors are shared
by NC1 and NC2, we consider a new protocol

WS (arrows
numbered 2 in Figure 2) aiming at computing a bitwise OR
between the different vectors. This is performed by send-
ing XOR-ed randomized values from NC1 and NC2 to PS.
Then PS also garbles the resulting vectors in order to divide
the result between NC1 and NC2. The calculation continues
by computing the f and g functions (subsequently referred
to as fS and gS) in a similar way and results are also stored
between NC1 and NC2 (arrows numbered 3 in Figure 2).
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DB
D

...

DBi

Data Miner
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3
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2
3

1

1
1

2

Non−Colluding Site Non−Colluding Site

NC1 NC

...

Processing Site

PS
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Figure 2: PriPSep Architecture

Finally, in order to compute the number of bits which are
in 1 (

P
function, now termed as

PS), NC1 and NC2 col-
laborate to append their resultant vector with randomized
values and then reorder the new vector. PS then calculates
the summation of the number of bits and returns part of the
result to NC1 and NC2. NC1 removes their initial random
noise and then return those final results to the Data Miner
(arrows numbered 4 in Figure 2). At this step, DM only has
to combine the result from NC1 and NC2 and then remove
the ε′ value corresponding to random customers added in
the preprocessing phase.

In the following sections, we will explain in detail the various
protocols, functions and algorithms necessary for PriPSeP.
Firstly, we introduce some notations that are used for de-
scribing the algorithms. As our functions employ bitwise op-
erators, we first present new protocols for securely perform-
ing bitwise operations. Continuing, we will show how the
functions f , g and

P
are extended to fS , gS and

PS respec-
tively to incorporate security aspects. Finally, we present
the Secure Collaborative Frequency algorithm. As
the main goal of our approach is to preserve privacy of the
individual users and do not divulge any information about
the final result to any of the sites, we will show that at the
end of the process, NC1, NC2 and PS will only learn a up-
per bound on the support count of sequences and will not
have any information about the private inputs of any of the
individual customers.

4.2.2 Notations
In the next subsections, we will consider the following nota-

tions. Let (
+
X | −X) ← hS(

+
Y1 ...

+
Yn |

−
Y1 ...

−
Yn) be a tripartite

calculation of any function hS between NC1, NC2 and PS

where NC1 owns half of the input
+
Y1 ...

+
Yn and gets half

of the result
+
X, and similarly NC2 owns half of the inputs

−
Y1 ...

−
Yn and gets half the result

−
X at the end of the process.

The final result is the logical bitwise XOR (
L

) of the
+
X and

−
X. However, this does not imply that NC1 directly sends
+
Y1 ...

+
Yn to PS and receives the result

+
X from PS. Ini-

tially, NC1 transforms its inputs
+
Y1 ...

+
Yn to

+
Y ′1 ...

+
Y ′n via the

addition of uniform random noise and securely sends these
transformed Y ′ to PS. Symmetrically, NC2 also sends its
garbled inputs to PS. At the end of the computation both

the sites receive their share of the noisy result
+

X′ and
−
X′

from PS. Henceforth, this intermediate result can be used
as the inputs for further computations.

4.2.3 The
VS and

WS protocols
In this section, we define two basic algorithms (

VS (see Al-

gorithm 2) and
WS (see Algorithm 3)) providing the proto-

col which is used to securely compute the bitwise operators.
The underlying fundamental principle that the algorithms
operate upon is the addition of uniform random noise to
the data which can be removed from the result by the data-
owners. The protocol initiates with both NC1 and NC2

perturbing their data by XOR-ing it with random values.
Subsequently, the randomized data is sent (e.g. for NC2,
−
X

′
=
−
X
L

RB and
−
Y

′
=
−
Y
L

R′B) to PS, which can calcu-
late the

V
(resp. the

W
) securely. It actually operates

on the randomized inputs and calculates
+
C=

+
X

′ V −
Y

′
and

−
C=

−
X

′ V +
Y

′
. It then also adds random noise to both the

intermediate results in order to avoid that either NC1 or
NC2 have the whole result. At the end of the protocol,
non colluding sites can then calculate the final result for
their own part by removing the initial noise. For instance,

for NC1, the following operation: AR = A′PS

L
(
+
X
V

R′B)L
(

+
Y
V

RB)
L

(
+
X
V +

Y )
L

(RB

V
R′A) could be done se-

curely since it knows its own part (
+
X,

+
Y and R′A) and ran-

dom numbers from NC2 (R′B and RB). Hence, the final

results ARLBR = A′PS

L
(
+
X
V

R′B)
L

(
+
Y
V

RB)
L

B′
PS



Algorithm 2: The
VS protocol

Data:
+
X,

+
Y | −X,

−
Y ) bits are such as

+
X and

+
Y owned by NC1,

−
X and

−
Y owned by NC2.

