
HAL Id: lirmm-00135534
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00135534

Submitted on 8 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Blocksolve: A bottom-up approach for solving quantified
CSPs

Guillaume Verger, Christian Bessiere

To cite this version:
Guillaume Verger, Christian Bessiere. Blocksolve: A bottom-up approach for solving quantified CSPs.
CP: Principles and Practice of Constraint Programming, Sep 2006, Nantes, France. pp.635-649,
�10.1007/11889205_45�. �lirmm-00135534�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00135534
https://hal.archives-ouvertes.fr

BlockSolve: a Bottom-Up Approach for Solving

Quantified CSPs

Guillaume Verger and Christian Bessiere

LIRMM, CNRS/University of Montpellier, France
{verger,bessiere}@lirmm.fr

Abstract. Thanks to its extended expressiveness, the quantified con-
straint satisfaction problem (QCSP) can be used to model problems
that are difficult to express in the standard CSP formalism. This is
only recently that the constraint community got interested in QCSP and
proposed algorithms to solve it. In this paper we propose BlockSolve,
an algorithm for solving QCSPs that factorizes computations made in
branches of the search tree. Instead of following the order of the variables
in the quantification sequence, our technique searches for combinations
of values for existential variables at the bottom of the tree that will work
for (several) values of universal variables earlier in the sequence. An ex-
perimental study shows the good performance of BlockSolve compared
to a state of the art QCSP solver.

1 Introduction

The quantified constraint satisfaction problem (QCSP) is an extension of the
constraint satisfaction problem (CSP) in which variables are totally ordered
and quantified either existentially or universally. This generalization provides
a better expressiveness for modelling problems. Model Checking and planning
under uncertainty are examples of problems that can nicely be modeled with
QCSP. But such an expressiveness has a cost. Whereas CSP is in NP, QCSP is
PSPACE-complete.

The SAT community has also done a similar generalization from the prob-
lem of satisfying a Boolean formula into the quantified Boolean formula problem
(QBF). The most natural way to solve instances of QBF or QCSP is to instan-
tiate variables from the outermost quantifier to the innermost. This approach
is called top-down. Most QBF solvers implement top-down techniques. Those
solvers lift SAT techniques to QBF. Nevertheless, Biere [1], or Pan and Vardi
[2] proposed different techniques to solve QBF instances. Both try to eliminate
variables from the innermost quantifier to the outermost quantifier, an approach
called bottom-up. Biere uses expansion of universal variables into clauses to elimi-
nate them, and Pan and Vardi use symbolic techniques. The bottom-up approach
is motived by the fact that the efficiency of heuristics that are used in SAT is
lost when following the ordering of the sequence of quantifiers. The drawback of
bottom-up approaches is the cost in space.

The interest of the community in solving a QCSP is more recent than QBF,
so there are few QCSP solvers. Gent, Nightingale and Stergiou [3] developed
QCSP-Solve, a top-down solver that uses generalizations of well-known tech-
niques in CSP like arc-consistency [4, 5], intelligent backtracking, and some QBF
techniques like the Pure Literal rule. This state-of-the-art solver is faster than
previous approaches that transform the QCSP into a QBF problem before call-
ing a QBF solver. Repair-based methods seem to be quite helpful as well, as
shown by Stergiou in [6].

In this paper we introduce BlockSolve, the first bottom-up algorithm to
solve QCSPs. BlockSolve instantiates variables from the innermost to the out-
ermost. On the one hand, this permits to factorize equivalent subtrees during
search. On the other hand, BlockSolve only uses standard CSP techniques, no
need for generalizing them into QCSP techniques. The algorithm processes a
problem as if it were composed of pieces of classical CSPs. Hence, BlockSolve
uses the constraint propagation techniques of a standard CSP solver as long as
it enforces at least forward checking (FC) [7]. The factorization technique used
in BlockSolve is very close to that used by Fargier et al. for Mixed CSPs [8].
Mixed CSPs are QCSPs in which the sequence of variables is only composed of
two consecutive sets, one universally quantified and the other existentially quan-
tified. Fargier et al. decomposed Mixed CSPs to solve them using subproblem
extraction as in [9]. BlockSolve uses this kind of technique, but extends it to
deal with any number of alternations of existential and universal variables. Like
QBF bottom-up algorithms, BlockSolve requires an exponential space to store
combinations of values for universal variables that have been proved to extend to
inner existential variables. However, storing them in a careful way dramatically
decreases this space, as we observed in the experiments.

