
HAL Id: lirmm-00135217
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00135217

Submitted on 7 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Range Constraint: Algorithms and Implementation
Christian Bessiere, Emmanuel Hébrard, Brahim Hnich, Zeynep Kiziltan, Toby

Walsh

To cite this version:
Christian Bessiere, Emmanuel Hébrard, Brahim Hnich, Zeynep Kiziltan, Toby Walsh. The Range
Constraint: Algorithms and Implementation. CPAIOR’06: International Conference on Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Apr
2006, Cork, Ireland, pp.59-73. �lirmm-00135217�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00135217
https://hal.archives-ouvertes.fr


The Range Constraint:

Algorithms and Implementation

Christian Bessiere1, Emmanuel Hebrard2, Brahim Hnich3, Zeynep Kiziltan4,
and Toby Walsh2

1 LIRMM, CNRS/University of Montpellier, France, bessiere@lirmm.fr
2 NICTA and UNSW, Sydney, Australia, {ehebrard, tw}@cse.unsw.edu.au
3 Izmir University of Economics, Izmir, Turkey, brahim.hnich@ieu.edu.tr

4 University of Bologna, Italy, zkiziltan@deis.unibo.it

Abstract. We recently proposed a simple declarative language for spec-
ifying a wide range of counting and occurrence constraints. The language
uses just two global primitives: the Range constraint, which computes
the range of values used by a set of variables, and the Roots constraint,
which computes the variables mapping onto particular values. In order
for this specification language to be executable, propagation algorithms
for the Range and Roots constraints should be developed. In this paper,
we focus on the study of the Range constraint. We propose an efficient
algorithm for propagating the Range constraint. We also show that de-
composing global counting and occurrence constraints using Range is
effective and efficient in practice.

1 Introduction

Constraints that put restrictions on the occurrence of particular values (occur-

rence constraints) or constraints that put restrictions on the number of values
or variables meeting some conditions (counting constraints) are very useful in
many real world problems, especially those involving resources. For instance, we
may want to limit the number of distinct values assigned to a set of variables.
Many of the global constraints proposed in the past are counting and occur-
rence constraints (see, for example, [14, 4, 15, 2, 5]). In [6], we show that many
occurrence and counting constraints can be expressed by means of two new
global constraints, Range and Roots, together with some classical elementary
constraints. This language also provides us with a method to propagate count-
ing and occurrence constraints. We just need to provide efficient propagation
algorithms for the Range and Roots constraints. This paper focuses on the
Range constraint. We give an efficient algorithm for propagating the Range

constraint based on a flow algorithm. We propose an extension of the Range

constraint where we have constraints on the cardinality of the set variables.
We also show that decomposing occurence constraints and counting constraints
using the Range constraint performs well in practice.

The rest of the paper is organised as follows. Section 2 gives the formal
background. Section 3 shows how counting and occurrence constraints can be



decomposed using the Range constraint. In Section 4, we propose a polynomial
algorithm for the Range constraint and an extension to the case where the
set variables are subject to constraints on their cardinality. Some experimental
results are presented in Section 6. Finally, we conclude in Section 7.

2 Formal background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for subsets of variables. We use capitals for variables (e.g. X , Y and S),
and lower case for values (e.g. v and w). We write D(X) for the domain of a
variable X . A solution is an assignment of values to the variables satisfying the
constraints. A variable is ground when it is assigned a value. We consider both
integer and set variables. A set variable S is represented by its lower bound
lb(S) which contains the definite elements (that must belong to the set) and an
upper bound ub(S) which also contains the potential elements (that may or may
not belong to the set).

