
HAL Id: lirmm-00135537
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00135537

Submitted on 8 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The ROOTS Constraint
Christian Bessiere, Emmanuel Hébrard, Brahim Hnich, Zeynep Kiziltan, Toby

Walsh

To cite this version:
Christian Bessiere, Emmanuel Hébrard, Brahim Hnich, Zeynep Kiziltan, Toby Walsh. The ROOTS
Constraint. CP: Principles and Practice of Constraint Programming, Sep 2006, Nantes, France. pp.75-
90, �10.1007/11889205_8�. �lirmm-00135537�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00135537
https://hal.archives-ouvertes.fr

The ROOTS Constraint

Christian Bessiere1, Emmanuel Hebrard2, Brahim Hnich3, Zeynep Kiziltan4,
and Toby Walsh5

1 LIRMM, CNRS/University of Montpellier, France, bessiere@lirmm.fr
2 4C and UCC, Cork, Ireland, e.hebrard@4c.ucc.ie

3 Izmir University of Economics, Izmir, Turkey, brahim.hnich@ieu.edu.tr
4 University of Bologna, Italy, zkiziltan@deis.unibo.it

5 NICTA and UNSW, Sydney, Australia, tw@cse.unsw.edu.au

Abstract. A wide range of counting and occurrence constraints can be
specified with just two global primitives: the Range constraint, which
computes the range of values used by a sequence of variables, and the
Roots constraint, which computes the variables mapping onto a set of
values. We focus here on the Roots constraint. We show that prop-
agating the Roots constraint completely is intractable. We therefore
propose a decomposition which can be used to propagate the constraint
in linear time. Interestingly, for all uses of the Roots constraint we have
met, this decomposition does not destroy the global nature of the con-
straint as we still prune all possible values. In addition, even when the
Roots constraint is intractable to propagate completely, we can enforce
bound consistency in linear time simply by enforcing bound consistency
on the decomposition. Finally, we show that specifying counting and oc-
currence constraints using Roots is effective and efficient in practice on
two benchmark problems from CSPLib.

1 Introduction

Global constraints on the occurrence of particular values (occurrence constraints)
or on the number of values or variables satisfying some condition (counting
constraints) occur in many real world problems. They are especially useful in
problems involving resources. For instance, if values represent resources, we may
wish to count the number of occurrences of the different values used. Many global
constraints proposed in the past are counting and occurrence constraints (see, for
example, [13, 3, 14, 1, 4]). Bessiere et al. showed [5] that many such constraints
can be specified with two new global constraints, Roots and Range, together
with some simple elementary constraints like subset and set cardinality.

As we show here, specifying a global constraint using Roots and Range is
also in many cases a way to provide an efficient propagator. There are three pos-
sible situations. In the first, we do not lose the “global” nature of our counting
or occurrence constraint by specifying it with Roots and Range. The global
nature of the Roots and Range constraint is enough to capture the global
nature of the given counting or occurrence constraint, and propagation is not

hindered. In the second situation, completely propagating the counting or oc-
currence constraint is NP-hard. We must accept some loss of globality if we are
to make propagation tractable. Using Roots and Range is then one means to
propagate the counting or occurrence constraint partially. In the third situation,
the global constraint can be propagated completely in polynomial time but us-
ing Roots and Range hinders propagation. In this case, we need to develop a
specialized propagation algorithm.

In [7], we focused on the Range constraint. This paper therefore concen-
trates on the Roots constraint. We prove that it is intractable to propagate
the Roots constraint completely. We therefore propose a decomposition of the
Roots constraint that can propagate it partially in linear time. This decompo-
sition does not destroy the global nature of the Roots constraint as in many
situations met in practice, it prunes all possible values. This decomposition can
also easily be incorporated into a new constraint toolkit. We show experimen-
tally the efficiency of using the Roots constraint on two real world problems
from CSPLib. The rest of the paper is organised as follows. Section 2 gives the
formal background. Section 3 gives many examples of counting and occurrence
constraints that can be specified using the Roots constraint. In Section 4, we
give a complete theoretical analysis of the Roots constraint and our decomposi-
tion of it. In Section 5, we discuss implementation details. Experimental results
are presented in Section 6. Finally, we end with conclusions.

2 Formal Background

A constraint satisfaction problem consists of a set of variables, each with a finite
domain of values, and a set of constraints specifying allowed combinations of
values for subsets of variables. We use capitals for variables (e.g. X , Y and S),
and lower case for values (e.g. v and w). We write D(X) for the domain of a
variable X . For totally ordered domains, we write min(X) and max(X) for the
minimum and maximum values. A solution is an assignment of values to the
variables satisfying the constraints. A variable is ground when it is assigned a
value. We consider both integer and set variables. A set variable S is represented
by its lower bound lb(S) which contains the definite elements and an upper bound
ub(S) which also contains the potential elements.