The rest of the paper is organized as follows. Section 2 defines the concepts
that we will use during the paper. Section 3 describes BlockSolve, starting by
an example and discusses its space complexity. Finally, Section 4 experimentally
compares BlockSolve to the state-of-the-art QCSP solver QCSP-Solve and Sec-
tion 5 contains a summary of this work and details for future work.

2 Preliminaries

In this section we define the basic concepts that we will use.

Definition 1 (Quantified Constraint Network). A quantified constraint
network is a formula QC in which:

– Q is a sequence of quantified variables Qixi, i ∈ [1..n], with Qi ∈ {∃, ∀}
and xi a variable with a domain of values D(xi),

– C is a conjunction of constraints (c1 ∧ ... ∧ cm) where each ci involves some
variables among x1, . . . , xn.

Now we define what is a solution tree of a quantified constraint network.

Definition 2 (Solution tree). The solution tree of a quantified constraint net-
work QC is a tree such that:

– the root node r has no label,
– every node s at distance i (1 ≤ i ≤ n) from the root r is labelled by an

instantiation (xi ← v) where v ∈ D(xi),
– for every node s at depth i, the number of successors of s in the tree is
|D(xi+1)| if xi+1 is a universal variable or 1 if xi+1 is an existential variable.
When xi+1 is universal, every value w in D(xi+1) appears in the label of one
of the successors of s,

– for any leaf, the instantiation on x1, . . . , xn defined by the labels of nodes
from r to the leaf satisfies all constraints in C.

It is important to notice that contrary to classical CSPs, variables are ordered
as an input of the network. A different order in the sequence Q gives a different
network.

Example 1. The network ∃x1∀x2, x1 6= x2, D(x1) = D(x2) = {0, 1} is inconsis-
tent, there is no value for x1 in D(x1) that is compatible with all values in D(x2)
for x2.

Example 2. The network ∀x2∃x1, x1 6= x2, D(x1) = D(x2) = {0, 1} has a solu-
tion: whatever the value of x2 in D(x2), x1 can be instantiated.

Notice that if all variables are existentially quantified, a solution to the quantified
network is a classical instantiation. Hence, the network is a classical constraint
network.

Definition 2 leads to the concept of quantified constraint satisfaction problem.

Definition 3 (QCSP). A quantified constraint satisfaction problem (QCSP)
is the problem of the existence of a solution to a quantified constraint network.

We point out that this original definition of QCSP, though different in pre-
sentation, is equivalent to previous recursive definitions. The advantage of ours
is that it formally specifies what a solution of a QCSP is.

Example 3. Consider the quantified network ∃x1∃x2∀x3∀x4∃x5∃x6, (x1 6= x5)∧
(x1 6= x6)∧ (x2 6= x6)∧ (x3 6= x5)∧ (x4 6= x6)∧ (x3 6= x6), D(xi) = {0, 1, 2, 3}, ∀i.
Figure 1 shows a solution tree for this network.

We define the concept of block, which is the main concept handled by our
algorithm BlockSolve.

Definition 4 (Block). A block in a network QC is a maximal subsequence of
variables in Q that have the same quantifier. We call a block that contains uni-
versal variables a universal block, and a block that contains existential variables
an existential block.

