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In recent works, methods have been proposed for applying phylogenetic models that allow for a general interdependence
between the amino acid positions of a protein. As of yet, such models have focused on site interdependencies resulting from
sequence-structure compatibility constraints, using simplified structural representations in combination with a set of sta-
tistical potentials. This structural compatibility criterion is meant as a proxy for sequence fitness, and the methods de-
veloped thus far can incorporate different site-interdependent fitness proxies based on other measurements. However, no
methods have been proposed for comparing and evaluating the adequacy of alternative fitness proxies in this context,
or for more general comparisons with canonical models of protein evolution. In the present work, we apply Bayesian
methods of model selection—based on numerical calculations of marginal likelihoods and posterior predictive checks—to
evaluate models encompassing the site-interdependent framework. Our application of these methods indicates that con-
sidering site-interdependencies, as done here, leads to an improved model fit for all data sets studied. Yet, we find that the
use of pairwise contact potentials alone does not suitably account for across-site rate heterogeneity or amino acid exchange
propensities; for such complexities, site-independent treatments are still called for. The most favored models combine the
use of statistical potentials with a suitably rich site-independent model. Altogether, the methodology employed here should
allow for a more rigorous and systematic exploration of different ways of modeling explicit structural constraints, or any
other site-interdependent criterion, while best exploiting the richness of previously proposed models.

Introduction

Models of molecular evolution are attempts at describ-
ing the process of residue replacement in nucleotide and
amino acid sequences. They are the central issue in prob-
abilistic phylogenetics as they have an impact on all stages
of an inference. The development of models with greater
realism is hoped to lead to improved phylogenetic analyses.
This has been the case, for example, with models that allow
the global rate of substitution to vary across the positions of
an alignment (Yang 1993, 1994). Such rate heterogeneous
models are designed to accommodate the different selective
pressures operating at each site and have been shown to
have a significantly higher statistical fit to most data sets
(Yang 1996), often leading to more reasonable phyloge-
netic estimates (Buckley et al. 2001; Brinkmann et al.
2005). For the study of amino acid sequences, the use of
empirical replacement matrices (e.g., Dayhoff et al. 1972,
1978; Jones, Taylor, and Thornton 1992b; Whelan and
Goldman 2001) has provided an efficient way of includ-
ing precompiled information regarding the relative ex-
changeability of amino acids. A panoply of other models
have also been devised, usually aimed at relaxing certain
assumptions of standard model formulations, such as the
assumption of stationarity (e.g., Galtier and Gouy 1998)
or of homogeneity in the substitution pattern across sites
(e.g., Lartillot and Philippe 2004; Pagel and Meade 2004).

Although these developments undoubtedly provide
more reasonable descriptions of sequence evolution, sev-
eral oversimplifications persist. Most of the models cur-
rently applied continue to operate under the assumption
of independence between sites. Yet, this simplification—
with practical and computational justifications—is widely

regarded as biologically unrealistic; the overall structure
adopted by a protein, for example, must involve interac-
tions between various amino acids of a sequence. Indeed,
there has been increasing interest in incorporating ex-
plicit protein structure constraints into evolutionary models,
more recently with ideas borrowed from the literature on
statistical potentials (e.g., Bastolla et al. 1999; Babajide
et al. 2001; Parisi and Echave 2001; Bastolla et al. 2003).

Statistical potentials are empirically derived scores,
generally formulated in terms of pseudo-energy and based
on observations from protein structure databases (e.g.,
Miyazawa and Jernigan 1985; Sippl 1990; Jones, Taylor,
and Thornton 1992a). They may be viewed as coarse-
grained summaries of observed amino acid interaction pat-
terns. In an evolutionary context, Parisi and Echave (2001),
for example, applied a set of statistical potentials in a sim-
ulation procedure, which proposes amino acid replace-
ments, and discards sequences resulting in structurally
divergent proteins. Fornasari et al. (2002) subsequently
used this simulation procedure to construct replacement
matrices incorporated into a phylogenetic context, leading
to an improved model fit under several contexts (Parisi and
Echave 2004, 2005).

The framework adopted in Fornasari et al. (2002) and
Parisi and Echave (2004, 2005) is a computationally sen-
sible way of devising a structurally informed model.
However, there is also interest in invoking a set of statistical
potentials directly within a phylogenetic framework. This
is the main motivation behind the models proposed in
Robinson et al. (2003) and Rodrigue et al. (2005), which
incorporate explicit structural constraints within a Markov-
ian description of the substitution process. The models
combine a fitness proxy—a set of potentials considering
the overall protein—to common site-independent models,
either formulated in mechanistic terms (Robinson et al.
2003) or directly at the level of amino acids (Rodrigue
et al. 2005). The potentials are meant to provide an estimate
of the compatibility of an amino acid sequence with a given
protein structure, so that differences in compatibility, before
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and after inferred amino acid replacement events, influence
the probability of an evolutionary scenario.

Formally, these models raise several technical difficul-
ties. For example, they require the use of data augmentation
system based on substitution histories (also referred to as
transition paths [Jensen and Pedersen 2000; Pedersen
and Jensen 2001] or mappings [Nielsen 2002]), which
include the timing and nature of each substitution event
along each branch (Robinson et al. 2003), eventually lead-
ing to the sequences observed in the alignment (Rodrigue
et al. 2005). In practice, this means including updates to
substitution histories over the tree within Markov chain
Monte Carlo (MCMC) procedures, effectively performing
a numerical integration over all possible mappings. Other
technical complications include computing (the ratio of)
stationary probabilities, involving normalizing constants
that cannot be computed analytically. Again, this compli-
cation is dealt with using MCMC procedures (see Robinson
et al. [2003] and Rodrigue et al. [2005] for details). Indeed,
these types of elaborate Monte Carlo sampling schemes
illustrate some of the practical reasons for assuming inde-
pendence between sites in the first place. Nevertheless, the
methods seem reliable, and reasonably tractable for small
single protein data sets (Rodrigue et al. 2005).

The numerical means of applying general site-
interdependent models introduces a wide spectrum of possi-
ble model configurations; the MCMC procedures allow for
a broader class of models than previously proposed meth-
ods of incorporating interdependence (e.g., Felsenstein and
Churchill 1996; Jensen and Pedersen 2000; Pedersen and
Jensen 2001; Arndt et al. 2002; Siepel and Haussler 2004)
because the substitution process is effectively defined in
the space of sequences. In other words, invoking some se-
quence fitness criterion could—in theory—accommodate
a total interdependence across all sites. An ideal per-
spective would include full knowledge of the posited fit-
ness landscape of the sequences under study, forming the
basis of all evolutionary inferences. In practice, however,
it follows that some proxies for sequence fitness may be
better suited than others, and that their application may pro-
duce different results depending on the specifications of the
formally site-independent components of the model. This
raises the question of choosing the most relevant combina-
tion for a particular data set.