Constraint solvers typically explore partial assignments enforcing a local con-
sistency property using either specialized or general purpose propagation algo-
rithms. Given a constraint C, a bound support on C is a tuple that assigns to
each integer variable a value between its minimum and maximum, and to each
set variable a set between its lower and upper bounds which satisfies C. A bound
support in which each integer variable is assigned a value in its domain is called
a hybrid support. If C involves only integer variables, a hybrid support is a sup-
port. A constraint C is bound consistent (BC) iff for each integer variable Xi,
its minimum and maximum values belong to a bound support, and for each set
variable Sj , the values in ub(Sj) belong to Sj in at least one bound support and
the values in lb(Sj) belong to Sj in all bound supports. A constraint C is hybrid

consistent (HC) iff for each integer variable Xi, every value in D(Xi) belongs
to a hybrid support, and for each set variable Sj , the values in ub(Sj) belong to
Sj in at least one hybrid support, and the values in lb(Sj) belong to Sj in all
hybrid supports. A constraint C involving only integer variables is generalized
arc consistent (GAC) iff for each variable Xi, every value in D(Xi) belongs to
a support. If all variables in C are integer variables, hybrid consistency reduces
to generalized arc-consistency, and if all variables in C are set variables, hybrid
consistency reduces to bound consistency.

To illustrate these concepts, consider the constraint C(X1, X2, S) that holds
iff the set variable S is assigned exactly the values used by the integer variables
X1 and X2. Let D(X1) = {1, 3}, D(X2) = {2, 4}, lb(S) = {2} and ub(S) =
{1, 2, 3, 4}. BC does not remove any value since all domains are already bound
consistent. On the other hand, HC removes 4 from D(X2) and from ub(S) as
there does not exist any tuple satisfying C in which X2 does not take value 2.
Note that as BC deals with bounds, value 2 was considered as possible for X1.

3 Counting and Occurrence Constraints

Counting constraints limit the number of values or variables satisfying some con-
dition (e.g. the global cardinality constraint [14] counts the number of variables
using particular values). Occurrence constraints limit the occurrence of partic-
ular values (e.g. the all different constraint [13] ensures no value occurs twice).
We previously showed [5] that many counting and occurrence constraints can be
decomposed into two new global constraints, Range and Roots, together with
simple non-global constraints over integer variables (like X ≤ m) and simple
non-global constraints over set variables (like S1 ⊆ S2 or |S| = k). We focus here
on the Roots constraint. Given a sequence of variables X1 to Xn, the Roots

constraint holds iff a set variable S is the set of indices of variables which map
to a value belonging to a second set variable, T .

Roots([X1, . . . , Xn], S, T) iff S = {i | Xi ∈ T}

Note that elements in T may not be used by any integer variable Xi. For example,
Roots([1, 3, 1, 2, 3], S, T) is satisfied by S = {1, 3} and T = {1}, S = {4} and
T = {2, 7}, or S = {2, 4, 5} and T = {2, 3, 8}. We now list some of the uses of
the Roots constraint for specifying other more complex global constraints.

3.1 Among constraint

The Among constraint was introduced in CHIP to model resource allocation
problems like car sequencing [3]. It counts the number of variables using values
from a given set. Among([X1, . . . , Xn], [d1, . . . , dm], N) holds iff N = |{i | Xi ∈
{d1, . . . , dm}}|. It can be decomposed using a Roots constraint:

Among([X1, . . . , Xn], [d1, . . . , dm], N) iff

Roots([X1, . . . , Xn], S, {d1, . . . , dm}) ∧ |S| = N

GAC on Among is equivalent to HC on this decomposition [5]. As we show later,
since the third argument of Roots is ground, we can achieve HC on the Roots

constraint in linear time. We note that Roots is more than a set version of
Among. With Among, we just count the number of variables using particular
values. However, with Roots, we collect the set of variables using particular
values. As we see later, having this set and not just its cardinality permits us to
specify global constraints like Common which go beyond what can be expressed
with Among.

3.2 Count constraint

The Count constraint [2] is closely related to the Among constraint. The
Count constraint permits us to constrain the number of variables using a par-
ticular value. More precisely, Count([X1, . . . , Xn], d, op, N) where op ∈ {≤,≥
, <, >, =, 6=} holds iff |{i | Xi = d}| op N . The AtMost and AtLeast con-
straints are instances of Count where op ∈ {≤,≥}. The Count constraint can
be decomposed into a Roots constraint:

Count([X1, . . . , Xn], d, op, N) iff

Roots([X1, . . . , Xn], S, {d}) & |S| op N

This decomposition does not hinder propagation and, as we will show later, it
takes linear time to enforce HC on such an instance of the Roots constraint.

3.3 Domain constraint

We may wish to channel between a variable and a sequence of 0/1 variables repre-
senting the possible values taken by the variable. The Domain(X, [X1, . . . , Xm])
constraint introduced in [12] ensures X = i iff Xi = 1. This can be decomposed
into a Roots constraint:

Domain(X, [X1, . . . , Xm]) iff

Roots([X1, . . . , Xm], S, {1}) & |S| = 1 & X ∈ S

Enforcing HC on this specification again takes linear time and it is equivalent
to enforcing GAC on the original global Domain constraint.

3.4 LinkSet2Booleans constraint

We may also wish to channel between a set variable and a sequence of 0/1 vari-
ables representing the characteristic function of this set. The global constraint
LinkSet2Booleans(S, [X1, . . . , Xm]) introduced in [2] ensures i ∈ S iff Xi = 1.
This can also be decomposed into a Roots constraint:

LinkSet2Booleans(S, [X1, . . . , Xm]) iff

Roots([X1, . . . , Xm], S, {1})

Enforcing HC (or BC) on this specification again takes linear time and it is
equivalent to enforcing HC (or BC) on the original global LinkSet2Booleans

constraint.