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C, a bound support on C is a tuple that assigns to
each integer variable a value between its minimum and maximum, and to each
set variable a set between its lower and upper bounds which satisfies C. A bound
support in which each integer variable is assigned a value in its domain is called a
hybrid support. If C involves only integer variables, a hybrid support is a support.
A value (resp. set of values) for an integer variable (resp. set variable) is bound

or hybrid consistent with C iff there exists a bound or hybrid support assigning
this value (resp. set of values) to this variable. A constraint C is bound consis-

tent (BC ) iff for each integer variable Xi, its minimum and maximum values
belong to a bound support, and for each set variable Sj , the values in ub(Sj)
belong to Sj in at least one bound support and the values in lb(Sj) are those
from ub(Sj) that belong to Sj in all bound supports. A constraint C is hybrid

consistent (HC ) iff for each integer variable Xi, every value in D(Xi) belongs
to a hybrid support, and for each set variable Sj , the values in ub(Sj) belong to
Sj in at least one hybrid support, and the values in lb(Sj) are those from ub(Sj)
that belong to Sj in all hybrid supports. A constraint C involving only integer
variables is generalized arc consistent (GAC ) iff for each variable Xi, every value
in D(Xi) belongs to a support. If all variables in C are integer variables, hybrid
consistency reduces to generalized arc consistency, and if all variables in C are
set variables, hybrid consistency reduces to bound consistency.

To illustrate these different concepts, consider the constraint C(X1, X2, S)
that holds iff the set variable S is assigned exactly the values used by the integer
variables X1 and X2. Let D(X1) = {1, 3}, D(X2) = {2, 4}, lb(S) = {2} and
ub(S) = {1, 2, 3, 4}. BC does not remove any value since all domains are already
bound consistent (value 2 was considered as possible for X1 because BC deals



with bounds). On the other hand, HC removes 4 from D(X2) and from ub(S) as
there does not exist any tuple satisfying C in which X2 does not take value 2.

A total function F from a set S into a set T is denoted by F : S −→ T
where S is the domain of F and T is the range of F . Throughout, we will view
a set of variables, X1 to Xn as a function X : {1, .., n} −→ ⋃i=n

i=1 D(Xi). That
is, X (i) is the value of Xi.

3 An Executable Language

One of the simplest ways to propagate a new constraint is to decompose it
into existing primitive constraints. We can then use the propagation algorithms
associated with these primitives. Of course, such decomposition may reduce the
number of domain values pruned. In [6], we show that many global counting
and occurrence constraints can be decomposed into two new global constraints,
Range and Roots, together with simple non-global constraints over integer
variables (like X ≤ m) and simple non-global constraints over set variables
(like S1 ⊆ S2 or |S| = k). Adding Range and Roots and their propagation
algorithms to a constraint toolkit thus provides a simple executable language for
specifying a wide range of counting and occurrence constraints.

We focus here on the Range constraint. Given the function X representing
a set of variables X1 to Xn, the Range constraint holds iff a set variable T is
the range of this function, restricted to the indices belonging to a second set
variable, S.

Range([X1, .., Xn], S, T ) iff T =
⋃

i∈S

X (i)

In [7], we present a catalog containing over 70 global constraints from [3]
specified with this simple language containing Range and Roots constraints.
We present here just a few examples of using Range to decompose a global
constraint.

The NValue constraint is useful in a wide range of problems involving re-
sources since it counts the number of distinct values used by a sequence of
variables [11]. NValue([X1, .., Xn], N) holds iff N = |{Xi | 1 ≤ i ≤ n}|. This
can be decomposed into a Range constraint:

NValue([X1, .., Xn], N) iff Range([X1, .., Xn], {1, .., n}, T ) ∧ |T | = N

Enforcing HC on the decomposition is weaker than GAC on the original NValue

constraint. However, it is NP-hard to enforce GAC on a NValue constraint [8].
In [6], the Uses constraint was introduced. Uses is a variant of the UsedBy

constraint [5]. Uses([X1, .., Xn], [Y1, .., Ym]) holds iff the set of values assigned
to Y1, .., Ym is a subset of the set of values assigned to X1, .., Xn. This can be
decomposed into a Range constraint:

Uses([X1, .., Xn], [Y1, .., Ym]) iff

Range([X1, .., Xn], {1, .., n}, T ) ∧ Range([Y1, .., Ym], {1, .., m}, T ′) ∧ T ′ ⊆ T



Enforcing HC on the decomposition is weaker than GAC on the original Uses

constraint. However, it is NP-hard to enforce GAC on a Uses constraint [6].
Thus, decomposition is a simple method to obtain a polynomial propagation
algorithm.