Result: (AR|BR) are such that ARLBR = (
+
X
L −

X)
V

(
+
YL −

Y ).

1. NC1 and NC2 mutually generate and exchange four
random numbers RA, R′A, RB and R′B such that
+
X

′
=

+
X
L

RA,
+
Y

′
=

+
Y
L

R′A,
−
X

′
=
−
X
L

RB and
−
Y

′
=
−
Y
L

R′B .

2. NC1 sends
+
X

′
and

+
Y

′
to PS.

3. NC2 sends
−
X

′
and

−
Y

′
to PS.

4. PS calculates
+
C=

+
X

′ V −
Y

′
and

−
C=

−
X

′ V +
Y

′
and a

random number RPS .

5. PS sends A′PS =
+
C
L

RPS to NC1 and

B′
PS =

−
C
L

RPS to NC2.

6. NC1 calculates AR = A′PS

L
(
+
X
V

R′B)L
(

+
Y
V

RB)
L

(
+
X
V +

Y )
L

(RB

V
R′A)

7. NC2 calculates BR = B′
PS

L
(
−
X
V

R′A)L
(
−
Y
V

RA)
L

(
−
X
V −

Y )
L

(RA

V
R′B).

L
(
−
X
V

R′A)
L

(
−
Y
V

RA). Substituting the value of A′PS

and B′
PS , the initial and intermediate random numbers are

removed due to the boolean property RPS

L
RPS = 0. The

desired result is
+
X
V +

Y
L +

X
V −

Y
L −

X
V +

Y
L −

X
V −

Y .
Although, this operation is never performed, the symmetri-
cally divided result lies with both NC1 and NC1.

Theorem 1. The operand
VS (resp.

WS) prohibits NC1

from learning NC2’s private data and vice versa. Moreover,
the third party PS learns none of their private inputs.

Proof : From the protocol, B′
PS is all that NC2 learns related

to the private data of NC1. Due to the randomness and

secrecy of RPS , NC2 cannot find out the values of
+
X or

+
Y .

As the roles of NC1 and NC2 are interchangeable, the same

argument holds for NC1 not learning the private inputs
−
X or

−
Y of NC2. However, one key security aspect of not leaking
any information to PS is achieved by randomizing the inputs
before transmitting them to the Processing Site. Due to
the randomization performed during the initial step, it just
infers a stream of uniformly distributed values, and cannot
distinguish between a genuine and a random value.

Complexity: For the
VS operator, ten computations have to

be performed (6
N

and 4
V

). As, two more XOR operations

are performed for the
WS protocol, we have in total, twelve

computations. For each
VS , NC1 and NC2 exchange 2× 2

Algorithm 3: The
WS protocol

Data: (
+
X,

+
Y | −X,

−
Y ) bits are such as

+
X and

+
Y owned by NC1,

−
X and

−
Y owned by NC2.

Result: (AR|BR) are such that ARLBR = (
+
X
L −

X)
W

(
+
YL −

Y ).

1..5. The first 5 steps are the same as
VS .

6. NC1 calculates AR = A′PS

L
(
+
X
V

R′B)
L

(
+
Y
V

RB)L +
X
L +

Y
L

(
+
X
V +

Y )
L

(RB

V
R′A).

7. NC2 calculates BR = B′
PS

L
(
−
X
V

R′A)
L

(
−
Y
V

RA)L −
X
L −

Y
L

(
−
X
V −

Y )
L

(RA

V
R′B).

bits. From NC1 or NC2, 2× 1 bits are sent to PS and one
bit returned. Furthermore, both NC1 and NC2 calculate 2
random bits while 1 random bit is generated by PS.

4.2.4 ThefS, gS and
PS functions

Algorithm 4: The fS function

Data: Vectors of bits (
+
X | −X).