 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

 2 0 0 0 2 0 0 0 2 0 0 0 1 2 1 1

 2 0 0 0 2 0 0 0 2 0 0 0 1 2 1 1

 3

 0 1 2 3

x2

x3

x4

x5

x6

 3x1

Fig. 1. A solution tree for Example 3

Inverting two variables of a same block does not change the problem, whereas
inverting variables of two different blocks changes the problem. If x and y are
variables in two different blocks, with x earlier in the sequence than y, we say that
x is the outer variable and y is the inner variable. In this paper, we limit ourselves
to binary constraints for simplicity of presentation: a constraint involving xi and
xj is noted cij . Nevertheless, BlockSolve can handle non-binary constraints if
they overlap at most two blocks and there is at most one variable in the outer
block (if there are two blocks).

The concept of block can be used to define a solution block-tree of a QCSP.
This is a compressed version of the solution tree defined above.

Definition 5 (Solution block-tree). The solution of a quantified constraint
network QC is a tree such that:

– the root node r has no label,
– every node s at distance i from the root represents the ith block in Q,
– every node s at distance i from the root r is labelled by an instantiation of

the variables in the ith block if it is an existential block, or by a union of
Cartesian products of sub-domains of its variables if it is a universal block,

– for every node s at depth i, the number of successors of s in the tree is 1
if the i+1th block is existential, or possibly more than 1 if the i+1th block
is universal. When the i+1th block is universal, every combination of values
for its variables appears in the label of one of the successors of s,

– for any leaf, an instantiation on x1, . . . , xn defined by the labels of the exis-
tential nodes from r to the leaf and any of the labels of the universal nodes
from r to the leaf satisfies all constraints in C.

Note that the root node is present only for having a tree and not a forest
in cases where the first block is universal. Figure 2 is the block-based version of

the solution tree in Fig. 1. The root node is not shown because the first block
is existential. The problem is divided in three blocks, the first and the third
blocks are existential whereas the second block is universal. Existential nodes
are completely instantiated, it means that all variables of those blocks have a
single value. The universal block is in three nodes, each one composed of the
name of the variables and a union of Cartesian products of sub-domains. Each
of the universal nodes represents as many nodes in the solution tree of Fig. 1
as there are tuples in the product. The block-tree in Figure 2 is a compressed
version of the tree in Figure 1.

Fig. 2. Solution block-tree of example 3

BlockSolve uses this concept of blocks for generating a solution and for
solving the problem. Blocks divides the problem in levels.

Definition 6 (Level). A network P = QC is divided in p levels from 1 to
p. Each level k, 1 ≤ k ≤ p, is composed of a universal block block∀(k), and
the following existential block in Q, noted block∃(k). If the first block in Q is
existential, the first level contains only this block, and if the last block is universal,
the last level contains only this block.

We call Pk the subproblem that contains variables in levels k to p and con-
straints that are defined on those variables. P1 is the whole problem P. The
principle of BlockSolve is to solve Pp first, then using the result to solve Pp−1,
and so on until it solves P1 = P.

3 The BlockSolve Algorithm

In this section we describe BlockSolve, our QCSP solving algorithm. First of
all we run the algorithm on Example 3. Afterwards, we provide the general
algorithm.

As done in QCSP-Solve, we start by a preprocessing that permanently re-
moves constraints ∀xi∀xj cij and ∃xi∀xj cij . Let us explain why these constraints
can be completely removed. For constraints of type ∀xi∀xj cij , if there exists a
couple (vi, vj) of values for xi and xj that is forbidden by cij , then the whole
problem is inconsistent. If not, the constraint will ever be satisfied, so we can

remove it. For constraints of type ∃xi∀xj cij , if there exists a couple (vi, vj) of
values for xi and xj that is forbidden by cij , then xi cannot take value vi. So,
we can remove it from the domain of xi. If D(xi) becomes empty, the problem
is inconsistent. Once all values in D(xi) have been checked, we can remove cij .
Once the network has been preprocessed this way, the main algorithm can start.
BlockSolve uses classical propagation techniques, and thus can be integrated
into a CSP solver (like Choco [10]). It then inherits all propagation algorithms
implemented in the solver. Let us illustrate the behavior of BlockSolve on the
network of Example 3 before describing how it works.

3.1 Running BlockSolve on an example

In this section we run the algorithm on the network of Example 3 whose solution
is presented in Figure 2. The following pictures are an execution of BlockSolve
on this example.