The Permutation constraint is an AllDifferent constraint where we
additionally know <, the set of values to be taken. That is, the sequence of
variables [X1, . . . , Xn] is a permutation of the values in < where |<| = n. In [6],
the Permutation constraint is decomposed using a single Range constraint:

Permutation([X1, . . . , Xn],<) iff Range([X1, . . . , Xn], {1, . . . , n},<)

Enforcing HC on the decomposition is equivalent to GAC on the original Perm-

utation constraint [6].

4 Propagating the Range Constraint

Enforcing hybrid consistency on the Range constraint is polynomial. This can
be done using a maximum network flow problem. In fact, the Range constraint
can be decomposed using a global cardinality constraint (Gcc) for which propa-
gators based on flow problems already exist [15, 13]. This will be shown in Section
5. But the Range constraint does not need the whole power of maximum net-
work flow problems, and thus HC can be enforced on it at a lower cost than that
of calling a Gcc propagator. In this section, we propose an efficient way to en-
force HC on Range. To simplify the presentation, the use of the flow is limited
to a constraint that performs only part of the work needed for enforcing HC on
Range. This constraint, that we name Occurs([X1, . . . , Xn], T ), ensures that
all the values in the set variable T are used by the integer variables X1 to Xn:

Occurs([X1, . . . , Xn], T ) iff T ⊆
⋃

i∈1..n

X (i)

We first present an algorithm for achieving HC on Occurs (Section 4.1),
and then use this to propagate the Range constraint (Section 4.2).

4.1 Occurs Constraint

We achieve hybrid consistency on Occurs([X1, . . . , Xn], T ) using a network flow.
We use a unit capacity network [1] in which capacities between two nodes can
only be 0 or 1. This is represented by a directed graph where an arc from node x
to node y means that a maximum flow of 1 is allowed between x and y while the
absence of an arc means that the maximum flow allowed is 0. The unit capacity
network GC = (N, E) of the constraint C = Occurs([X1, . . . , Xn], T ) is built in
the following way. N = {s}∪N1 ∪N2 ∪ {t}, where s is a source node, t is a sink
node, N1 = {v | v ∈ ⋃

D(Xi)} and N2 = {zv | v ∈ ⋃

D(Xi)} ∪ {xi | i ∈ [1..n]}.
The set of arcs E is as follows:

E = ({s} × N1) ∪ {(v, zv), ∀v /∈ lb(T )} ∪ {(v, xi) | v ∈ D(Xi)} ∪ (N2 × {t})
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Fig. 1. Unit capacity network of the constraint C = Occurs([X1, X2, X3], T ) with
D(X1) = {1, 2}, D(X2) = {2, 3, 4}, D(X3) = {3, 4}, lb(T ) = {3, 4} and ub(T ) =
{1, 2, 3, 4}. Arcs are directed from left to right.

GC is quadripartite, i.e., E ⊆ ({s} × N1) ∪ (N1 × N2) ∪ (N2 × {t}). In Fig.
1, we depict the network GC of the constraint C = Occurs([X1, X2, X3], T )
with D(X1) = {1, 2}, D(X2) = {2, 3, 4}, D(X3) = {3, 4}, lb(T ) = {3, 4} and
ub(T ) = {1, 2, 3, 4}. The intuition behind this graph is that when a flow uses an
arc from a node v to a node xi this means that Xi is assigned v, and when a
flow uses the arc (v, zv) this means that v is not necessarily used by the Xi’s.

5

In Fig. 1 nodes 3 and 4 are linked only to nodes x2 and x3, which means that
values 3 and 4 must necessarily be taken by one of the variables Xi (3 and 4
belong to lb(T )). On the contrary, nodes 1 and 2 are also linked to nodes z1

and z2 because values 1 and 2 do not have to be taken by a Xi (they are not in
lb(T )).