In the Bayesian paradigm, model evaluation strategies
can be categorized along 2 broad axes. The first is used to
compare the fit of alternative models, often achieved by com-
puting the Bayes factor (Jeffreys 1935; Kass and Raftery
1995). The second, known as posterior predictive checking
(Rubin 1984; Gelman et al. 1996), is mainly used as a diag-
nostic, characterizing discrepancies between features of
true data and data simulated under the model of interest. Both
strategies have become widely used for the study of phylo-
genetic models (reviewed in Sullivan and Joyce [2005]).

In the present work, we explore these model evalua-
tion strategies within the site-interdependent framework.
From a technical standpoint, posterior predictive checks
require nothing more than simulations under the site-
interdependent model. The calculation of the relative fit of
different models, however, requires more elaborate methods
because the models do not allow for a closed form compu-

tation of the likelihood. Indeed, in previous studies, the
importance of explicit site-interdependent structural con-
siderations was assessed based on the plausibility of associ-
ated parameter estimates (Robinson et al. 2003; Rodrigue
et al. 2005). Such model assessments remain qualitative;
they do not allow for selection between alternative fitness
proxies, or even for a quantified comparison against site-
independent models. The model comparison framework
proposed by Fornasari et al. (2002), on the other hand,
can not be applied without waiving one of the original
motivations of the models: introducing explicit interdepen-
dencies across the positions of a protein.

Here, we propose the use of a numerical technique for
the evaluation of Bayes factors, yielding quantitative model
comparisons under the fully site-interdependent framework
originally proposed by Robinson et al. (2003). Commonly
known under the names of thermodynamic integration, path
sampling, or Ogata’s method, the technique has been used
extensively in statistical physics for evaluating (the ratio of)
partition functions (for instructive reviews, see Neal [1993]
and Gelman [1998]) and more recently for the study of phy-
logenetic models (Lartillot and Philippe 2004, 2006). We
derive an adaptation of the method, which, in combination
with previously proposed techniques (Lartillot and Philippe
2006), can provide an overall ranking of models, with or
without site-interdependent criteria.

We have implemented these model assessment strat-
egies and applied them on real protein data sets, comparing
the relevance of 2 sets of statistical potentials (Miyazawa
and Jernigan 1985; Bastolla et al. 2001), combined with
several different and well known types of models of amino
acid sequence evolution. By contrasting different model
configurations, we have evaluated the relative contribution
of each component to the overall model fit.

Our findings indicate that considering site interdepen-
dence due to tertiary structure using statistical potentials
always improves the fit of the model for all 3 studied
data sets. Yet, the assessment strategies also show that
using pairwise contact potentials alone is unsatisfactory.
In particular, the statistical potentials we have tested do
not suitably account for differences in amino acid exchange
propensities or heterogeneous rates of substitution across
the sites of an alignment. For such features, the modeling
strategies developed under the assumption of independence
are still far more appropriate. One pragmatic alternative,
which we previously suggested on intuitive grounds, is to
layer the use of statistical potentials to complement a suit-
able site-independent model (Rodrigue et al. 2005). Indeed,
for the range of model configurations we have assessed
and for all data sets studied, we find that the models receive
the highest support when combining an empirical amino acid
replacement matrix (Jones, Taylor, and Thornton 1992b), an
explicit treatment of variable rates across sites (Yang 1993),
and the statistical potentials of Bastolla et al. (2001).

Materials and Methods
Data Sets

We used the following 3 data sets, referred to using
a shorthand indicating the protein type, the number of
sequences, and their length:

Assessing Site-Interdependent Models 1763

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/23/9/1762/1014276 by Bibliothèque U
niversitaire de m

édecine - N
îm

es user on 15 June 2021



� FBP20-363: 20 amino acid sequences of vertebrate fruc-
tose bisphosphate aldolase;

� PPK10-158: 10 amino acid sequences of bacterial 6-
hydroxymethyl-7-8-dihydroxypterin pyrophosphokinase;

� MYO60-153: 60 amino acid sequences of mammalian
myoglobin.

A complete listing of sequences included in these data
sets (with accession numbers) is provided in the supplemen-
tary material online, and the alignments are available upon
request.

In all the analyses included here, the tree topology is
assumed to be known; it was constrained to the maximum
likelihood topology, obtained using PhyML (Guindon and
Gascuel 2003) under a JTT1F1C model.

We apply a simple protein structure representation
based on a contact map (see below). The contact map is
derived from a reference structure determined by X-ray
crystallography for one of the sequences included in the
data set (Protein Data Bank accession numbers 1ALD,
1HKA, and 1MBD for FBP20-363, PPK10-158, and
MYO60-153, respectively).

Notation

Data sets (D) consist of alignments of P amino acid
sequences of length N, assumed related according to a par-
ticular phylogenetic tree. The tree is rooted arbitrarily as all
models considered here are reversible. We use i to index
positions of a sequence s 2 s, where s 5 (si)1�i�N and s is
the set of all sequences of length N (i.e., s has 20N ele-
ments). Also, let j specify the nodes, with a node having
the same index as the branch leading to it, with the excep-
tion of the root node, which has an index 0 (0 � j � 2P �
3). We specify the sequence at node j as sj (with s0 being
the sequence at the root node) and a particular amino acid
state at position i in this sequence as sij. We write the set of
branch lengths as k 5 (kj)1�j�2P�3 and the set of branch-
specific substitution mappings as x 5 (xj)1�j�2P�3. The
total number of substitutions along a branch is written
as zj (zj � 0). We index substitution events as k (k � zj)
and refer to the time of an event on branch j as tjk.
Substitution events alter a single site of the sequence, at
position rjk. When specifying the series of substitution
events occurring on a branch j, let sjk–1 and sjk represent
the sequence states before and after substitution event k.
Note that when k 5 1, we let sjk�15sjup

, where jup is
the immediate ancestral node of j. Finally, when k 5 zj,
we let sjk 5 sj.

Statistical Potentials as Sequence Fitness Proxies

Statistical potentials are formulated to associate a
pseudo-energy to the different body interactions in a protein
tertiary structure. For the potentials used here, interactions
are defined between each possible pair of amino acids, with
the associated pseudoenergies written as e5 (elm)1�l, m�20.
The protein structure is represented by a contact map c 5
(cii#)1�i,i#�N, with elements

cii# 5
1; if amino acids at sites i and i# are in contact;
0; otherwise; or if ji � i#j � /;

�
ð1Þ

where / is a threshold, below which contacts due to sequen-
tial proximity are ignored. Bastolla et al. (2001) define a
contact as 2 amino acids with any heavy atoms (atoms other
than hydrogen) within 4.5 Å, whereas Miyazawa and
Jernigan (1985) consider side-chain centers within 6.5 Å.
Also note that Bastolla et al. (2001) use a threshold of
/5 2, whereas Miyazawa and Jernigan (1985) ignore con-
tacts between immediate neighbors in the sequence (/5 1).

Given the contact map, the pseudo-energy of a sequence
is calculated as:

Es 5
X

1�i,i#�N

cii#esisi#
: ð2Þ

As explained in Rodrigue et al. (2005), we impose the
same protein structure over the tree by applying the same
contact map to all sequences considered throughout the
inference.