3.5 Gcc constraint

The global cardinality constraint [14] constrains the number of times values are
used. We consider a generalization in which the number of occurrences of a value
is an integer variable. That is, Gcc([X1, . . . , Xn], [d1, . . . , dm], [O1, . . . , Om]) holds
iff |{i | Xi = dj}| = Oj for all j. Such a Gcc constraint can be decomposed into
a set of Roots constraints:

Gcc([X1, . . . , Xn], [d1, . . . , dm], [O1, . . . , Om]) iff

∀j . Roots([X1, . . . , Xn], Sj , {dj}) & |Sj | = Oj

Enforcing GAC on such a generalized Gcc constraint is NP-hard, but we can
enforce GAC on the Xi and BC on the Oj in polynomial time using a specialized
algorithm [11]. This is more than is achieved in general by enforcing HC on the
specification using Roots [5].

3.6 Common constraint

A generalization of the Among and AllDifferent constraints introduced in [2]
is the Common constraint. Common(N, M, [X1, . . . , Xn], [Y1, . . . , Ym]) ensures
N = |{i | Xi = Yj}| and M = |{j | Xi = Yj}|. That is, N variables in X1, . . . , Xn

take values in common with Y1, . . . , Ym and M variables in Y1, . . . , Ym take
values in common with X1, . . . , Xn. We cannot expect to enforce GAC on such
a constraint in general as it is NP-hard to do so [5]. One way to propagate a
Common constraint is to decompose it into Range and Roots constraints:

Common(N, M, [X1, . . . , Xn], [Y1, . . . , Ym]) iff

Range([Y1, . . . , Ym], {1, . . . , m}, T) &

Roots([X1, . . . , Xn], S, T) & |S| = N &

Range([X1, . . . , Xn], {1, . . . , n}, V) &

Roots([Y1, . . . , Ym], U, V) & |U | = M

where the Range constraint holds iff a set variable T equals the set of values
used by those variables, X1 to Xn whose index is in the set S.

Range([X1, . . . , Xn], S, T) iff T = {Xi | i ∈ S}

Enforcing HC on this specification of the Common constraint again takes linear
time. As no specialized propagation algorithm has yet been proposed for the
Common constraint, Roots and Range provide a simple and promising means
to propagate the constraint.

4 The Roots constraint

We now give a thorough theoretical analysis of the Roots constraint. In Section
4.1, we provide a proof for the first time of the claim made in [5] that enforcing

HC on Roots is NP-hard in general. Section 4.2 presents a decomposition of
the Roots constraint that permits us to propagate the Roots constraint par-
tially in linear time. Section 4.3 shows that in many cases this decomposition
does not destroy the global nature of the Roots constraint as enforcing HC on
the decomposition achieves HC on the Roots constraint. Finally, Section 4.4
shows that we can obtain BC on the Roots constraint by enforcing BC on its
decomposition.

4.1 Complete propagation

Unfortunately, propagating the Roots constraint completely is intractable in
general. Whilst we made this claim in [5], a proof has not yet been published.
For this reason, we give one here.

Theorem 1. Enforcing HC on the Roots constraint is NP-hard.

Proof. We transform 3Sat into the problem of the existence of a solution for
Roots. Finding a hybrid support is thus NP-hard. Hence enforcing HC on
Roots is NP-hard. Let ϕ = {c1, . . . , cm} be a 3CNF on the Boolean vari-
ables x1, . . . , xn. We build the constraint Roots([X1, . . . , Xn+m], S, T) as fol-
lows. Each Boolean variable xi is represented by the variable Xi with domain
D(Xi) = {i,−i}. Each clause cp = xi ∨ ¬xj ∨ xk is represented by the vari-
able Xn+p with domain D(Xn+p) = {i,−j, k}. We build S and T in such a
way that it is impossible for both the index i of a Boolean variable xi and its
complement −i to belong to T . We set lb(T) = ∅ and ub(T) =

⋃n

i=1{i,−i}, and
lb(S) = ub(S) = {n + 1, . . . , n + m}. An interpretation M on the Boolean vari-
ables x1, . . . , xn is a model of ϕ iff the tuple τ in which τ [Xi] = i iff M [xi] = 0
can be extended to a solution of Roots. (This extension puts in T value i iff
M [xi] = 1 and assigns Xn+p with the value corresponding to the literal satisfy-
ing cp in M .) ut

We thus have to look for a lesser level of consistency for Roots or for par-
ticular cases on which HC is polynomial. We will show that bound consistency
is tractable and that, under conditions often met in practice (e.g. one of the last
two arguments of Roots is ground), enforcing HC is also.

4.2 A decomposition of Roots

To show that Roots can be propagated tractably, we will give a straightfor-
ward decomposition into ternary constraints that can be propagated in linear
time. This decomposition does not destroy the global nature of the Roots con-
straint since enforcing HC on the decomposition will, in many cases, achieve
HC on the original Roots constraint, and since in all cases, enforcing BC
on the decomposition achieves BC on the original Roots constraint. Given
Roots([X1, . . . , Xn], S, T), we decompose it into the implications:

i ∈ S → Xi ∈ T

Xi ∈ T → i ∈ S

where i ∈ [1..n]. We have to be careful how we implement such a decomposition
in a constraint solver. First, some solvers will not achieve HC on such constraints
(see Sec 5 for more details). Second, we need an efficient algorithm to be able to
propagate the decomposition in linear time. As we explain in more detail in Sec
5, a constraint solver could easily take quadratic time if it is not incremental.

We first show that this decomposition prevents us from propagating the
Roots constraint completely. However, this is to be expected as propagating
Roots completely is NP-hard and this decomposition is linear to propagate. In
addition, as we later show, in many circumstances met in practice, the decom-
position does not in fact hinder propagation.