In the particular case of unit capacity networks, a flow is any set E ′ ⊆ E:
any arc in E′ is assigned 1 and the arcs in E \E ′ are assigned 0. A feasible flow
from s to t in GC is a subset Ef of E such that ∀n ∈ N \ {s, t} the number
of arcs of Ef entering n is equal to the number of arcs of Ef going out of n,
that is, |{(n′, n) ∈ Ef}| = |{(n, n′′) ∈ Ef}|. The value of the flow Ef from s to
t, denoted val(Ef , s, t), is val(Ef , s, t) = |{n | (s, n) ∈ Ef}|. A maximum flow
from s to t in GC is a feasible flow EM such that there does not exist a feasible
flow Ef , with val(Ef , s, t) > val(EM , s, t). A maximum flow for the network of
Fig. 1 is given in Fig. 2. By construction a feasible flow cannot have a value
greater than |N1|. In addition, a feasible flow cannot contain two arcs entering
a node xi from N2. Hence, we can define a function ϕ linking feasible flows and
partial instantiations on the Xi’s. Given any feasible flow Ef from s to t in GC ,
ϕ(Ef ) = {(Xi, v) | (v, xi) ∈ Ef}. The maximum flow in Fig. 2 corresponds to
the instantiation X2 = 4, X3 = 3. The way GC is built induces the following
theorem.

5 Note that the edges go from the nodes representing the values to the nodes rep-
resenting the variables. This is the opposite as the direction in the network flow
problems used in the propagators of the Alldiff or Gcc constraints [14, 15].
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Fig. 2. A maximum flow for the network of Fig. 1. Bold arcs are those that belong to
the flow. Arcs are directed from left to right.

Theorem 1. Let GC = (N, E) be the capacity network of a constraint C =
Occurs([X1, . . . , Xn], T ).

1. A value v in the domain D(Xi) for some i ∈ [1..n] is HC iff there exists a

flow Ef from s to t in GC with val(Ef , s, t) = |N1| and (v, xi) ∈ Ef

2. If the Xi’s are HC, T is HC iff ub(T ) ⊆ ⋃

i D(Xi)

Proof. (1.⇒) Let I be a solution for C with (Xi, v) ∈ I . Build the following
flow H : Put (v, xi) in H ; ∀w ∈ I [T ], w 6= v, take a variable Xj such that
(Xj , w) ∈ I (we know there is at least one since I is solution), and put (w, xj )
in H ; ∀w′ /∈ I [T ], w′ 6= v, add (w′, zw′) to H . Add to H the edges from s to N1

and from N2 to t so that we obtain a feasible flow. By construction, all w ∈ N1

belong to an edge of H . So, val(H, s, t) = |N1| and H is a maximum flow with
(v, xi) ∈ H .

(1.⇐) Let EM be a flow from s to t in GC with (v, xi) ∈ EM and val(EM , s, t)
= |N1|. By construction of GC , we are guaranteed that all nodes in N1 belong
to an arc in EM ∩ (N1 × N2), and that for every value w ∈ lb(T ), {n | (w, n) ∈
E} ⊆ {xi | i ∈ [1..n]}. Thus, for each w ∈ lb(T ), ∃Xj | (Xj , w) ∈ ϕ(EM ). Hence,
any extension of ϕ(EM ) where each unassigned Xj takes any value in D(Xj)
and T = lb(T ) is a solution of C with Xi = v.

(2.⇒) If T is HC, all values in ub(T ) appear in at least one solution tuple.
Since C ensures that T ⊆ ⋃

i{Xi}, ub(T ) cannot contain a value appearing in
none of the D(Xi).

(2.⇐) Let ub(T ) ⊆ ⋃

i D(Xi). Since all Xi’s are HC, we know that each value
v in

⋃

i D(Xi) is taken by some Xi in at least one solution tuple I . Build the
tuple I ′ so that I ′[Xi] = I [Xi] for each i ∈ [1..n] and I ′[T ] = I [T ] ∪ {v}. I ′ is
still solution of C. So, ub(T ) is as tight as it can be wrt HC. In addition, since
all Xi’s are HC, this means that in every solution tuple I , for each v ∈ lb(T )
there exists i such that I [Xi] = v. So, lb(T ) is HC. ut

Following Theorem 1, we need a way to check which edges belong to a maxi-
mum flow. Residual graphs are useful for this task. Given a unit capacity network
GC and a maximal flow EM from s to t in GC , the residual graph RGC

(EM ) =
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Fig. 3. Residual graph obtained from the network in Fig. 1 and the maximum flow in
Fig. 2.