The main idea in BlockSolve is to instantiate existential variables of the
last block, and to go up to the root instantiating all existential variables. Each
assignment vi of an existential variable xi can lead to the deletion of inconsistent
values of outer variables by propagation. (We illustrate here with FC).

Removing a value of an outer existential variable is similar to the CSP case.
While the domains of variables are non empty, it is possible to continue instanti-
ating variables. But if a domain is reduced to the empty set, it will be necessary
to backtrack on previous choices on inner variables and to restore domains.

Removing a value of an outer universal variable implies that we will have to
find another instantiation of inner variables that supports this value, because all
tuples in universal blocks have to match to a partial solution of inner subproblem.
But the instantiation that removes a value in the domain of an universal variable
must not be rejected: it can be compatible with a subset of tuples of the universal
block. The bigger the size of the subset, the better the grouping. Factorizing
tuples of values for a universal block in large groups is a way for minimizing
the number of times the algorithm has to solve subproblems. Each time an
instantiation of inner variables is found consistent with a subset of tuples for a
universal block, we must store this subset and solve again the inner subproblem
wrt remaining tuples for the universal variables.

At level k, BlockSolve looks for a solution to Pk+1, and then tries to solve
Pk. The first subproblem BlockSolve tries to solve is the innermost subproblem.
In the example, BlockSolve will instantiate variables of the last block (x5 and
x6) as if the problem was a classical CSP.

First step.

Before the instantiation x5 and x6 instantiated

BlockSolve has found an instantiation ((x5, x6) = (0, 0)) which is consistent
with all remaining values of the other variables (thanks to FC filtering). Thus,
if there is a consistent assignment for (x1, x2) with their remaining values, it is
consistent with values that we assigned to (x5, x6).

Here, FC removed value 0 for x3 and x4, and for x1 and x2. It means that
BlockSolve has not found an instantiation for (x5, x6) that is consistent with
tuples in D(x3) × D(x4) that contain 0 for x3 or for x4. So, in the next step,
BlockSolve tries to find a partial solution on x5 and x6 that is consistent with
some of the tuples in {0}× {0, 1, 2, 3}∪ {1, 2, 3}× {0} for x3 and x4 (i.e., x3 or
x4 is forced to take 0).

Second step.

Before the instantiation x5 and x6 instantiated

In the second step, BlockSolve has found the instantiation (1, 1) for (x5, x6),
which is consistent with some of the remaining tuples of x3, x4. This partial
solution (x5, x6) = (1, 1) is inconsistent with (x3, x4) = (1, 0) and (x3, x4) =
(0, 1). Note that domains of x1 and x2 have been reduced as well.

Last step.

Before the instantiation x5 and x6 instantiated

Finally, in the last step, we find the instantiation (2, 2) for (x5, x6), which
is consistent with the last remaining combinations for x3, x4 (namely, (0, 1) and
(1, 0)). At this point we know that any combination of values on (x3, x4) can
be extended to x5, x6. The subproblem P2 is solved. During this process the
domains of x1 and x2 have been successively reduced until they both reached
the singleton {3}. These are the only values consistent with all instantiations
found for x5, x6 in the three previous steps. These values 3 for x1 and 3 for x2

being compatible (there is no constraint between x1 and x2), we know that P1

(= P) is satisfiable. The solution generated by BlockSolve is the one depicted
in Figure 2.

3.2 Description of BlockSolve

In this section, we describe BlockSolve, presented as Algorithm 1. This is a
recursive algorithm. BlockSolve(k) is the call of the algorithm at level k, which
itself calls BlockSolve(k + 1). In the section above, we saw that it is necessary
to keep in memory the tuples of each block. This is saved in two tables: T∀[1..p]
and T∃[1..p] where p is the number of levels. BlockSolve(k) modifies the global
tables T∀[] and T∃[] as side-effects. Local tables A and B are used to restore T

adequately depending on success or failure in inner subproblems.