Theorem 2. HC on Roots([X1, . . . , Xn], S, T) is strictly stronger than HC on
i ∈ S → Xi ∈ T , and Xi ∈ T → i ∈ S for all i ∈ [1..n].

Proof. Consider X1 ∈ {1, 2}, X2 ∈ {3, 4}, X3 ∈ {1, 3}, X4 ∈ {2, 3}, lb(S) =
ub(S) = {3, 4}, lb(T) = ∅, and ub(T) = {1, 2, 3, 4}. The decomposition is HC.
However, enforcing HC on Roots will prune 3 from D(X2). ut

In fact, enforcing HC on the decompostion achieves a level of consistency
between BC and HC on the original Roots constraint. In the next section, we
identify exactly when it achieves HC on Roots.

4.3 Some special cases

Many of the counting and occurrence constraints do not use the Roots con-
straint in its more general form, but have some restrictions on the variables S,
T or Xi’s. For example, it is often the case that T or S are ground. We select
four important cases that cover many of these uses of Roots and show that
enforcing HC on Roots is then tractable.

C1. ∀i ∈ lb(S), D(Xi) ⊆ lb(T)
C2. ∀i /∈ ub(S), D(Xi) ∩ ub(T) = ∅
C3. X1 . . .Xn are ground
C4. T is ground

We will show that in any of these cases, we can achieve HC on Roots simply
by propagating the decomposition.

Theorem 3. If one of the conditions C1 to C4 holds, then enforcing HC on
i ∈ S → Xi ∈ T , and Xi ∈ T → i ∈ S for all i ∈ [1..n] achieves HC on
Roots([X1, . . . , Xn], S, T).

Proof. Soundness. Immediate.
Completeness. We observe that if the Roots constraint is unsatisfiable then

enforing HC on the decomposition will also fail. We assume therefore that the
Roots constraint is satisfiable. We have to prove that, for any Xi, all the values
in D(Xi) belong to a solution of Roots, and that the bounds on S and T
are as tight as possible. Our proof will exploit the following properties that are
guaranteed to hold when we have enforced HC on the decomposition.

P1 if D(Xi) ⊆ lb(T) then i ∈ lb(S)
P2 if D(Xi) ∩ ub(T) = ∅ then i /∈ ub(S)
P3 if i ∈ lb(S) then D(Xi) ⊆ ub(T)
P4 if i /∈ ub(S) then D(Xi) ∩ lb(T) = ∅
P5 if D(Xi) = {v} and i ∈ lb(S) then v ∈ lb(T)
P6 if D(Xi) = {v} and i /∈ ub(S) then v /∈ ub(T)
P7 if i is added to lb(S) by the constraint Xi ∈ T → i ∈ S then D(Xi) ⊆ lb(T)
P8 if i is deleted from ub(S) by the constraint i ∈ S → Xi ∈ T then D(Xi) ∩

ub(T) = ∅

Let us prove that lb(T) is tight. Suppose the tuple τ is a solution of the Roots

constraint. Let v 6∈ lb(T) and v ∈ τ [T]. We show that there exists a solution with
v 6∈ τ [T]. (Remark that this case is irrelevant to condition C4.) We remove v
from τ [T]. For each i 6∈ lb(S) such that τ [Xi] = v we remove i from τ [S]. With
C1 we are sure that none of the i in lb(S) have τ [Xi] = v, thanks to property P7
and the fact that v 6∈ lb(T). With C3 we are sure that none of the i in lb(S) have
τ [Xi] = v, thanks to property P5 and the fact that v 6∈ lb(T). There remains to
check C2. For each i ∈ lb(S), we know that ∃v′ 6= v, v′ ∈ D(Xi) ∩ ub(T), thanks
to properties P3 and P5. We set Xi to v′ in τ , we add v′ to τ [T] and add all
k with τ [Xk] = v′ to τ [S]. We are sure that k ∈ ub(S) because v′ ∈ ub(T) plus
condition C2 and property P8.

Completeness on ub(T), lb(S), ub(S) and Xi’s are shown with similar proofs.
Let v ∈ ub(T)\τ [T]. (Again C4 is irrelevant.) We show that there exists a solution
with v ∈ τ [T]. Add v to τ [T] and for each i ∈ ub(S), if τ [Xi] = v, put i in τ [S].
C2 is solved thanks to property P8 and the fact that v ∈ ub(T). C3 is solved
thanks to property P6 and the fact that v ∈ ub(T). There remains to check C1.
For each i 6∈ ub(S) and τ [Xi] = v, we know that ∃v′ 6= v, v′ ∈ D(Xi) \ lb(T)
(thanks to properties P4 and P6). We set Xi to v′ in τ and remove v′ from τ [T].
Each k with τ [Xk] = v′ is removed from τ [S], and this is possible because we
are in condition C1, v′ 6∈ lb(T), and thanks to property P7.

Let v ∈ D(Xi) and τ [Xi] = v′, v′ 6= v. (C3 is irrelevant.) Assign v to Xi in
τ . If both v and v′ or none of them are in τ [T], we are done. There remain two
cases. First, if v ∈ τ [T] and v′ 6∈ τ [T], the two alternatives to satisfy Roots are
to add i in τ [S] or to remove v from τ [T]. If i ∈ ub(S), we add i to τ [S] and we
are done. If i 6∈ ub(S), we know that v 6∈ lb(T) thanks to property P4. So, v is
removed from τ [T] and we are sure that the Xj ’s can be updated consistently
for the same reason as in the proof of lb(T). Second, if v 6∈ τ [T] and v′ ∈ τ [T],
the two alternatives to satisfy Roots are to remove i from τ [S] or to add v to
τ [T]. If i /∈ lb(S), we remove i from τ [S] and we are done. If i ∈ lb(S), we know
that v ∈ ub(T) thanks to property P3. So, v is added to τ [T] and we are sure
that the Xj ’s can be updated consistently for the same reason as in the proof of
ub(T) \ τ [T].