Evolutionary Models

Standard models consider the amino acid states at the
positions of an alignment as the realization of a set of in-
dependent Markov substitution processes—one for each
site—running along the branches of the tree. These pro-
cesses are described by a rate matrix Q 5 [Qlm], specifying,
in this case, the instantaneous rate of substitution from one
amino acid state to another. Rate matrices are typically
comprised of 2 sets of parameters: amino acid equilibrium
frequencies, p 5 (pm)1�m�20, with

P20
m51 pm51, and ex-

changeability parameters, q 5 (qlm)1�l, m�20 such that

Qlm 5
1

ZQ

qlmpm; l 6¼ m; ð3Þ

Qll 5 �
X
m 6¼l

Qlm; ð4Þ

where ZQ is a normalizing factor such that branch lengths
represent the expected number of substitutions per site:

ZQ 5 23
X

1�l,m�20

qlmplpm: ð5Þ

Various combinations of these parameters are possi-
ble. In the simplest case, both equilibrium frequencies
and exchangeability parameters are fixed to uniform values,
rendering all types of substitutions equally probable (re-
ferred to as POISSON). More typically, however, equilibrium
frequencies and exchangeability parameters are fixed to em-
pirically derived values, such as those of Jones, Taylor, and
Thornton (1992b) (written as JTT). Other alternatives might
consider equilibrium frequencies as free parameters (desig-
nated as 1F) or both equilibrium frequencies and ex-
changeability parameters as free (indicated as GTR).

The independent (20 3 20) Markov processes operat-
ing at each site of the protein can equivalently be considered
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as a single Markov process, whose state space is now the set
of all sequences of length N. There are 20N such sequences,
and thus, the matrix of this Markov process will be a 20N 3
20N matrix R:

Rss# 5

0; if s and s# differ at more than

one position;
Qlm; if s and s# differ only at site

i; si 5 l and si#5m;
�
P

s# 6¼s Rss#; if s and s# are identical:

8>>>><
>>>>:

ð6Þ

With the formulation of equation (6), it is possible to intro-
duce a site-interdependent criterion: the pseudo-energy be-
fore and after an amino acid substitution. The new matrix R
is then

Rss# 5

0; if s and s# differ at more than

one position;
Qlme

bðEs�Es#Þ; if s and s# differ only at site

i; si 5 l and si#5m;
�
P

s# 6¼s Rss#; if s and s# are identical;

8>>>><
>>>>:

ð7Þ

where b is a new parameter, effectively weighting the
pseudo-energy difference’s impact on the rate of substitu-
tion. When b 5 0, the model simplifies to the usual site-
independent model specified in equation (6). However,
when b 6¼ 0, the substitution process can no longer be de-
composed into a set of N independent processes because
the pseudo-energy measure considers the entire amino acid
sequence (see the supplementary material online for issues
of scaling the rate matrix R as well as the alternative of
monitoring branch lengths in terms of the actual number
of substitution per site induced by the model, also explained
by Rodrigue et al. [2005)]). To indicate the model with sta-
tistical potentials (b 6¼ 0), we use the suffix 1MJ, when
using the potentials of Miyazawa and Jernigan (1985),
and 1BAS, when using those of Bastolla et al. (2001).

Finally, sites of an alignment may have uniform rates
or variable (gamma distributed) rates across sites r 5
(ri)1�i�N; (designated as 1C). In this case, the rate of sub-
stitution from s to s# having a single amino acid difference
at site i becomes Rss# 3 ri.

Because the model combines statistical potentials with
the common site-independent parameterizations, we have
referred to this approach as a layering strategy (Rodrigue
et al. 2005), aimed at utilizing the most of available infor-
mation for capturing features of the amino acid replacement
process.

Priors

We used the following priors:

� k ; Exponential, with a mean determined by a hyper-
parameter l, itself endowed with an exponential prior
of mean 1;

� r ; Gamma, with a ‘‘shape’’ hyperparameter a, in turn
endowed with an exponential prior of mean 1;

� q ; Dirichlet(1, 1, ., 1);
� p ; Dirichlet(1, 1, ., 1);
� b ; Uniform[ – bmax, bmax], where, unless stated other-

wise, bmax 5 5.

MCMC Sampling

Conventional models generally invoke pruning-based
likelihood calculations (Felsenstein 1981) and compute a
finite-time transition probability matrix P(m) 5 [Plm(m)]
by rate matrix exponentiation: P(m) 5 emQ, giving, in this
case, the probability of amino acid l substituting to m, over
an evolutionary distance m. Having computed P(m) for all
evolutionary distances involved in a tree, the likelihood
is calculated by summing transition probabilities for all
possible internal node state configurations. Here, given
the order of R (20N 3 20N), an equivalent calculation is
not tractable. As an alternative, Robinson et al. (2003)
proposed a data augmentation framework based on sub-
stitution mappings. For ease of notation, we group all
components of the model into a vector h, i.e., h5
fp; q; b; k; l; r; ag—when fixing certain elements of the
model, the hypothesis vector is obviously reduced in accor-
dance. Given a hypothesis vector h 2H under model M, the
probability of going from a given sequence to another over
branch j, and through a specific substitution history xj, can
be calculated as

pðsj;xjjsjup ; h;MÞ5
Yzj

k 5 1

Rsjk�1sjk
rrjk

e
�ðtjk�tjk�1Þ!ðsjk�1Þ

 !

3 e
�ðkj�tjzj

Þ!ðsjzj
Þ
;

ð8Þ

where !ðsjk�1Þ5
PN

i51

P
si#

Rsjk�1si#ri represents the ‘‘rate
away’’ from sequence sjk–1, with the inner sum being over
the 19 sequence states that differ with sjk–1 at position i.

The likelihood computations also require the probabil-
ity of the sequence at the root of the tree:

pðs0jh;MÞ5 1

Z0

e
�2bEs0

YN

i5 1

psi0
; ð9Þ

with Z0 being the associated partition function

Z0 5
X

s

e
�2bEs

YN

i5 1

psi
: ð10Þ

Assuming lineages evolve independently, we compute the
product of equation (8) over all branches, along with the
probability in equation (9), yielding the overall likelihood
function:

pðD;xjh;MÞ5 pðs0jh;MÞ
Y2P�3

j5 1

pðsj;xjjsjup ; h;MÞ: ð11Þ

The likelihood function (11) is combined with the joint
prior probability density p(h j M) to obtain the posterior
probability density p(x, h j D, M) given by Bayes’ theorem:

pðx; hjD;MÞ5 pðD;xjh;MÞpðhjMÞ
pðDjMÞ : ð12Þ

Our MCMC procedure consists of using the Metropolis–
Hastings algorithm (Metropolis et al. 1953; Hastings
1970) to define a Markov chain with the probability in
equation (12) as its stationary distribution; assuming a
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current state (x, h), an update to a new state (x#, h#) is pro-
posed and accepted with a probability 0:

05min 1;
pðx#; h#jD;MÞ
pðx; hjD;MÞ 3H

� �
; ð13Þ

where H is the Hastings ratio (of proposal densities).
We used the update operators described by Rodrigue

et al. (2005), with minor variations outlined in the supple-
mentary material online, along with more detailed descrip-
tions of MCMC settings used in this work.