+
X is coming from NC1 and

−
X

is coming from NC2. K the number of dates shared
by each customers of all databases.

Result: Vectors (
+
Y | −Y ) such as

+
Y is the share of NC1 and

−
Y the share of NC2.

foreach c ∈ 0..(| +
X |/K)− 1 do

// For each client c in [0..N -1]

(
+

YK×c+1 |
−

YK×c+1) ← (0|0);
foreach i ∈ 2..K do

(
+

YK×c+1 |
−

YK×c+1) ←WS(
+

YK×c+i−1,
+

XK×c+i−1 |
−

YK×c+i−1,
−

XK×c+i−1);

return (
+
Y | −Y );

In this section, we extend the f and g functions in order
to incorporate security (see Algorithm 4). As previously
mentioned, the SPAM algorithm’s S-step Process requires
that the vectors corresponding to every customer contain all
1’s after the date of the first transaction for that customer.
Hence, the fS function recursively employs the

WS function
to securely compute the resultant vector. The inputs of the
function are the randomly distorted customer data and the
secure

WS is used to find the boolean OR between the suc-
cessive bits residing at the two sites NC1 and NC2. Similar
to the previous algorithms, the final result of the operation
is split into two parts with the Processing Site oblivious of
the correct answer.
Similarly, the gS function (see Algorithm 5) securely com-
putes the existence of at least one bit with value ’1’ in the
vector of each customer transaction. It reduces the vector to
a single bit of value either ’0’ ’1’ depending on whether the
sequence is supported at least once. This function is useful



Algorithm 5: The gS function

Data: Vectors of bits (
+
X | −X).

+
X is coming from NC1 and

−
X

is coming from NC2. K the number of dates shared
by all customers of all databases.

Result: Vectors (
+
Y | −Y ) such as

+
Y will be send to NC1 and

−
Y will be send to NC2.

foreach c ∈ 0..(| +
X |/K)− 1 do

// For each client c in [0..N -1]

(
+
Yc | −Yc) ← (

+
XK×c+1 |

−
XK×c+1);

foreach i ∈ 2..K do

(
+
Yc | −Yc) ← WS(

+
Yc,

+
XK×c+i | −Yc,

−
XK×c+i);

return (
+
Y | −Y );

in calculating the support value at the penultimate step of
the Algorithm 7.

Theorem 2. The functions fS and gS are secure and re-
stricts NC1, NC2 and PS from inferring each other’s pri-
vate data.

Proof : From the algorithms, it is apparent that the secure
operation

WS is applied iteratively to arrive at the results.
As proved in Theorem 1, no private information is shared
while the execution of this operation. Hence, both the func-
tions fS and gS are also secure and no site infers any infor-
mation about any individual customer.

Remark : In fact, calculating gS(
+
X,

−
X) → (

+
Y ,

−
Y ) can be re-

turned while calculating fS(
+
X,

−
X) → (

+
Z,
−
Z) because

+
Yi,

−
Yi

can easily be obtained from (
+

Zi×K+K ,
−

Zi×K+K) by using the
following relation:

(
+
Yi |

−
Yi) =

WS(
+

Zi×K+K ,
+

Xi×K+K |
−

Zi×K+K ,
−

Xi×K+K).

Theorem 3. The functions
PS protocol is fully secure

and does not reveal the final value of support for the candi-
date sequence to either NC1, NC2 or PS.

Proof : Two random vectors R1 and R2 are appended to the
inputs of NC1 and NC2 to prevent PS from distinguish-
ing between genuine and random values. The final com-
puted result is divided by PS between the two sites NC1

and NC2. Hence the final computation is performed by the
Data Miner, which receives the correct result.

Complexity: In Algorithm 6, the number of bits is increased
by a value ≥ 2N for security reasons. Let us consider that
we set this value as follows t =∈ [2..K]. For NC1 and NC2,
(2N(2t+1)) operations are performed while (2N(t+1)) op-
erations on PS. Furthermore we have N(t + 1) operations
for randomizing. The number of transfers between NC1 and
NC2 is (2tN). To exchange the permutation ϕ between NC1

and NC2, we actually need N(t+1) transfers. Nevertheless,
if NC1 and NC2 share a common set of random values gen-
erator, they only need to exchange a number and a seed. So
it could be neglected. Finally between NC1/NC2 and PS,
N(t + 1) bits are transferred.