Let i 6∈ lb(S) and i ∈ τ [S]. We show that there exists a solution with i 6∈ τ [S].
We remove i from τ [S]. Thanks to property P1, we know that D(Xi) 6⊆ lb(T).
So, we set Xi to a value v′ ∈ D(Xi) \ lb(T). With C4 we are done because we
are sure v′ 6∈ τ [T]. With conditions C1, C2, and C3, if v′ ∈ τ [T], we remove

it from τ [T] and we are sure that the Xj ’s can be updated consistently for the
same reason as in the proof of lb(T).

Let i ∈ ub(S) \ τ [S]. We show that there exists a solution with i ∈ τ [S]. We
add i to τ [S]. Thanks to property P2, we know that D(Xi) ∩ ub(T) 6= ∅. So, we
set Xi to a value v′ ∈ D(Xi) ∩ ub(T). With condition C4 we are done because
we are sure v′ ∈ τ [T]. With conditions C1, C2, and C3, if v′ 6∈ τ [T], we add it
to τ [T] and we are sure that the Xj ’s can be updated consistently for the same
reason as in the proof of ub(T) \ τ [T]. ut

4.4 Bound consistency

In addition to being able to enforce HC on Roots in some special cases, enforcing
HC on the decomposition always enforces a level of consistency at least as strong
as BC. In fact, in any situation (even those where enforcing HC in intractable),
enforcing BC on the decomposition enforces BC on the Roots constraint.

Theorem 4. Enforcing BC on i ∈ S → Xi ∈ T , and Xi ∈ T → i ∈ S for all
i ∈ [1..n] achieves BC on Roots([X1, . . . , Xn], S, T).

Proof. Soundness. Immediate.
Completeness. The proof follows the same structure as that in Theorem 3. We
relax the properties P1–P4 into properties P1’–P4’.

P1’ if [min(Xi), max(Xi)] ⊆ lb(T) then i ∈ lb(S)
P2’ if [min(Xi), max(Xi)] ∩ ub(T) = ∅ then i 6∈ ub(S)
P3’ if i ∈ lb(S) then the bounds of Xi are included in ub(T)
P4’ if i /∈ ub(S) then the bounds of Xi are outside lb(T)

Let us prove that lb(T) and ub(T) are tight. Let o be the total ordering on
D =

⋃
i D(Xi) ∪ ub(T). Build the tuples σ and τ as follows: For each v ∈ lb(T):

put v in σ[T] and τ [T]. For each v ∈ ub(T) \ lb(T), following o, do: put v in σ[T]
or τ [T] alternately. For each i ∈ lb(S), P3’ guarantees that both min(Xi) and
max(Xi) are in ub(T). By construction of σ[T] (and τ [T]) with alternation of
values, if min(Xi) 6= max(Xi), we are sure that there exists a value in σ[T] (in
τ [T]) between min(Xi) and max(Xi). In the case |D(Xi)| = 1, P5 guarantees
that the only value is in σ[T] (in τ [T]). Thus, we assign Xi in σ (in τ) with such
a value in σ[T] (in τ [T]). For each i /∈ ub(S), we assign Xi in σ with a value in
[min(Xi), max(Xi)] \ σ[T] (the same for τ). We know that such a value exists
with the same reasoning as for i ∈ lb(S) on alternation of values, and thanks to
P4’ and P6. We complete σ and τ by building σ[S] and τ [S] consistently with
the assignments of Xi and T . The resulting tuples satisfy Roots. From this we
deduce that lb(T) and ub(T) are BC as all values in ub(T) \ lb(T) are either in
σ or in τ , but not both.

We show that the Xi are BC. Take any Xi and its lower bound min(Xi). If
i ∈ lb(S) we know that min(Xi) is in T either in σ or in τ thanks to P3’ and
by construction of σ and τ . We assign min(Xi) to Xi in the relevant tuple. This
remains a solution of Roots. If i /∈ ub(S), we know that min(Xi) is outside

T either in σ or in τ thanks to P4’ and by construction of σ and τ . We assign
min(Xi) to Xi in the relevant tuple. This remains a solution of Roots. If i ∈
ub(S) \ lb(S), assign Xi to min(Xi) in σ. If min(Xi) /∈ σ[T], remove i from σ[S]
else add i to σ[S]. The tuple obtained is a solution of Roots using the lower
bound of Xi. By the same reasoning, we show that the upper bound of Xi is BC
also, and therefore, all Xi’s are BC.

We prove that lb(S) and ub(S) are BC with similar proofs. Let us show that
ub(S) is BC. Take any Xi with i ∈ ub(S) and i /∈ σ[S]. Since Xi was assigned
any value from [min(Xi), max(Xi)] when σ was built, and since we know that
[min(Xi), max(Xi)] ∩ ub(T) 6= ∅ thanks to P2’, we can modify σ by assigning
Xi a value in ub(T), putting the value in T if not already there, and adding i
into S. The tuple obtained satisfies Roots. So ub(S) is BC.