(N, ER) is the directed graph obtained from GC by reversing all arcs belonging
to the maximum flow EM ; that is, ER = {(x, y) ∈ E \ EM} ∪ {(y, x) | (x, y) ∈
E ∩EM}. Given the network GC of Fig. 1 and the maximum flow EM of Fig. 2,
RGC

(EM ) is depicted in Fig. 3. Given a maximum flow EM from s to t in GC ,
given (x, y) ∈ N1 ×N2 ∩E \EM , there exists a maximum flow containing (x, y)
iff (x, y) belongs to a cycle in RGC

(EM ) [16]. Furthermore, finding all the arcs
(x, y) that do not belong to a cycle in a graph can be performed by building
the strongly connected components of the graph. We see in Fig. 3 that the arcs
(1, x1) and (2, x1) belong to a cycle. So, they belong to some maximum flow and
(X1, 1) and (X1, 2) are hybrid consistent. (2, x2) does not belong to any cycle.
So, (X2, 2) is not HC.

HC on Occurs.

We now have all the tools for achieving HC on any Occurs constraint. We first
build GC . We compute a maximum flow EM from s to t in GC ; if val(EM , s, t) <
|N1|, we fail. Otherwise we compute RGC

(EM ), build the strongly connected
components in RGC

(EM ), and remove from D(Xi) any value v such that (v, xi)
belongs to neither EM nor to a strongly connected component in RGC

(EM ).
Finally, we set ub(T ) to ub(T )∩⋃

i D(Xi). Following Theorem 1 and properties
of residual graphs, this algorithm enforces HC on Occurs([X1, .., Xn], T ).

Complexity. Building GC is in O(nd). We need then to find a maximum flow
EM in GC . This can be done in two sub-steps. First, we use the arc (v, zv) for
each v /∈ lb(T ) (in O(|⋃i D(Xi)|)). Afterwards, we compute a maximum flow on
the subgraph composed of all paths traversing nodes w with w ∈ lb(T ) (because
there is no arc (w, zw) in GC for such w). The complexity of finding a maximum
flow in a unit capacity network is in O(

√
k · e) if k is the number of nodes and

e the number of edges. This gives a complexity in O(
√

|lb(T )| · |lb(T )| · n) for
this second sub-step. Building the residual graph and computing the strongly
connected components is in O(nd). Extracting the HC domains for the Xi’s is



Algorithm 1: Hybrid consistency on Range

procedure Propag-Range([X1 , . . . , Xn], S, T );
Introduce the set of integer variables Y = {Yi | i ∈ ub(S)},1

with D(Yi) = D(Xi) ∪ {dummy};
Achieve hybrid consistency on the constraint Occurs(Y, T );2

Achieve hybrid consistency on the constraints i ∈ S ↔ Yi ∈ T , for all Yi ∈ Y ;3

Achieve GAC on the constraints (Yi = dummy)∨ (Yi = Xi), for all Yi ∈ Y ;4

direct. There remains to compute BC on T , which takes O(nd). Therefore, the
total complexity is in O(nd + n · |lb(T )|3/2).

Incrementality. In constraint solvers, constraints are usually maintained in a lo-
cally consistent state after each modification (restriction) in the domains of the
variables. It is thus interesting to ask about the total complexity of maintaining
HC on Occurs after an arbitrary number of restrictions on the domains (values
removed from D(Xi) and ub(T ), or added to lb(T )). Whereas some constraints
are completely incremental (i.e., the total complexity after any number of re-
strictions is the same as the complexity of one propagation), this is not the case
for constraints based on flow techniques like AllDifferent or Gcc [14, 15].
They indeed potentially require the computation of a new maximum flow after
each modification. Restoring a maximum flow from one that lost p edges is in
O(p · e). If values are removed one by one (nd possible times), and if each re-
moval affects the current maximum flow, the overall complexity over a sequence
of restrictions on Xi’s, S, T , is in O(n2d2).

4.2 Hybrid Consistency on Range

Enforcing HC on Range([X1, . . . , Xn], S, T ) can be done by decomposing it as
an Occurs constraint on new variables Yi and some channelling constraints ([9])
linking T and the Yi’s to S and the Xi’s. But the interesting point is that we do
not need to maintain HC on the decomposition but we just need to propagate
the constraints in one pass.