Computing Bayes Factors

The denominator of Bayes theorem (p(D j M) in
eq. 12) is a normalizing constant, such that the posterior
probability integrates to 1:

pðDjMÞ5
Z
H

Z
X

pðD;xjh;MÞpðhjMÞdxdh: ð14Þ

This normalizing constant, also called the integrated or

marginal likelihood, is not of concern when work-
ing under a fixed model because it cancels out in the
Metropolis–Hastings algorithm. When interested in com-
paring 2 different models, however, the marginal likelihood
has an intuitively appealing meaning: expressed as a func-
tion of M, it can be viewed as the likelihood of model M
given the data D. In the Bayesian framework, the model of
highest likelihood would be favored, typically by evaluat-
ing the Bayes factor (B01) between M0 and M1 (Jeffreys
1935; Kass and Raftery 1995):

B01 5
pðDjM1Þ
pðDjM0Þ

: ð15Þ

In principle, a Bayes factor greater (smaller) than 1 is con-

sidered as evidence in favor of model M1 (M0).
Besides the intuitive interpretation of model likeli-

hoods, comparing models based on equation (15) is attrac-
tive for several reasons: the models compared need not be
nested, or even rely on the same parametric rationale; the
Bayes factor implicitly penalizes for parameter-rich models,
thus also allowing for the selection of an appropriate dimen-
sionality. In practice, evaluating Bayes factors for high di-
mensional models is a computationally demanding task,
involving difficult integrals, as shown in equation (14). Here,
we rely on the numerical technique of thermodynamic in-
tegration (Ogata 1989; Gelman 1998) adapted from the
methods described by Lartillot and Philippe (2006). In the
present application, the method rests in defining a continuous
path connecting a standard site-independent model with the
model including the sequence fitness proxy, i.e., the set of
statistical potentials. To do so, we make use of the fact that
when b5 0, the site-interdependent model collapses to the
usual site-independent model. As shown in the Appendix,
for a given value of b, the derivative of the logarithm of
the marginal likelihood with respect to b gives:

@ ln pðDjbÞ
@b

5 Æ@ ln pðD;xjb; hÞ
@b æ; ð16Þ

where Æ�æ represents an expectation with respect to the pos-

terior distribution (we henceforth omit the dependence on

M from the notation, considering it as implicit). Based on
a sample (hh, xh)1�h�K, obtained via the Metropolis–Hast-
ings algorithm, expectations over the posterior probability
distribution can be estimated for any value of b using the
standard Monte Carlo relation:

Æ@ ln pðD;xjb; hÞ
@b æ ’ 1

K

XK

h5 1

@ ln pðD;xhjb; hhÞ
@b

: ð17Þ

Our quasi-static procedure then consists of sampling along

a path linking the standard site-independent model, b 5 0,
to some arbitrary point, b5 x, by slowly incrementing b by
a small value db after a set of MCMC cycles. We write such
a sample as (bh, hh, xh)0�h�K, where b0 5 0, bK 5 x, and
"h, 0 � h , K, bh11 � bh 5 db. Integrating over the in-
terval [0, x] can then be estimated:

ln
pðDjbKÞ
pðDjb0Þ

5

Z x

0

@ ln pðDjbÞ
@b

db ð18Þ

5

Z x

0

Æ@ ln pðD;xjb; hÞ
@b ædb ð19Þ

’ x3
1

K

1

2

@ ln pðD;x0jb0; h0Þ
@b

��

1
@ ln pðD;xKjbK; hKÞ

@b

�

1
XK�1

h5 1

@ ln pðD;xhjbh; hhÞ
@b

#
:

ð20Þ

Equation (20) provides an estimate of the logarithm of the
Bayes factor for the model including statistical potentials,
with b 5 x, over the site-independent model, b 5 0. The
value of x is arbitrary. However, with this procedure, we can
monitor the Bayes factor anywhere we choose along the
dimension of b. Also note that, using the same sample,
ln p(D j bK#) � ln p(D j b0) can be computed for any value
K# (0 � K# � K). In other words, the curve of the log mar-
ginal likelihood along b can be estimated (fig. 1). In practice,
because the high-likelihood region is restricted to a very
small proportion of the admissible values of b, the integra-
tion procedure can be constrained to a small and specific in-
terval; one can consider that outside this specific interval, the
marginal likelihood given b is ;0. Thus, exponentiating and
integrating this curve yields the overall Bayes factor between
the model with statistical potentials (M1) against the model
assuming independence (M0), with the Monte Carlo estimate
derived as

B01 5

R
pðDjbÞpðbÞdb

pðDjb0Þ
ð21Þ

5

Z
pðDjbÞ
pðDjb0Þ

pðbÞdb ð22Þ

’
XK

h5 1

pðDjbhÞ
pðDjb0Þ

3
db
I
; ð23Þ
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where I is the interval size of the uniform prior on b and,
hence, db/I is the density of the prior contained between
each successive db step of the quasi-static procedure.

The analogy with thermodynamics here is that the
inverse of b can be thought of as a ‘‘site-interdependence
temperature,’’ with b 5 0 effectively ‘‘melting’’ out all
structural information. Alternatively, when b. 0, the mod-
els can be said to be ‘‘annealed’’ into site interdependence.
From this perspective, plain MCMC runs are in fact sam-
pling the appropriate temperature for the particular se-
quence fitness proxy.

We also use this analogy in referring to our tuning
of the thermodynamic integration, which we explore by
applying the procedure in different directions. Specifically,
annealing integrations work by first equilibrating a
MCMC with b5 0, followed by a slow and progressive in-
crease to b5 x. If the value of b is increased too quickly, the
MCMC run will not have sufficient time to equilibrate, al-
ways dragging behind configurations from preceding cycles
with each increment of b. Conversely, melting integrations
work by equilibrating a MCMC at b 5 x and slowing de-
creasing to b 5 0. Performing a bidirectional check, i.e.,
both annealing and melting integrations, forms the basis
of our empirical exploration of the MCMC settings needed
for refining the estimation procedure (fig. 1).

Obviously, obtaining precise integrations is computa-
tionally more challenging when applying the statistical
potentials to models with greater degrees of freedom. For
example, using MYO60-153, figure 1a shows that the an-
nealing and melting integrations, applied under JTT1BAS,
are very similar for fast runs (db5 0.005 and K 5 100) re-

quiring about 2 h of CPU time on a Xeon 2.4 GHz desktop
computer. Slower runs (db5 0.0001 and K5 5,000) requir-
ing about 2 days of CPU are essentially indistinguishable
(fig. 1b). When applying the integration under JTT1
F1BAS, however, a clear discrepancy is observed between
fast (approximately 30 h, db 5 0.001 and K 5 1,000) an-
nealing and melting runs (fig. 1c). Nevertheless, by tuning
the call frequency of the various Monte Carlo operators, the
step size of the quasi-static scheme, and the number of cycles
between each increment, the integration settings can be ad-
justed (db 5 0.0005 and K 5 20,000) to obtain precise
Bayes factor estimates within about 15 days (fig. 1d).