There remains to show that lb(S) is BC. Thanks to P1’, we know that
values i ∈ ub(S) \ lb(S) are such that [min(Xi), max(Xi)] \ lb(T) 6= ∅. Take
v ∈ [min(Xi), max(Xi)] \ lb(T). Thus, either σ or τ is such that v /∈ T . Take the
corresponding tuple, assign Xi to v and remove i from S. The modified tuple is
still a solution of Roots and lb(S) is BC. ut

5 Implementation Details

This decomposition of the Roots constraint can be implemented in many solvers
using disjunctions of membership constraints: or(member(i, S), notmember(Xi, T))
and or(notmember(i, S), member(Xi, T)). However, this requires a little care. Un-
fortunately, some existing solvers (like Ilog Solver) may not achieve HC on
such disjunctions of primitives. For instance, the negated membership constraint
notmember(Xi, T) is activated only if Xi is instantiated with a value of T (whereas
it should be as soon as D(Xi) ⊆ lb(T)). We have to ensure that the solver wakes
up when it should to ensure we achieve HC. As we explain in the complexity
proof, we also have to be careful that the solver doesn’t wake up too often or we
will lose the optimal O(nd) time complexity which can be achieved.

Theorem 5. It is possible to enforce HC (or BC) on the decomposition of
Roots([X1, . . . , Xn], S, T) in O(nd) time, where d = max(∀i.|D(Xi)|, |ub(T)|).

Proof. The decomposition of Roots is composed of 2n constraints. To obtain an
overall complexity in O(nd), the total amount of work spent propagating each
of these constraints must be in O(d).

First, it is necessary that each of the 2n constraints of the decomposition is
not called for propagation more than d times. Since S can be modified up to n
times (n can be larger than d) it is important that not all constraints are called
for propagation at each change in lb(S) or ub(S). By implementing ’propagating
events’ as described in [10, 15], we can ensure that when a value i is added to
lb(S) or removed from ub(S), constraints j ∈ S → Xj ∈ T and Xj ∈ T → j ∈ S,
j 6= i, are not called for propagation.

Second, we show that enforcing HC on contraint i ∈ S → Xi ∈ T in O(d).
Testing the precondition (does i belong to lb(S)?) is constant time. If true,

removing from D(Xi) all values not in ub(T) is in O(d) and updating lb(T) (if
|D(Xi)| = 1) is constant time. Testing that the postcondidtion is false (is D(Xi)
disjoint from ub(T)?) is in O(d). If false, updating ub(S) is constant time. Thus
HC on i ∈ S → Xi ∈ T is in O(d). Enforcing HC on Xi ∈ T → i ∈ S is in O(d)
as well because testing the precondition (D(Xi) ⊆ lb(T)?) is in O(d), updating
lb(S) is constant time, testing that the postcondition is false (i /∈ ub(S)?) is
constant time, and removing from D(Xi) all values in lb(T) is in O(d) and
updating ub(T) (if |D(Xi)| = 1) is constant time.

When T is modified, all constraints are potentially concerned. Since T can
be modified up to d times, we can have d calls of the propagation in O(d)
for each of the 2n constraints. It is thus important that the propagation of
the 2n constraints is incremental to avoid an O(nd2) overall complexity. An
algorithm for i ∈ S → Xi ∈ T is incremental if the complexity of calling the
propagation of the constraint i ∈ S → Xi ∈ T up to d times (once for each
change in T or D(Xi)) is the same as propagating the constraint once. This
can be achieved by an AC2001-like algorithm that stores the last value found in
D(Xi)∩ub(T), which is a witness that the postcondition can be true. (Similarly,
the last value found in D(Xi) \ lb(T) is a witness that the precondition of the
constraint Xi ∈ T → i ∈ S can be false.) Finally, each time lb(T) (resp. ub(T))
is modified, D(Xi) must be updated for each i outside ub(S) (resp. inside lb(S)).
If the propagation mechanism of the solver provides the values that have been
added to lb(T) or removed from ub(T) to the propagator of the 2n constraints
(as described in [16]), updating a given D(Xi) has a total complexity in O(d)
for the d possible changes in T . The proof that BC can also be enforced in linear
time follows a similar argument. ut

6 Experimental Results

We now demonstrate that specifying global counting and occurrence constraints
using Roots is effective and efficient in practice using two benchmark problems.

6.1 Balanced Academic Curriculum Problem

We implemented in Ilog Solver the constraint model of the Balanced Academic
Curriculum Problem (BACP) (prob030 in CSPLib) proposed in [9] and compared
it against a model using Roots. In this problem, we need to design a balanced
academic curriculum by assigning periods to courses so that the academic load
of each period is balanced, i.e., as similar as possible. The goal is to assign a
period to every course so that the constraints on the minimum and maximum
academic load for each period, the minimum and maximum number of courses for
each period, and the prerequisite relationships are satisfied. An optimal balanced
curriculum minimises the maximum academic load for all periods.