The algorithm Propag-Range, enforcing HC on the Range constraint, is pre-
sented in Algorithm 1. In line 1, a special encoding is built, where a Yi is in-
troduced for each Xi with index in ub(S). The domain of a Yi is the same as
that of Xi plus a dummy value. The dummy value works as a flag. If Occurs

prunes it from D(Yi) this means that Yi is necessary in Occurs to cover lb(T ).
Then, Xi is also necessary to cover lb(T ) in Range. In line 2, HC on Occurs

removes a value from a Yi each time it contains other values that are necessary
to cover lb(T ) in every solution tuple. HC also removes values from ub(T ) that
cannot be covered by any Yi in a solution. Line 3 updates the bounds of S and
the domain of Yi’s. Finally, in line 4, the channelling constraints between Yi and
Xi propagate removals on Xi for each i which belongs to S in all solutions.



Theorem 2. The algorithm Propag-Range is a correct algorithm for enforcing

HC on Range, that runs in O(nd + n · |lb(T )|3/2) time, where d is the maximal

size of Xi domains.

Proof. Soundness. A value v is removed from D(Xi) in line 4 if it is removed
from Yi together with dummy in lines 2 or 3. If a value v is removed from Yi

in line 2, this means that any tuple on variables in Y covering lb(T ) requires
that Yi takes a value from D(Yi) other than v. So, we cannot find a solution
of Range in which Xi = v since lb(T ) must be covered as well. A value v is
removed from D(Yi) in line 3 if i ∈ lb(S) and v 6∈ ub(T ). In this case, Range

cannot be satisfied by a tuple where Xi = v. If a value v is removed from ub(T )
in line 2, none of the tuples of values for variables in Y covering lb(T ) can cover
v as well. Since variables in Y duplicate variables Xi with index in ub(S), there
is no hope to satisfy Range if v is in T . Note that ub(T ) cannot be modified
in line 3 since Y contains only variables Yi for which i was in ub(S). If a value
v is added to lb(T ) in line 3, this is because there exists i in lb(S) such that
D(Yi)∩ ub(T ) = {v}. Hence, v is necessarily in T in all solutions of Range. An
index i can be removed from ub(S) only in line 3. This happens when the domain
of Yi does not intersect ub(T ). In such a case, this is evident that a tuple where
i ∈ S could not satisfy Range since Xi could not take a value in T . Finally, if
an index i is added to lb(S) in line 3, this is because D(Yi) is included in lb(T ),
which means that the dummy value has been removed from D(Yi) in line 2. This
means that Yi takes a value from lb(T ) in all solutions of Occurs. Xi also has
to take a value from lb(T ) in all solutions of Range.

Completeness (Sketch). Suppose that a value v is not pruned from D(Xi) after
line 4 of Propag-Range. If Yi ∈ Y , we know that after line 2 there was an
instantiation I on Y and T , solution of Occurs with I [Yi] = v or with Yi =
dummy (thanks to the channelling constraints in line 4). We can build the tuple
I ′ on X1, ..Xn, S, T where Xi takes value v, every Xj with j ∈ ub(S) and I [Yj ] ∈
I [T ] takes I [Yj ], and the remaining Xj ’s take any value in their domain. T is
set to I [T ] plus the values taken by Xj ’s with j ∈ lb(S). These values are in
ub(T ) thanks to line 3. Finally, S is set to lb(S) plus the indices of the Yj ’s with
I [Yj ] ∈ I [T ]. These indices are in ub(S) since the only j’s removed from ub(S)
in line 3 are such that D(Yj) ∩ ub(T ) = ∅, which prevents I [Yj ] from taking a
value in I [T ]. Thus I ′ is a solution of Range with I ′[Xi] = v. We have proved
that the Xi’s are hybrid consistent after Propag-Range.

Suppose a value i ∈ ub(S) after line 4. Thanks to constraint in line 3 we
know there exists v in D(Yi) ∩ ub(T ), and so, v ∈ D(Xi) ∩ ub(T ). Now, Xi is
hybrid consistent after line 4. Thus Xi = v belongs to a solution of Range. If
we modify this solution by putting i in S and v in T (if not already there), we
keep a solution.

Completeness on lb(S), lb(T ) and ub(T ) is proved in a similar way.