Our integration scheme along b allows us to compute
the Bayes factor between a site-interdependent model and
its site-independent counterpart. We also need to compute
Bayes factors between site-independent models, which we
do using the model-switch integration method described
by Lartillot and Philippe (2006). For example, in assessing
the model GTR1BAS, we first perform the integration
along b, giving the log Bayes factor of GTR1BAS against
GTR. Then, applying the model-switch method, we com-
pute the log Bayes factor between GTR and POISSON. With
both estimates at hand, we calculate the log Bayes factor of
GTR 1 BAS against POISSON, simply using the additive
quality of logarithms:

ln
pðDjGTR1BASÞ

pðDj POISSONÞ 5 ln
pðDjGTR1BASÞ

pðDjGTRÞ

1 ln
pðDjGTRÞ

pðDj POISSONÞ:
ð24Þ

FIG. 1.—Bidirectional integrations along b for JTT1BAS (a and b) and JTT1F1BAS (b and d) performed with ‘‘fast’’ (a and c) and ‘‘slow’’ (b and d)
settings using the MYO60-153 data set. The trace plots illustrate the empirical tuning of the thermodynamic MCMC sampling, which is more challenging
for the model with greater degrees of freedom (bottom).
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In this way, it is possible to observe the overall ranking
of models for a given data set, by having all Bayes factors
against the simplest POISSON model. Note that the error of
the integration procedures is cumulative in equation (24);
for succinct comparisons of models, we report the mean
of the highest and lowest values obtained using bidirec-
tional checks (table 1). For the simpler models, the error
can be reduced to less than one natural log unit, whereas
the more challenging models can lead to an error approx-
imately 64. The actual highest and lowest values obtained
are reported in the supplementary material online.

The following protocol summarizes:

� for a particular model setting, run a quasi-static thermo-
dynamic integration, estimating the log marginal likeli-
hood curve along b (applying the Monte Carlo estimate
given by eq. 20);

� exponentiate and integrate the resulting curve to estimate
the overall Bayes factor between the site-interdependent
model and the underlying site-independent model (ap-
plying the Monte Carlo estimate given by eq. 23);

� given the marginal likelihood comparisons between site-
independent models, estimated using the model-switch
scheme described by Lartillot and Philippe (2006), com-
pute all Bayes factor with respect to POISSON (applying
relations analogous to eq. 24).

Posterior Predictive Resampling

The sampling techniques used here are particularly
well suited to performing posterior predictive checks, as
described by Nielsen (2002) (also see Bollback [2005]).
A posterior predictive scheme is based on a simulation pro-
cedure, which consists of drawing a sequence from the sta-
tionary probability written in equation (9) under a given h 2
H, and simulating a substitution mapping on the branches
of the tree to generate a replication of the data—in other
words, these mappings are unconstrained to any states at
the leaves of the tree (Nielsen 2002). The simulation pro-
cedure is repeated on each successive parameter values of
the initial MCMC sampling performed on the true data.

Given a statistic of interest, posterior predictive checks
then consist in comparing the value of the statistic observed
on the data with the distribution obtained on the replicates;
a discrepancy indicates that the model does not adequately
account for the phenomena summarized by the statistic.
Here, our statistics are not exactly computed on the data
but on mappings sampled from their posterior distribution.
We refer to the substitution histories obtained from simu-
lations as predictive mappings, in contrast with what we call
the ‘‘observed’’ mappings, which are conditioned on the
true data. Note, of course, that these latter mappings are
not actually observed but rather constitute the data augmen-
tation step of the MCMC methods.

To explore whether a model can explain the level of
rate heterogeneity of a given data set, we compared the var-
iance in number of substitutions across sites, calculated
based on the number of substitutions counted at each site
in predictive and observed mappings. This particular statis-
tic was used by Nielsen (2002) as an example demonstrat-
ing the utility of a mapping-based framework.

Also, in order to observe how well a model captures
amino acid exchange propensities, we counted each of the
190 possible types of exchange in mappings to generate
what we refer to as the residue exchange distribution.
We then computed the Euclidean distance between predic-
tive and observed exchange distributions for each sample
point from the posterior distribution.

Results and Discussion
Bayes Factors

We applied the thermodynamic integration procedures
to all data sets and for all model combinations described
herein. The resulting Bayes factors, computed against the
simplest model (POISSON), are reported in table 1.

Overall Fit of Site-Independent Models

The most favored site-independent model is JTT1C
for FBP20-363 and PPK10-158 and JTT1F1C for
MYO60-153. This is somewhat expected. The POISSON-
based models are obviously unrealistic because the ex-
changeability between amino acids is clearly not uniform,
hence giving support to JTT-based models. Also, allowing
for rate heterogeneity is known to nearly always improve
the model fit (Yang 1996; Buckley et al. 2001; Posada
and Buckley 2004), as is the case here. The equilibrium fre-
quencies of JTT appear to be suitable for the 2 smaller data

Table 1
Natural Logarithm of the Bayes Factor for All Models
Studied, with POISSON Used as a Reference

Model FBP20-363 PPK10-158 MYO60-153

POISSON 0 0 0
POISSON 1 BAS 10 16 24
POISSON 1 MJ 6 7 18
POISSON 1 F 103 34 70
POISSON 1 F 1 BAS 158 78 142
POISSON 1 F 1 MJ 144 65 129
POISSON 1 C 135 53 138
POISSON 1 C 1 BAS 138 69 162
POISSON 1 C 1 MJ 137 58 156
POISSON 1 F 1 C 238 89 207
POISSON 1 F 1 C 1 BAS 296 139 280
POISSON 1 F 1 C 1 MJ 285 122 267
JTT 380 144 368
JTT 1 BAS 391 155 382
JTT 1 MJ 386 150 379
JTT 1 F 365 137 389
JTT 1 F 1 BAS 397 159 427
JTT 1 F 1 MJ 389 145 417
JTT 1 C 529 195 499
JTT 1 C 1 BAS 540 206 512
JTT 1 C 1 MJ 535 200 508
JTT 1 F 1 C 513 186 513
JTT 1 F 1 C 1 BAS 546 216 551
JTT 1 F 1 C 1 MJ 539 203 537
GTR 310 102 347
GTR 1 BAS 346 139 394
GTR 1 MJ 338 121 383
GTR 1 C 434 147 466
GTR 1 C 1 BAS 471 185 512
GTR 1 C 1 MJ 462 168 501

NOTE.—The best site-independent models for each data set are emphasized in

italics, whereas the best overall models are emphasized in bold.
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sets, in as much as the dimensionality penalty renders a
specific adjustment of these parameters unreliable. For
MYO60-153, however, such a data set–specific adjustment
of equilibrium frequencies seems worthwhile. The GTR
matrix is always rejected over the JTT-based models, most
likely because the data sets considered are too small to
reliably infer the 189 additional free parameters introduced
by this model. Note, however, that the GTR-based models
are still far better than POISSON-based models.