We used two models from [9] (Figures 1 and 2) and compared them against a
model using Roots (Figure 3). In the Roots model, the curriculum is encoded
with integer variables mapping courses to periods, as in the primal-dual model

Variables Encoding
curriculum: CURMATRIX[1..#courses][1..#periods] in {0, 1}
academic load: LOAD[1..#periods] in [a..b]

Constraints Encoding
exactly one period per course ∀i ∈ [1..#courses]∑

#periods

j=1
CURMATRIX[i][j] = 1

academic load ∀j ∈ [1..#periods]

LOAD[j] =
∑

#courses

i=1
(CURMATRIX[i][j] * credit[i])

prerequisites ∀(i ≺ j) ∈ prerequisites, ∀k ∈ [1..#periods]∑
k−1

r=1
(CURMATRIX[i][r]) ≥CURMATRIX[i][k]

number of courses ∀j ∈ [1..#periods]

c ≤
∑

#courses

i=1
CURMATRIX[i][j] ≤ d

Fig. 1. Boolean model.

Variables Encoding
curriculum: CURRICULUM[1..#courses] in [1..#periods]

CURMATRIX[1..#courses][1..#periods] in {0, 1}
academic load: LOAD[1..#periods] in [a..b]

Constraints Encoding
channeling ∀i ∈ [1..#courses]

CURMATRIX[i][CURRICULUM[i]] = 1

academic load ∀j ∈ [1..#periods]

LOAD[j] =
∑

#courses

i=1
(CURMATRIX[i][j] * credit[i])

prerequisites ∀(i ≺ j) ∈ prerequisites
CURRICULUM[i] <CURRICULUM[j]

number of courses Gcc([c..d], ..[c..d],{1, 2, ..#periods},CURRICULUM)

Fig. 2. Primal-dual model.

of Figure 2. However, instead of using a Gcc constraint to restrict the number
of courses per periods, we use the Roots constraint to link these variables to set
variables standing for periods. We then restrict the number of courses per periods
with cardinality constraints on these sets. The constants a, b, c, d correspond
respectively to the minimum and maximum academic load, and the minimum
and maximum number of courses per period. The array credit[1..#courses] map
courses to their academic credits. We added to all models the implied constraint∑#periods

j=1 (LOAD[j]) =
∑#courses

i=1 (credit[i])

We report in Table 1 the number of fails, cpu time for finding the best solution
and the maximum academic load on 6 different instances. The 3 first instances,
involving 8, 10 and 12 periods, are those solved in [9]. The 3 next instances were
created by simply duplicating and renaming courses. The number of periods
and courses are doubled, and for each prerequisite relation (i ≺ j) in the initial
instance, we add (i ≺ j′) and (i′ ≺ j′) where i′ and j′ are the duplicated courses
for respectively i and j.

Variables Encoding
curriculum: CURRICULUM[1..#courses] in [1..#periods]

CURSET[1..#periods] ⊆ {1..#courses}
academic load: LOAD[1..#periods] in [a..b]

Constraints Encoding
channeling ∀j ∈ [1..#periods]

Roots(CURRICULUM,CURSET[j], {j})

academic load ∀j ∈ [1..#periods]

LOAD[j] =
∑

#courses

i=1
((i ∈CURSET[j]) * credit[i])

prerequisites ∀(i ≺ j) ∈ prerequisites
CURRICULUM[i] <CURRICULUM[j]

number of courses ∀j ∈ [1..#periods]
c ≤ |CURSET[j]| ≤ d

Fig. 3. Roots model.

Table 1. Balanced Academic Curriculum Problem.

Boolean model Prima-dual model Roots model
Size #fails time (s) max load #fails time (s) max load #fails time (s) max load
8 413,418 18.44 17(*) 294 0.04 17(*) 75 0.09 17(*)
10 - - 14(*) 170 0.02 14(*) 121 0.15 14(*)
12 1251 0.05 17(*) 255 0.05 17(*) 194 0.51 17(*)
16 - - - 429 0.15 17(*) 263 1.58 17(*)
20 - - - 410 0.21 19 406 3.18 19
20 - - - 701 0.41 18 510 13.12 18

When the maximum academic load is followed by a star (*), it means that
this is optimal and is proved so with a few more backtracks. The time cutoff was
set to 300 seconds. An entry marked as “-” means no answer was obtained by
the cut-off time. We observe that the model using Roots is the most efficient
in terms of size of the search tree by a small margin. However the most efficient
model in cpu time is the primal-dual model which uses the highly optimized
Gcc constraint. Both clearly dominate the simple Boolean model despite the
fact that this model only has linear constraints.

6.2 Mystery Shopper Problem

We used a model for the Mystery Shopper problem [8] due to Helmut Simonis
that appears in CSPLib (prob004). We used the same problem instances as
in [5] but perform a more thorough and extensive analysis. We partition the
constraints of this problem into three groups:

Temporal and geographical: All visits for any week are made by different
shoppers. Similarly, a particular area cannot be visited more than once by
the same shopper.

Shopper: Each shopper makes exactly the required number of visits.
Saleslady: A saleslady must be visited by some shoppers from at least 2 differ-

ent groups (the shoppers are partitioned into groups).

Table 2. Mystery Shopper, branching on the integer variable with minimum domain.

Alld-Gcc-Sum Alld-Gcc-Roots Alld-Roots-Roots

Size #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved
10 6 0.01 9/10 6 0.01 9/10 7 0.03 9/10
15 6,566 0.76 29/52 6,468 1.38 29/52 10,749 19.47 28/52
20 98,497 14.52 21/35 2,425 0.83 20/35 2,429 7.30 20/35
25 317 0.13 13/20 317 0.20 13/20 285 1.37 11/20
30 93,461 26.09 7/10 93,461 43.89 7/10 7,239 42.00 5/10
35 52,435 16.33 22/56 23,094 14.25 21/56 13 1.10 18/56

Table 3. Mystery Shopper, branching on set variables when possible.