Complexity. The important thing to notice in Propag-Range is that constraints
in lines 2–4 are propagated in sequence. Thus, Occurs is propagated only once,
for a complexity in O(nd + n · |lb(T )|3/2). Lines 1, 3, and 4 are in O(nd). Thus,



the complexity of Propag-Range is in O(nd+n · |lb(T )|3/2). This reduces to linear
time complexity when lb(T ) is empty.
Incrementality. The overall complexity over a sequence of restrictions on Xi’s,
S and T is in O(n2d2). (See incrementality of Occurs in Section 4.1.) ut

As we will show in the next section, the Range constraint can be decomposed
using the Gcc constraint. However, propagation on such a decomposition is in
O(n2d + n2.66) time complexity (see [13]). Propag-Range is thus significantly
cheaper.

5 Range and Cardinality

Constraint toolkits like [10] additionally represent an interval on the cardinal-
ity of each set variable. This extra information is not taken into account by
Range([X1, . . . , Xn], S, T ) whereas it could improve propagation. We can eas-
ily extend the Range constraint to a constraint Range-Card that involves
this cardinality information. Range-Card([X1, . . . , Xn], S, M, T, N) holds iff
Range([X1, . . . , Xn], S, T ) & |S| = M & |T | = N . Unfortunately, enforcing
HC on Range-Card is NP-hard because it subsumes the NValue constraint
(Range-Card([X1, . . . , Xn], {1..n}, n, T, N) ≡ NValue(N, [X1, . . . , Xn])) and
NValue is itself NP-hard to propagate [8]. However, we can partially take into
account such cardinality information. Range-Card([X1, . . . , Xn], S, M, T, N)
can be decomposed using a Gcc constraint:

Range-Card([X1, . . . , Xn], S, M, T, N) iff

Gcc([Y1, . . . , Yn], [1, . . . , m + 1], [B1, . . . , Bm+1]) ∧
∀i ∈ [1..n] i ∈ S ↔ Yi ∈ T ∧
∀i ∈ [1..n] (Xi = Yi) ∨ (Yi = m + 1) ∧
∀v ∈ [1..m + 1] v ∈ T ↔ Bv 6= 0 ∧
∀v ∈ [1..m + 1] Bv ≤ M − N + 1 ∧

∑

v∈[1..m] Bv = M

where m = |⋃i∈[1..n](D(Xi))|, m + 1 is a dummy value, and Gcc([X1, . . . , Xn],

[d1, . . . , dm], [O1, . . . , Om]) holds iff the value di is used Oi times in X1, . . . , Xn,
for all i, 1 ≤ i ≤ m. For sake of clarity we suppose that values are consecutive in
the interval [1..m] but this is not a restriction.

We have ∀i ∈ [1..n], D(Yi) = D(Xi)∪{m+1} and ∀v ∈ [1..m+1], D(Bv) =
[0..n]. We enforce GAC on the X ’s and Y ’s and BC on S, T and the B’s. This
algorithm has O(n2d+n2.66) complexity (see [13]), which is typically worse than
Propag-Range which ignores such cardinality information. It remains an open
problem if we can extend Propag-Range to include some cardinality information,
and if we can do so without changing its complexity.

6 Experimental Results

The purpose of this section is twofold. We demonstrate that decomposing global
counting and occurrence constraints using Range is effective and efficient in
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Fig. 4. Propagating random binary constraint satisfaction problems with three over-
lapping Uses constraints (class A).

practice. We show that propagating Range using the algorithm introduced in
this paper is more effective than propagating it using the straightforward de-
composition:

Range([X1, . . . , Xn], S, T ) iff

i ∈ S → Xi ∈ T ∧ j ∈ T → ∃i ∈ S.Xi = j (1)

In order to isolate the effect of the Range constraint from other modelling
issues, we used the following protocol: we randomly generated instances of binary
CSPs and we added Uses([X1, .., Xn], [Y1, .., Yn]) constraints. Note that, it is
NP-hard to achieve GAC on Uses and there is no propagator available for this
constraint in the literature. So, in all our experiments, we encode Uses in three
different ways:

[no-propag]: by putting the Uses constraint in the model with no propagator
but just a checker testing if it is satisfied or not,

[range]: by decomposing Uses using Range as described in Section 3 and
using the algorithm Propag-Range presented in Section 4,

[range-decomp]: by decomposing the Range constraints of the previous model
using primitive constraints as in decomposition (1).