Algorithm 6: The
PS protocol

Data: Vectors of bits (
+
X | −X).

+
X is coming from NC1 and

−
X is coming from NC2.

Result: A number which is shared in two parts: (
+

NB | −
NB),

corresponding to the number of bits at 1 in vectors

(
+
X
L −

X), such as the real result is NB =
+

NB +
−

NB.

1. NC1 and NC2 generate and exchange two random
vectors R1 and R2 of same cardinality such as
(Card(R1) = Card(R2) ≥ 2N). They both calculate
R1

L
R2 and calculate the number of 1s to be

deleted, NR, at the end of the computation from PS.

2. NC1 and NC2 reorder respectively the vector (
+
X,

R1) and (
−
X, R2) using a permutation value ϕ and get

respectively
+
Y and

−
Y .

3. NC1 sends
+
Y to PS and NC2 sends

−
Y to PS.

4. PS calculates
+
Y
L −

Y and count the number of bits at
1 and gets NB.

5. PS gets a random number RPS and returns
+
N= NB + RPS to NC1 and

−
N= NB −RPS to NC2.

6. NC1 computes
+

NB=
+
N −NR, NC2 keeps only

−
NB=

−
N.

4.2.5 TheSecure Collaborative Frequency algo-
rithm

The Secure Collaborative Frequency algorithm (see
Algorithm 7) extends the Algorithm 1 in order to perform
all operations securely. It is applied after the preprocessing
step and thus considers the original database having fake
transactions. For each item i of the sequence to be tested,
all noisy vectors are sent by SendS to NC1 and NC2 in order
to securely apply an OR between each vector (

WS). The fS

function followed by the bitwise operator
VS is performed.

At the end of this loop we are thus provided with a new

vector (
+
Z | −Z) where part of results are shared between NC1

and NC2. Then we apply the gS function for generating

(
+
Y | −

Y ). Finally, we count the number of bits which are

1 in (
+
Y | −Y ) through the function

PS . At the end of the

process,
+
R and

−
R are sent respectively by NC1 and NC2 to

the Data Miner party. To get the real and final result, the

miner has just to calculate
+
R +

−
R (integer summation) and

has to remove the initial random noise, i.e. ε′, they have
added at the beginning of the process.

Theorem 4. The randomization, performed at each level
(original databases, NC1, NC2 and PS), does not affect the
accuracy of the result.

Proof : The first randomization is performed by the original
databases while inserting fake transactions, i.e. ε, and per-
muting the list customers according to the value of ϕ. As,
DM is elected from the original databases, this information



Algorithm 7: The Secure Collaborative Frequency
algorithm

Data: S =< it1...itq > a sequence to be tested; DB =
DB1

S
DB2...

S
DBD a set of databases; N the

number of customers shared by all databases; K the
number of dates shared by all customers of all data-
bases.

Result: The support of the sequence S in DB with random
noise.

foreach i ∈ 1..|S| do

(
+

Xi |
−
Xi) ← SendS × DB1(i);

foreach j ∈ 2..D do

(
+
V | −V ) ← SendS × DBj(iti);

(
+

Xi |
−
Xi) ← WS(

+
Ci,

+
V |

−
Ci,

−
V );

(
+
Z | −Z) ← (

+
X1 |

−
X1);

foreach i ∈ 2..|S| do

(
+
T | −T) ← fS(

+
Z | −Z);

(
+
Z | −Z) ← VS(

+
T ,

+
Xi | −T ,

−
Xi);

(
+
Y | −Y ) ← gS(

+
Z | −Z);

(
+
R | −R) ←PS(

+
Y | −Y );

return (
+
R | −R);

about the noise is available to DM and hence can easily be
removed. The second randomization is performed by NC1

and NC2 while sending the transaction vectors to PS for
the secure computation of

WS ,
VS , fS and gS . This added

noise is removed at the end of each computation from NC1

and NC2 when they receive results from PS by performing
an XOR operation with the initial random values. More-
over, we have also proved that no private information about
any individual could be learnt by any of the sites (C.f. The-

orems 1,2, and 3). Finally, for the computation of the
PS

function, NC1 and NC2 add random noise in their data, i.e.
NR, and also permute their vector according to a ϕ value.
PS also randomizes its integer value and this noise is re-
moved by sending opposite parts to NC1 and NC2. The
NR value is removed by NC1 and NC2 when returning the
result to DM . Finally, when combining results from NC1

and NC2, the only operation to be performed by DM to
know the real result is to remove the initial ε′.