BlockSolve works as follows: for a level k starting from level 1, we try to
solve the subproblem Pk+1, keeping in mind that it must be compatible with all
constraints in P. If there is no solution for Pk+1, it means that current values of
existential variables in block∃(k) do not lead to a solution. But it may be the case
that previous choices in Pk+1 provoked the removal of those values in block∃(k)
that lead to a solution with other values in Pk+1. So we try to solve Pk+1 again,
after having removed tuples on block∃(k) that led to failure. If there exists a
solution for Pk+1, we try to instantiate block∃(k) with values consistent with
some of the tuples on block∀(k), exactly as if it was a classical CSP. If success,
we remove from T∀[k] the tuples on block∀(k) that are known to extend on inner
variables, and we start again the process on the not yet supported tuples of
block∀(k). The first call is made with these parameters: P1 which is the whole
problem, and for each level k, the Cartesian products T∃[k] and T∀[k] of domains
of variables in the blocks of level k.

Here we describe the main lines of the algorithm BlockSolve.

At line 1, BlockSolve returns true for the empty problem.

At line 2, we test if there remain tuples in T∀[k], that is, tuples of block∀(k)
for which we have not yet found a partial solution in Pk. If empty, it means we
have found a partial solution tree for Pk and we can go up to level k − 1 (line
13). We also test if we have tried all tuples in T∃[k]. If yes (i.e., T∃[k] = ∅), it
means that Pk cannot be solved. In this case, we will go up to level k − 1 (line
13), and we will have to try other values for variables of block∃(k− 1) (line 12).

At line 4, a call is made to solve Pk+1. If the result is true, T∀[i], ∀i ≤ k and
T∃[i], ∀i ≤ k are tables of tuples that are compatible with the partial solution of

Algorithm 1: BlockSolve

in: P, k, T∀[k], T∃[k]
in/out: T∀[1..k − 1], T∃[1..k − 1]
Result: true if there exists a solution, false otherwise
begin

if k > number of levels then return true;1

while T∀[k] 6= ∅ ∧ T∃[k] 6= ∅ do2

A∀[1..k]← T∀[1..k]; A∃[1..k]← T∃[1..k];3

solved← BlockSolve(k + 1);4

B∃ ← T∃[k]; B∀ ← T∀[k];5

if solved then
repeat6

(inst, T Inc

∀)←solve-level(k);7

if inst then T∀[k]← T Inc

∀ ;8

until T∀[k] = ∅ ∨ ¬inst ;9

solved← (B∀ 6= T∀[k]);10

if solved then
T∃[k]← A∃[k]; T∀[k]← (A∀[k] \B∀) ∪ T∀[k];11

else
T∃[k]← A∃[k] \ B∃ ;12

T∃[1..k − 1]← A∃[1..k − 1]; T∀[1..k]← A∀[1..k];

return (T∀[k] = ∅);13

end

Pk+1. If the result is false, there is no solution for Pk+1 consistent with tuples
in T∃[k] for existential variables at level k.

At line 5, tuples on block∀(k) and block∃(k) compatible with Pk+1 are saved
in B∀ and B∃.

From line 6 to line 9, BlockSolve tries to instantiate variables of block∃(k)
consistently with tuples of T∀[k], i.e., tuples of values of universal variables
for which it has found a partial solution of Pk+1. At line 7, BlockSolve calls
solve-level(k)which is presented in Algorithm 2. This is a classical CSP solver
that instantiates only existential variables at level k (block∃(k)) so that the in-
stantiation is compatible with all constraints. This CSP solver has to propagate
at least FC to ensure that values of outer variables that are inconsistent with the
instantiation are removed. This is due to the fact that we limit constraints to
constraints on two blocks, with only one variable in the outermost block. Hence
we ensure that all variables but the outermost are instantiated when propagating
a constraint. Each time it finds an instantiation, solve-level(k) removes from
T∀[k] the tuples not consistent with the instantiation of block∃(k), and returns
the table T Inc

∀
containing these tuples. This is the new value for T∀[k] (line 8).