Overall Fit of Site-Interdependent Models

Models including statistical potentials are always fa-
vored over their site-independent counterparts, under all
configurations explored here. This being the case for all
3 proteins studied suggests that such an improvement in
fit is general. Nevertheless, the improved fit observed when
including statistical potentials is mild when compared with
the overall fit of rich site-independent models. Specifically,
the use of an empirical amino acid replacement matrix and
a gamma distributed rates model both outperform the sole
use of statistical potentials.

Interplay between Model Configurations

Interestingly, the relative improvement brought about
by the potentials is very much a function of the site-inde-
pendent components of the models. In particular, the ame-
lioration in model fit when applying statistical potentials, as
well as the equilibrium value of b under plain MCMC sam-
pling (table 2), is noticeably lower when the p-vector is
fixed, which is the case irrespective of the other site-inde-
pendent settings. This is perhaps best understood by ob-
serving the stationary probability distribution written in
equation (9). Whereas the stationary distribution is given
by p under the standard notation of continuous-time Mar-
kov chains, under the site-interdependent models studied
here, it is given by a combination of p and the exponentiated

pseudo-energy factor. This forces a reinterpretation of the
usual meaning given to p: rather than representing the
amino acid equilibrium frequencies, these parameters
should be viewed as ‘‘chemical potentials’’ associated to
each residue, and whose effect is combined to that of the
statistical potentials in the final amino acid equilibrium fre-
quencies (Rodrigue et al. 2005). From this perspective—
related to ‘‘random energy’’ approximations (Shakhnovich
and Gutin 1993; Sun et al. 1995; Seno et al. 1998)—fixing
the values of p, to uniform values (in the case of POISSON)
or to the JTT values, effectively prevents the model from
compensating for the coupling to the exponentiated
pseudo-energy factor and thus leads to a low support for
the site-interdependent models. Indeed, although the 1F
settings were rejected in favor of JTT for FBP20-363
and PPK10-158 under site-independence, when invoking
the statistical potentials, this increased parameterization
seems favored.

Also of interest, we find that the relative improvement
brought about by the potentials is more important when us-
ing POISSON-based models than when using a JTT-based
models. This is consistent with the fact that the JTT matrix
inherently accounts for protein structure features, by assign-
ing greater exchange propensities between amino acids
sharing various physico–chemical properties. In other
words, explicitly accounting for site interdependencies
due to tertiary structure requirements is more important
when using the naive POISSON-based model than when using
the more informed JTT-based model.

When invoking the GTR configuration, the potentials
give a greater improvement in fit than when applying the
JTT settings. Nevertheless, site-interdependent GTR-based
models are still poorer for these small data sets than the
JTT-based models.

The use of a 1C model seems to give an essentially
additive improvement in model fit, with little, or no inter-
action with other model configurations. Because the statis-
tical potentials could impact directly on site-specific rates,
this result is unexpected; the lack of interaction in itself may
be indicative that the potentials do not, in fact, acknowledge
significant rate heterogeneity.

Comparison of Statistical Potentials

We find that for these applications, the potentials of
Bastolla et al. (2001) and Miyazawa and Jernigan (1985)
receive similar support, with 1BAS models mildly favored
over1MJ. The comparable merit of these potentials is some-
whatexpected;bothworkwith a similar contact-based protein
structure representation. The fact that 1MJ models receive
lower support than 1BAS models may be a consequence
of the oversimplified quasi-chemical approximation used in
the derivation of the potentials of Miyazawa and Jernigan
(1985) or to differences in the contact definition itself.

Sensitivity to the Prior on b

It is common practice, when assessing a new class of
models, to evaluate the influence of the prior on the result-
ing model fit (Kass and Raftery 1995). Here, we focus on
the distinguishing feature of our model: the prior on b.
Note that the trace plots shown in figure 1 display, up to

Table 2
Mean Posterior Values of b under All Model Combinations
Described in the Text

Model FBP20-363 PPK10-158 MYO60-153

POISSON 1 BAS 0.107 0.249 0.268
POISSON 1 MJ 0.0074 0.0279 0.0423
POISSON 1 F 1 BAS 0.402 0.462 0.637
POISSON 1 F 1 MJ 0.0658 0.0724 0.1086
POISSON 1 C 1 BAS 0.0989 0.268 0.239
POISSON 1 C 1 MJ 0.0058 0.0296 0.0397
POISSON 1 F 1 C 1 BAS 0.439 0.564 0.717
POISSON 1 F 1 C 1 MJ 0.0811 0.0983 0.1406
JTT 1 BAS 0.176 0.264 0.240
JTT 1 MJ 0.0231 0.0368 0.0423
JTT 1 F 1 BAS 0.305 0.378 0.501
JTT 1 F 1 MJ 0.0449 0.0722 0.0816
JTT 1 C 1 BAS 0.177 0.277 0.244
JTT 1 C 1 MJ 0.0234 0.0391 0.0424
JTT 1 F 1 C 1 BAS 0.333 0.478 0.575
JTT 1 F 1 C 1 MJ 0.0541 0.0724 0.0975
GTR 1 BAS 0.433 0.511 0.625
GTR 1 MJ 0.0680 0.0777 0.1148
GTR 1 C 1 BAS 0.440 0.546 0.679
GTR 1 C 1 MJ 0.0791 0.0929 0.1228

NOTE.—95% credibility intervals are given in the supplementary material online.
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an additive constant, the marginal likelihood of the model
with b successively fixed to each value along the integration
procedure. Treating b as a free parameter requires that we
define a proper prior probability distribution, over which
these curves are averaged (eq. 23). Because little is known
regarding the usage of statistical potentials in this context,
we follow the practice of assigning a bounded uniform
prior, and testing empirically that the posterior distribution
of b is well within these bounds (Robinson et al. 2003).

It should be noted that the 2 sets of potentials stud-
ied here are not scaled equivalently, which leads to differ-
ent temperature factors at equilibrium (the potentials of
Bastolla et al. [2001] lead to higher values of b [table 2]).
This means that applying the same uniform prior on b under
1BAS and 1MJ models amounts to giving favor to the
potentials of Bastolla et al. (2001); loosely speaking, the
differences in scaling make the space of admissible values
for b ‘‘appear’’ larger to 1MJ models. To illustrate this
problem, we performed a simple exploration of the influ-
ence of the size of the interval (I) of the uniform prior
on b. Using the same sample, the Monte Carlo approxima-
tion given by equation (23) can be recomputed for different
interval sizes. For example, figure 2 shows the log Bayes
factor comparing JTT1F1C1BAS and JTT1F1C as
a function of the interval size I. As I increases, the density
of the prior contained in each increment of the quasi-static
procedure decreases, leading to a lower support for
JTT1F1C1BAS. When I reaches an order of magnitude
around 106, the JTT1F1C1MJ model, with prior on b ;
[�5, 5], becomes favored over JTT1F1C1BAS. More-
over, when I reaches an order of magnitude ;1017, the
JTT1F1C becomes favored over the site-interdependent
model. This illustrates a fundamental theoretical conse-
quence of the Bayesian paradigm: model rankings can
change by redefining the space of admissible parameter val-
ues (the prior). In the present case, this means that no matter
how strong the signal for site interdependence, there exists
an interval size I for the uniform prior on b such that the
site-independent model is favored, an example directly re-
lated to the so-called Jeffreys–Lindley paradox (Lindley
1957, 1980; Bartlett 1957).