The problem instances are generated according to model B in [12], and can
be described with the following parameters: the number of X and Y variables
nx and ny in Uses constraints, the total number of variables nz, the domain
size d, the number of binary constraint m1, the number of forbidden tuples t per
binary constraint, and the number of Uses constraints m2. Note that the Uses

constraints can have overlapping or disjoint scopes of variables. We distinguish
the two cases. All reported results are averages on 100 instances.

Our first experiment shows the effectiveness of decomposing Uses with Range

for propagation alone (not solving). We compared the number of values removed



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16

pr
un

in
g

number of assigned variables

range
range-decomp

no-propag

Fig. 5. Propagating random binary constraint satisfaction problems with three disjoint
Uses constraints (class B).

by propagation on the models obtained by representing Uses constraints in the
three different ways: no-propag, range, and range-decomp. (Note that in the
no-propag model, the values are pruned only because of the binary constraints.)
To simulate what happens inside a backtrack search, we randomly selected a
subset of the variables and randomly assigned them values before propagation.
Hence, in the experiments, the constraints are exposed to a wide range of differ-
ent variable domains. We report the ratio of values removed by propagation on
the following classes of problems:

class A : 〈nx = 5, ny = 10, nz = 35, d = 20, m1 = 70, t = 150, m2 = 3 (overlap)〉
class B : 〈nx = 5, ny = 10, nz = 45, d = 20, m1 = 90, t = 150, m2 = 3 (disjoint)〉

in which the number of assigned variables varies between 1 and 15. A failure of
the propagation algorithm yields a ratio of 1 (all values are removed).

We observe in Figures 4 and 5 that domains can be reduced significantly
using Range when propagating problems containing Uses constraints. We also
observe that propagating the Range constraint directly (range model) is more
effective than propagating its decomposition (range-decomp model). The dif-
ferences are greater when the Uses constraints of the original problem overlap
(Fig. 4) than when they are all disjoint (Fig. 5).

Our second experiment shows the efficiency of decomposing Uses with Range

when solving the problems. Our solver used the smallest-domain-first variable
ordering heuristic with the lexicographical value ordering and a cutoff at 600
seconds. We compared the cost of solving the three types of models: no-propag,
range, and range-decomp. We report the number of fails and the cpu-time
needed to find the first solution on the following classes of problems:

class C : 〈nx = 5, ny = 10, nz = 25, d = 10, m1 = 40, t, m2 = 2〉
class D : 〈nx = 5, ny = 10, nz = 30, d = 10, m1 = 60, t, m2 = 2〉
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Fig. 6. Solving random binary constraint satisfaction problems with two overlapping
Uses constraints (class C).

in which t varies between 30 and 80.

We observe in Figures 6 and 7 that using the decomposition of Range

(range-decomp model) is costly. This is due to the disjunction in the imple-
mentation of ∃. Note that the instances solved here (classes C and D) are much
smaller than those used for propagation (classes A and B). Solving larger in-
stances was impractical. Note also that we do not present the results where
the Range constraint is not used (no-propag model) because they reached the
cutoff in most of the instances not trivially over-constrained. So, this second
experiment shows how efficiently Range can solve problems containing Uses

constraints. It also shows the clear benefit of using our algorithm in preference
to the decomposition of Range over the under-constrained region. As the prob-
lems get over-constrained, the binary constraints dominate the pruning, and the
algorithm gives a slight overhead in run-time, pruning equally with the decom-
position of Range.
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Fig. 7. Solving random binary constraint satisfaction problems with two disjoint Uses

constraints (class D).

7 Conclusion

Range and Roots are two global constraints that can express many other global
constraints, such as occurrence and counting constraints [6]. We have presented
a comprehensive study of the Range constraint. We proposed an algorithm
for enforcing hybrid consistency on Range. We proposed a way to partially
propagate Range-Card, a constraint that combines Range with constraints
on the cardinality of the set variables. Our experiments show the benefit we can
obtain by incorporating the Range constraint in a constraint toolkit.
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