BlockSolve will indeed try to find another instantiation on block∃(k) as long
as not all tuples in block∀(k) compatible with Pk+1 (those in B∀) have found

Algorithm 2: solve-level(k)

in: P,k, T∀[k],T∃[k]
in/out: T∃[1..k − 1], T∀[1..k − 1]
Result: a couple (inst, T Inc

∀):
begin

Instantiate variables of block∃(k) consistently with T∀[] and T∃[] and
propagate the constraints;
if success then

T Inc

∀ ← tuples in T∀[k] that are inconsistent with the instantiation;
return (true, T Inc

∀);
else return (false, —);

end

extension to block∃(k) or there is no more instantiation which is compatible with
T∀[k] (i.e., solve-level returns false).

If we have extended some new tuples in block∀(k) since line 5 (test in line
10), then line 11 updates T∀[k]: there remains to consider all tuples that have
been removed by BlockSolve(k + 1) or solve-level(k) since the beginning
of the loop (line 3). For all these tuples of block∀(k), BlockSolve has not yet
found any partial solution of inner variables consistent with them. Remark that
existential variables in block∃(k) are restored to their state at the beginning of
the loop (line 3).

At line 12, two cases: either solved has taken the value false from the call to
BlockSolve(k+1) or it has taken the value false because BlockSolve(k+1) has
found a solution but there was no possible instantiation of variables in block∃(k)
with a tuple of B∃ compatible with tuples of B∀. In both cases no tuple in B∃ can
lead to a partial solution while universal variables of block∀(k) have their values
in B∀. But there might exist a solution on B∀ consistent with some other tuples of
A∃[k] (tuples that have been removed because of choices in BlockSolve(k +1)).
We update T∃[k] to contain them.

We should bear in mind that function solve-level (Algorithm 2) is a stan-
dard CSP solving algorithm that tries to instantiate existential variables of
block∃(k). If it is possible to instantiate them, inst is true and T Inc

∀
contains

all tuples of T∀[k] that are in conflict with the instantiation. Maintaining con-
sistency with outer variables is done as side-effects on tables T∃[] and T∀[].

BlockSolve can give the solution block-tree as in Definition 5. Figure 2 shows
the result given. In order to build such a tree, BlockSolve takes as parameter a
node that corresponds to the existential block of the previous level (or the root for
the first level). When solving Pk+1, BlockSolve produces a tree that is plugged
to the current existential node. Plugging the current sub-tree can be done after
the call to solve-level (line 7), using the instantiation of the variables in T∃[k],
and the compatible tuples in T∀[k]. If solving Pk+1 fails, nothing is plugged.

3.3 Spatial complexity

BlockSolve needs more space than a top-down algorithm like QCSP-Solve. It
keeps in memory all tuples of existential and universal blocks for which a solution
has not yet been found. The size of such sets can be exponential in the number
of variables of the block. But when solving a QCSP, the user usually prefers to
obtain a solution tree than an answer: “yes, it is satisfiable”. Since a solution
tree takes exponential space, any algorithm that returns a solution tree of a
quantified network requires exponential space.1

BlockSolve keeps sets of tuples as unions of Cartesian products, which uses
far less space than tuples in extension. In addition, computing the difference
between two unions of Cartesian products is much faster than with tuples in
extension.

4 Experiments

In this section we compare QCSP-Solve and BlockSolve on random problems.
The experiments show the differences between these two algorithms in CPU time
and number of visited nodes.

4.1 Coding BlockSolve

BlockSolve is developed in Java using Choco as constraint library [10]. This
library provides different propagation algorithms and a CSP solver. After loading
the data of a problem, BlockSolve creates tables of sets of tuples for each block
and finally launches the main function.

Heuristics The algorithm uses a value ordering heuristic to increase efficiency.
Because BlockSolve is able to factorize subtrees, the most efficient way to solve
a QCSP is to minimize the number of subtrees during the search. One way to
accomplish this is to select the value v of variable x that is compatible with the
largest set of tuples of outer blocks. In order to determine which value is the best
according to this criterion, the solver instantiates x to all its values successively.
For each value it propagates the instantiation to others domains and computes
the number of branches it is in (i.e., the number of compatible tuples in outer
blocks). The larger the better.