In practice, the resulting difference in dimensionality
penalty does not appear problematic in the present case; the
potentials do not differ drastically in scaling, and the max-
imum marginal likelihood along b was always greater for
the potentials of Bastolla et al. (2001) than for those of
Miyazawa and Jernigan (1985). For example, for MYO60-
153 under the model JTT1F1C1BAS, the maximal
point along the marginal likelihood curve gives a Bayes
factor of ;553, whereas under JTT1F1C1MJ, the max-
imal point gives ;540.

For this particular comparison, one simple alternative
would be to renormalize the potentials to an equivalent scal-
ing. Yet, this solution would still not be applicable when
comparing sequence fitness proxies based on fundamen-
tally different rationales. In the longer run, nonuniform pri-
ors could be used, particularly, as more data sets are
analyzed; Lempers (1971), for example, suggested setting
aside some data sets for constructing proper priors to
be used in subsequent analyses. Along these lines, we
are currently devising other forms of statistical potentials,

with each having the same overall temperature scaling
(Kleinman et al. 2006).

Permutations Checks

Overall, the pairwise contact potentials studied here
appear inadequate; given the choice between the sole use
of statistical potentials and the standard site-independent
models, one would opt for the latter. Yet, a signal for site
interdependence is clearly detected.

Perhaps the simplest check that can be done when con-
structing a model accounting for a particular signal is the
evaluation of the model’s performance when deliberately
removing that signal from the data. Following Telford
et al. (2005), we explore this through simple permutation
tests, whereby we swap the positions of a percentage of ran-
dom pairs of columns in the alignment. Such permutations
have the effect of blurring the structural signal. Indeed, the

FIG. 3.—Permutation checks randomizing the order of columns in the
alignment. The log Bayes factor is estimated between POISSON1
F1C1BAS and POISSON1F1C, for 3 replicates at each randomization
level. A line joining the mean values at each randomization level is drawn
as a visual aid.

FIG. 2.—Influence of the interval size (I) of the uniform prior distribu-
tion for b on the calculated Bayes factor. Here, the models being compared
are JTT1F1C1BAS against JTT1F1C, applied to MYO60-153.
Two thresholds are marked on the graph. The first (leftmost) indicates
the point beyond which JTT1F1C1MJ (with prior on b ; [�5, 5]) is
favored over JTT1F1C1BAS. The second indicates the point beyond
which JTT1F1C is favored over JTT1F1C1BAS.

1770 Rodrigue et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/23/9/1762/1014276 by Bibliothèque U
niversitaire de m

édecine - N
îm

es user on 15 June 2021



tests can be viewed as a randomization of the contacts in the
contact map. We defined 4 levels of randomization, swap-
ping the position of 25%, 50%, 75%, and 100% of columns.
For each randomization, we computed the Bayes factor in
favor of the site-interdependent model. Given the compu-
tational burden, we performed only 3 replicates for each
randomization level.

We performed these permutation checks using the
MYO60-153 data set, comparing the log Bayes factor of
POISSON1F1C1BAS against POISSON1F1C (this is the
case giving the greatest improvement in model fit when
applying the sequence fitness proxy). As expected, the
support for site-interdependent considerations is a decreas-
ing function of the percentage of randomization, essen-
tially dropping to zero for a fully permuted column
ordering (fig. 3). Also note that each replicate randomiza-
tion gives slightly different results; evidently, the interde-
pendencies between different positions of a protein are not
all equivalent.

This test plainly illustrates the distinguishing feature
of the models in simplistic terms: site-interdependent mod-
els give meaning to the order of amino acid columns in the
alignment.

Posterior Predictive Resampling

Two of the most fundamental patterns of amino acid
sequence evolution are 1) the heterogeneity of substitution
rates across sites, and 2) the heterogeneity of amino acid
exchange propensities. Both of these heterogeneities could

be effects induced by structural constraints and, hence, could
be accounted for—at least in part—by the sequence fitness
proxy. However, accommodating rate-across sites varia-
tions (1C) and using an empirical amino acid replacement
matrix (JTT) also accounts for these heterogeneities. As
such, the best model obtained for all 3 data sets (JTT1F1
C1BAS) seemingly corresponds to a redundant configura-
tion. To further explore this point, we have applied simple
posterior predictive checks, as described in Materials and
Methods.

Rate Heterogeneity

Under a model assuming uniform rates across sites, and
if there is rate variation in the data set considered, the ob-
served rate variance is likely to depart significantly from
the predictive rate variance; by the definition of the model,
the predictive rate variance will tend to be very low. This is
indeed the case, as can be seen from figure 4a. The extreme
discrepancy between observed and predictive rate variance
is in itself enough to reject the uniform rates model (Nielsen
2002). Comparing figures 4a and c shows that using the po-
tentials of Bastolla et al. (2001) essentially leaves the ob-
served rate variance unchanged, and the predictive rate
variance is only slightly higher than the simple model as-
suming uniform rates—the mean predictive rate variance in-
creases from 2.95 in figure 4a to 3.40 in figure 4c.

In contrast (fig. 4b), under the 1C model, the observed
rate variance is even greater than under the uniform rates
model. As can be appreciated graphically, and according

FIG. 4.—Posterior density plots of the variance in the number of substitution across sites obtained in predictive mappings and observed
mappings of our sample from the posterior distribution, under the JTT1F (a), JTT1F1C (b), JTT1F1BAS (c), and JTT1F1C1BAS (d) models
(using MYO60-153).
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to the calculated Bayes factors, an explicit treatment of rate
variation (1C) gives a better correspondence between
model and data, with the predictive distribution centered
on the observed (fig. 4b and d).

Note that predictive distributions tend to have a greater
spread than observed distributions. This is a result of pre-
dictive distributions comprising 2 levels of uncertainty: the
fundamental uncertainty associated with the inferred pa-
rameter values of the model (the posterior distribution)—an
uncertainty which tends to be greater for higher dimen-
sional models—and the uncertainty associated to the data
replication (the simulation procedure). Indeed, this effect
is displayed in the more pronounced spread in rate variance
under the more complex 1BAS model (comparing fig. 4b
and d).