Complexity: In the secure protocol, each database has to
send 2NK data bits instead of NK. Each DB has also
to calculate NK random bits and perform (NK)

L
oper-

ations. According to the previous results on the number
of operations performed by the secure operators, the time
complexity is O(12NK) for binary operations and O(7NK)
for randomizing operations. Hence, it could be bounded by
O(20NK). Let us now consider the communication com-
plexity of the protocol. Let p = D × S × N × K. The
complexity of the Algorithm 1, i.e. without considering se-
curity, is linear. Let us consider Cor = O(p). As the secure
algorithm considers the same structures as well as the same
order of the operations, we have the complexity of 20×Cor.
The number of transfers required is at most four times the
complexity of the transfer of the 1.

The secure architecture could be further redefined in order
to improve the communication cost between NC1, NC2 and
PS. Furthermore, all the functions could be parallelized.
By considering that operations performed on a new archi-
tecture could be done securely by a multiple of 20, we could
very easily remove this overhead. The last overhead is the
communication cost incurred during the transfer between
original databases and NC1/NC2. The overhead of the all
systems could thus be only 2. We notice, that by consider-
ing SMC protocols, no such optimizations are possible, and
hence for scalability issues, our alternative approach could
be beneficial.

4.2.6 Security of the protocol
For analyzing the security, let us examine the information
divulged to each site participating in the protocol. Note that
during the entire process, the random numbers are securely
generated and the communication infrastructure is robust
and intrusion free.

• NC1 and NC2 View: During the execution of the
protocol, both sites just see a stream of random values
with a uniform distribution. By the proposed pro-
tocol, they only receive noisy data and noisy shared
results. Also NC1 and NC2 cannot share informa-
tion as per the definition of semi-honest non-colluding
sites. The value received from the DBs are Xored with
random numbers from a uniform distribution and in-
distinguishable from real values.

• PS View: It performs the computation of secure oper-
ations (

VS ,
WS , fS , gS ,

PS) and provides the results
to NC1 and NC2. As discussed earlier (C.f. Theorem
1, Theorem 2and Theorem 3) all of these operations
and functions reveal no private data of any individ-
ual customer from any of the collaborating DBs. Even
a succession or sequence of these secure protocols re-
mains secure.

• Overall Security: During the entire algorithm, no
site gets to know any additional information beyond
of what they are already authorized to learn. Hence
the security and privacy of every customer is main-
tained during the computation of support in the ar-
chitecture. The addition of fake transactions during
the preprocessing steps and the permutation of the
lists enable that each site is ignorant of the correct
intermediate results as well as the final result.

5. CONCLUSION
In this paper, we have addressed the problem of privacy pre-
serving sequential pattern mining in distributed databases.
We have presented a novel secure extension of the SPAM
algorithm for mining patterns. We also prove, that under
reasonable assumptions, our algorithm and the underlying
operations, protocols and architecture for multiparty com-
putation is secure. There are various avenues for future
work. Firstly, in this paper we have only focused on the
S-step process of the SPAM algorithm, i.e. we only consid-
ered the problem of discovering sequences reduced to a list of
items. As we have proposed a series of secure functions, our
approach could be easily improved to also consider I-step
process, i.e. a list of itemsets instead of items. In the same



way, the algorithms and underlying protocols could be easily
improved by considering that the number of TIDs is differ-
ent between the customers. In this case, the only constraint
to be considered is that databases share the same number of
customers or CIDs. Furthermore, in the current version of
PriPSep, results are directly returned to the DM party as
well as the original databases. In order to improve the whole
process, we plan to extend the role of DM wherein, it could
store the lexicographic tree and could expand each node in
the tree by considering that intermediate results could be
stored in shared arrays between NC1 and NC2. Hence, in-
cremental mining could be possible and unlike our current
approach, previous results need not be recomputed. The
storage of results would also be made secure by ensuring
that each site has only noisy data or random values.
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