4.2 The random problem generator

Instances of QCSP presented in these experiments have been created with a
generator based on that used in [3]. In this model, problems are composed of

1 We can point out that a solution can be returned in polynomial space if we allow
interactive computation: the values of the first existential block are returned, then,
based on the values chosen adversarially for the first universal block, values of the
second existential block are returned, and so on.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 10 20 30 40 50 60 70 80 90 100

no

de
s

q_ee

QCSP-solve
BlockSolve

Fig. 3. Number of nodes for n = 15, n∀ = 7, n∃ = 4, b∀ = 1, d = 15, p = 30, q∀∃ = .50
where q∃∃ grows. (cross-over point at q∃∃ = .25)

three blocks, the first is an existential block. It takes seven parameters as input
< n, n∀, n∃, d, p, q∀∃, q∃∃ > where n is the total number of variables, n∀ is the
number of universal variables, n∃ is the number of existential variables in the
first block, d is the size of domains of variables (the same for each variable), p

is the number of binary constraints as a fraction of all possible constraints. All
constraints are ∀xi∃xj cij constraints or ∃xi∃xj cij constraints, other type of
constraints that can be removed during the preprocessing are not generated. q∀∃
and q∃∃ are the looseness of constraints, i.e., the number of goods as a fraction of
all possible couples of values. To avoid the flaw with which almost all problems
are inconsistent, constraints ∀xi∃xj cij have very few forbidden couples.

We extended this generator to allow more than 3 blocks. We added an eighth
parameter, b∀, that is the number of universal blocks. Variables are sequenced
as follow: n∃ existential variables followed by n∀ universal variables, then again
n∃ existential variables followed by n∀ universal variables.

4.3 Results

Now we present some results on randomly generated instances created by the
generator. For each experiment, 100 instances were generated for each value of
q∃∃, from 0.05 to 0.95.

The first three figures are from experiments on problems with these charac-
teristics: each instance contains 15 variables, one block of 7 universal variables.
Figure 3 shows the results in terms of number of nodes explored. In the leftmost
part of the figure, both algorithms detect inconsistency before exploring any
node. As we can see, BlockSolve traverses far less nodes than QCSP-Solve. No-

 0.001

 0.01

 0.1

 1

 10

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
)

q_ee

QCSP-solve
BlockSolve

Fig. 4. cpu time for n = 15, n∀ = 7, n∃ = 4, b∀ = 1, d = 15, p = 30, q∀∃ = .50 where q∃∃
grows. (cross-over point at q∃∃ = .25)

tice that BlockSolve explores only existential nodes, not universal ones. QCSP-
Solve seems to have difficulties to solve problems that have solutions. On under-
constrained problems, BlockSolve finds a solution without any backtrack. This
means that for easy problems, there exists an instantiation of the innermost
existential block that is consistent with all tuples of the universal block.

Figure 4 shows the results in term of CPU time. Comparing it to Figure 3,
it is clear that BlockSolve takes a lot of time for exploring one node. This is
because at each node BlockSolve looks for the best value for matching more
tuples in outer universal blocks. This heuristic is quite long to compute compared
to what QCSP-Solve does at a node. Note that QCSP-Solve determines faster
than BlockSolve that a problem is inconsistent (q∃∃ < .25), but BlockSolve

finds a solution much faster when it exists (q∃∃ > .25). For very high values of
q∃∃ (> .90), QCSP-Solve is more efficient than BlockSolve.

It is interesting to see that BlockSolve is more stable than QCSP-Solve, as
shown in Figure 5. In this figure, each point represents an instance of problem.
We see that in the satisfiable region, it is hard to predict how much time will
take QCSP-Solve to solve an instance.

We ran both algorithms on instances that have more than three blocks. Figure
6 presents results for instances that have five blocks (∃∀∃∀∃) of five variables each
(left graph), and instances that have seven blocks of four variables each (right
graph). These experiments show that the general behavior of both algorithms
looks similar whatever the number of levels in the problem. In unsolvable prob-
lems, QCSP-Solve detects inconsistency before BlockSolve, whereas for solvable
instances QCSP-Solve takes as much time as at the cross-over point (i.e., where
there are as many satisfiable instances as unsatisfiable ones).