Amino Acid Exchange Propensities

Figure 5 is a comparison of the Euclidean distance be-
tween predictive and observed exchange distributions, as
explained in Materials and Methods. In principle, a model
yielding a lower distance between observed and predictive
amino acid exchange distributions would be favored.

In figure 5a, the distance between predictive and ob-
served distributions under the POISSON1F is high and
is only slightly reduced when applying the potentials of
Bastolla et al. (2001)—the mean distance goes from
63.92 under POISSON1F to 62.51 under POISSON1F1
BAS. In the case of JTT (fig. 5b), the distance between
predictive and observed distributions is much lower. This
is indicative that a much better adequation is obtained be-
tween the types of substitutions of mappings conditioned on

the data, with those predicted under the model when using
the empirical amino acid exchange propensities of JTT,
even when applying the potentials of Bastolla et al. (2001).

Conclusions and Future Directions

The results of the different model assessment strate-
gies converge to the same fundamental conclusion: al-
though an improved model fit is observed when applying
the statistical potentials, the improvement does not justify
abandoning the successful techniques previously developed
for modeling complexities such as across-site rate hetero-
geneity or variations in amino acid exchange propensities.
It would indeed have been surprising to see such a simple
0/1 contact map supplanting all strategies developed under
the assumption of independence. For the moment, the best
pragmatic alternative seems to be a layering of approach,
combining a sequence fitness proxy with an appropriate un-
derlying site-independent configuration.

More generally, it seems clear that the study of site-
interdependent models is at an early stage; many alternative
model settings can be envisaged, and the utility of each for
different applications has yet to be explored. Robinson et al.
(2003) presented one particular mechanistic version but
also suggested several other possible choices, including co-
don position–specific nucleotide equilibrium frequencies or
a heterogeneous nonsynonymous/synonymous substitution
ratio. Working directly at the level of amino acids, we have
evaluated some model configurations in the present work.
Yet, here again, many other alternatives could be assessed
in this context, such as the use of different empirical ma-
trices (e.g., Whelan and Goldman 2001) or considering
a mixture of amino acid profiles (Lartillot and Philippe
2004). In addition, it will be of particular interest to conduct
broader comparisons of various statistical potentials, based
on different functional forms (e.g., Jones, Taylor, and
Thornton 1992a; Singh et al. 1996; Gan et al. 2001). From
a thermodynamic perspective, a more appropriate use of
statistical potentials would include a comparison of the
pseudo-energy of the target structure with the pseudo-energy
distribution over a set of alternative contact maps for each
sequence state considered in the inference. We are currently
exploring such alternatives, as well as designing statistical
potentials within the overall evolutionary model. In any
case, the techniques applied here need not be restricted
to a thermodynamic standpoint, but may include any other
measurement, formulated as a function of the overall se-
quence. The relative merit of all these possible models could
be explored using the methodology employed here.

Investigating the absolute merits of alternative models,
using posterior predictive techniques should also be useful
in making explicit the strengths and weaknesses of the
different choices. Although we have explored 2 statistics
here—for which the site-interdependent models performed
poorly—the theoretical implications of the model suggest
additional posterior predictive checks. We hope to investi-
gate an expanded set of test statistics in future work, with
a particular interest in studying shifts in site-specific evo-
lutionary rates over the tree (i.e., heterotachy), as well as
the patterns of concerted evolution across the positions
of the alignment.

FIG. 5.—Posterior density plots of the Euclidean distance between
predictive and observed exchange distribution for MYO60-153 (see
Materials and Methods). In (a), the models used are POISSON1F and
POISSON1F1BAS. In (b), the models are JTT1F and JTT1F1BAS.
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Many other research directions can also be envisaged
using the present framework. The permutation tests, for ex-
ample, illustrate an interesting perspective: Bayes factors
can be computed between alternative contact maps. Here,
the permutations effectively scrambled the contact map. In
theory, however, one could imagine the opposing scenario
of searching for the most supported contact map within an
extended set of decoys, suggesting potential applications to
structure prediction.

The main limitations presently hindering these broader
studies are the computational requirements of the models,
which are substantial. Indeed, the total CPU time for the
present study is estimated at about 1,000 days on a Xeon
2.4 GHz computer. We are currently developing the meth-
ods presented here in order to obtain maximum likelihood
parameter estimates, which we believe will be much faster
than the current sampling procedures. This would allow for
the application of similar models on more and larger data
sets, so as to begin to investigate their usefulness in uncov-
ering structural determinants to molecular evolution, as
well as assessing their impact on phylogenetic inference
and broader domains of molecular biology.

Supplementary Material

A complete listing of sequences included in our data
sets is given in the accompanying supplementary material
as well as more detailed descriptions of MCMC update
operators, tuning strategies, and settings. Other technical
issues regarding scaling the rate matrix R are discussed.
Finally, highest and lowest values of Bayes factors are also
reported, as well as 95% credibility intervals of b under
plain MCMC sampling. All the supplementary materials
are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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Appendix

For a given value of b, the derivative of the logarithm
of the marginal likelihood is given as:

@ ln pðDjbÞ
@b

5
1

pðDjbÞ
@pðDjbÞ

@b
ð25Þ

5
1

pðDjbÞ

Z
H

Z
X

@pðD;xjh; bÞpðhÞ
@b

dxdh ð26Þ

5

Z
H

Z
X

@ ln pðD;xjh; bÞ
@b

pðx; hjD; bÞdxdh ð27Þ

5 Æ@ ln pðD;xjh; bÞ
@b æ; ð28Þ

where Æ�æ stands for an expectation with respect to the pos-
terior distribution.

The logarithm of the likelihood function gives:

ln pðD;xjhÞ5 ln pðs0jhÞ1
X2P�3

j5 1

ln pðsj;xjjsjup ; hÞ: ð29Þ

The derivative of equation (29) therefore involves 2 terms.
For the first term, the derivative gives:

@ln pðs0jhÞ
@b

5
@

@b
ln e

�2bEs0

YN

i5 1

psi0

 !
� @

@b
ln Z0 ð30Þ

5 � 2Es0
1 2ÆEæ ð31Þ

5 � 2ðEs0
� ÆEæÞ; ð32Þ

where Æ�æ represents an expectation with respect to the sta-
tionary probability (as written in eq. 9), which can be
estimated based on a sample of sequences (s(h))1�h�K

drawn from equation (9) using the Gibbs sampling proce-
dure described by Robinson et al. (2003):

ÆEæ ’ 1

K

XK

h5 1

E
s
ðhÞ : ð33Þ

Referring back to equation (29), the second type of term
needed is:

@ ln pðsj;xjjsjup ; hÞ
@b

5
Xzj

k 5 1

@ ln Rsjk�1sjk
rrjk

@b

 

�
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ð34Þ

Equation (34), in turn, requires 2 types of derivatives:

@ ln Rss#

@b
5Es � Es# ð35Þ

and

@Rss#

@b
5 ðEs � Es#ÞRss#: ð36Þ

Substituting equations (35) and (36) appropriately into
equation (34)and substituting the result of equation (34) back
into the derivative of equation (29) completes calculation.
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