Alld-Gcc-Sum Alld-Gcc-Roots Alld-Roots-Roots

Size #fails time (s) #solved #fails time (s) #solved #fails time (s) #solved
10 6 0.01 9/10 4247 0.83 3/10 318 0.38 10/10
15 6566 0.76 29/52 17210 4.31 16/52 102 0.25 52/52
20 98497 14.52 21/35 150473 49.95 7/35 930 2.95 32/35
25 317 0.13 13/20 265219 124.49 2/20 2334 11.17 19/20
30 93461 26.09 7/10 37 0.08 1/10 6766 39.63 9/10
35 52435 16.33 22/56 1216 0.53 4/56 4798 35.60 49/56

Whilst the first group of constraints can be modelled by using AllDiffer-

ent constraints [13], the second can be modelled by Gcc [14] and the third by
Among constraints [3]. We experimented with several models using Ilog Solver
where these constraints are either implemented as their Ilog Solver primitives
(respectively, IloAllDiff, IloDistribute, and a decomposition using IloSum

on Boolean variables) or as their decompositions with Roots. Note that the
Boolean decomposition of the Among constraint maintains GAC [6]. Due to
space limitation, we report results for just the following models: Alld-Gcc-Sum
(only Ilog Solver primitives), Alld-Gcc-Roots (Among encoded as Roots), and
Alld-Roots-Roots (Among and Gcc encoded as Roots). Among encoded
as Roots uses the decomposition presented in Section 3.1 and Gcc uses the
decomposition presented in Section 3.5. All instances solved in the experiments
use a time limit of 5 minutes. The cpu time reported for a method on a class of
problems is averaged on the instances solved (#solved) by the method.

When branching on the integer variables (Table 2), the Alld-Gcc-Sum model
tends to perform better than the other models (bold numbers). However, we
obtain the best results by branching on the set variables introduced for modelling
with Roots (see Table 3). By encoding the second and the third groups of
constraints using Roots (the Alld-Roots-Roots model) and branching on the
set variables, we are able to solve more instances. These results are primarily due
to the better branching strategy. However, such a strategy would not be easily
implementable without Roots since the extra set variables are part of it.

7 Conclusion

We have presented a comprehensive study of Roots, a global constraint that
can specify many other global constraints, such as occurrence and counting con-
straints. We proved that propagating completely the Roots constraint is in-

tractable in general. We therefore proposed a decomposition to propagate it
partially. This decomposition achieves hybrid consistency on the global Roots

constraint under some simple conditions often met in practice. In addition, en-
forcing bound consistency on the decomposition achieves bound consistency on
the global Roots constraint whatever conditions hold. Our experiments show
that this is practical method to implement many global constraints. We hope
that by presenting these results, developers of the many different constraint
toolkits will be encouraged to include the Roots constraint into their solvers.
In our future work, we intend to consider other classes of global constraints
(e.g. sequencing constraints) and to identify the primitives needed to specify
and propagate these.

References

1. N. Beldiceanu. Pruning for the minimum constraint family and for the number of
distinct values constraint family. In Proc. CP’01, pp. 211–224, Springer, 2001.

2. N. Beldiceanu, M. Carlsson, and J.X. Rampon. Global constraint catalog. Tech-
nical Report T2005:08, SICS, 2005.

3. N. Beldiceanu and E. Contejean. Introducing global constraints in chip. Mathl.

Comput. Modelling, 20(12):97–123, 1994.
4. N. Beldiceanu, I. Katriel, and S. Thiel. Filtering algorithms for the same and

usedby constraints. In MPI Technical Report MPI-I-2004-1-001, 2004.
5. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The Range and Roots

constraints: Specifying counting and occurrence problems. In Proc. of IJCAI’05,
pp 60–65, 2005.

6. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh, ‘Among, Common
and Disjoint Constraints, to appear in LNAI of Springer.

7. C. Bessiere, E. Hebrard, B. Hnich, Z. Kiziltan, and T. Walsh. The Range constraint:
Algorithms and implementation, to appear in Proc. of CPAIOR’06.

8. B.M.W. Cheng, K.M.F. Choi, J.H.M. Lee, and J.C.K. Wu. Increasing constraint
propagation by redundant modeling: an experience report. Constraints, 4:167–192,
1999.

9. B. Hnich, Z. Kiziltan and T. Walsh. Modelling a Balanced Academic Curriculum
Problem. In Proc. of CPAIOR’02, pp. 121–131, 2002.

10. F. Laburthe. Choco: implementing a CP kernel. In Proc. of CP’00 Workshop

TRICS: Techniques foR Implementing Constraint programming Systems, 2000.
11. C.G. Quimper, P. van Beek, A. Lopez-Ortiz, A. Golynski and S.B. Sadjad. An

efficient bounds consistency algorithm for the global cardinality constraint. In
Proc. of CP’03, Springer, 2003.

12. P. Refalo. Linear formulation of constraint programming models and hybrid solvers.
In Proc. of CP’00, pp. 369–383, Springer, 2000.

13. J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In Proc. of

AAAI’94, pp 362–367, 1994.
14. J.C. Régin. Generalized arc consistency for global cardinality constraint. In Proc.

of AAAI’96, pp. 209–215, 1996.
15. C. Schulte and P.J. Stuckey. Speeding up constraint propagation. In Proc. of

CP’04, pp. 619–633, Springer, 2004.
16. P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency algorithm

and its specializations. Artificial Intelligence, 57:291–321, 1992.