 0.001

 0.01

 0.1

 1

 10

 100

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
)

q_ee

QCSP-solve
BlockSolve

Fig. 5. Scattered plot for cpu time on n = 15, n∀ = 7, n∃ = 4, b∀ = 1, d = 15, p = 30,

q∀∃ = .50

5 Conclusions

In this paper we presented BlockSolve, a bottom-up QCSP solver that uses
standard CSP techniques. Its specificity is that it treats variables from leaves to
root in the search tree, and factorizes lower branches avoiding the search in sub-
trees that are equivalent. The larger this factorization, the better the algorithm,
thus minimizing the number of nodes visited. Experiments show that grouping
branches gives BlockSolve a great stability in time spent and in number of
nodes visited. The number of nodes BlockSolve visits is much smaller than the
number of nodes visited by QCSP-Solve in almost all instances.

Future work will focus on improving time efficiency of BlockSolve. Great im-
provements can probably be obtained by designing heuristics to efficiently prune
subtrees that are inconsistent. Furthermore, most of the cpu time is spent updat-
ing and propagating tables of tuples on blocks. Finding better ways to represent
them could significantly decrease the cpu time of BlockSolve. The current im-
plementation of BlockSolve being far from being optimized, this leaves a lot of
space for significant improvements. Finally, we plan to generalize BlockSolve to
global constraints.

Acknowledgements

We are very grateful to Kostas Stergiou, Peter Nightingale and Ian Gent, who
kindly provided us with the code of QCSP-Solve.

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
)

q_ee

QCSP-solve
BlockSolve

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 ti

m
e

(s
)

q_ee

QCSP-solve
BlockSolve

cpu time for n = 25, n∀ = 5, n∃ = 5, cpu time for n = 28, n∀ = 4, n∃ = 4,

b∀ = 2, d = 8, p = 20, q∀∃ = .50 b∀ = 3, d = 8, p = 20, q∀∃ = .50
(cross-over point at q∃∃ = .55) (cross-over point at q∃∃ = .60)

Fig. 6. Problems with 25 variables and 5 blocks (left) and 28 variables and 7 blocks
(right).

References

1. Biere, A.: Resolve and expand. In: Proceedings SAT’04, Vancouver BC (2004)
2. Pan, G., Vardi, M.: Symbolic decision procedures for QBF. In: Proceedings CP’04,

Toronto, Canada (2004) 453–467
3. Gent, I., Nightingale, P., Stergiou, K.: QCSP-solve: A solver for quantified con-

straint satisfaction problems. In: Proceedings IJCAI’05, Edinburgh, Scotland
(2005) 138–143

4. Bordeaux, L., Montfroy, E.: Beyond NP: Arc-consistency for quantified constraints.
In: Proceedings CP’02, Ithaca NY (2002) 371–386

5. Mamoulis, N., Stergiou, K.: Algorithms for quantified constraint satisfaction prob-
lems. In: Proceedings CP’04, Toronto, Canada (2004) 752–756

6. Stergiou, K.: Repair-based methods for quantified csps. In: Proceedings CP’05,
Sitges, Spain (2005) 652–666

7. Haralick, R., Elliott, G.: Increasing tree seach efficiency for constraint satisfaction
problems. Artificial Intelligence 14 (1980) 263–313

8. Fargier, H., Lang, J., Schiex, T.: Mixed constraint satisfaction: a framework for
decision problems under incomplete knowledge. In: Proceedings AAAI’96, Portland
OR (1996) 175–180

9. Freuder, E., Hubbe, P.: Extracting constraint satisfaction subproblems. In: Pro-
ceedings IJCAI’95, Montréal, Canada (1995) 548–557

10. Choco: A Java library for constraint satisfaction problems, constraint programming
and explanation-based constraint solving. URL: http://choco-solver.net (2005)

