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Abstract.—Phylogenomic studies aim to build phylogenies from large sets of homologous genes. Such “genome-sized” data
require fast methods, because of the typically large numbers of taxa examined. In this framework, distance-based methods
are useful for exploratory studies and building a starting tree to be refined by a more powerful maximum likelihood (ML)
approach. However, estimating evolutionary distances directly from concatenated genes gives poor topological signal as
genes evolve at different rates. We propose a novel method, named super distance matrix (SDM), which follows the same
line as average consensus supertree (ACS; Lapointe and Cucumel, 1997) and combines the evolutionary distances obtained
from each gene into a single distance supermatrix to be analyzed using a standard distance-based algorithm. SDM deforms
the source matrices, without modifying their topological message, to bring them as close as possible to each other; these
deformed matrices are then averaged to obtain the distance supermatrix. We show that this problem is equivalent to the
minimization of a least-squares criterion subject to linear constraints. This problem has a unique solution which is obtained
by resolving a linear system. As this system is sparse, its practical resolution requires O(na ka ) time, where n is the number
of taxa, k the number of matrices, and a < 2, which allows the distance supermatrix to be quickly obtained. Several uses
of SDM are proposed, from fast exploratory studies to more accurate approaches requiring heavier computing time. Using
simulations, we show that SDM is a relevant alternative to the standard matrix representation with parsimony (MRP) method,
notably when the taxa sets of the different genes have low overlap. We also show that SDM can be used to build an excellent
starting tree for an ML approach, which both reduces the computing time and increases the topogical accuracy. We use SDM
to analyze the data set of Gatesy et al. (2002, Syst. Biol. 51: 652–664) that involves 48 genes of 75 placental mammals. The
results indicate that these genes have strong rate heterogeneity and confirm the simulation conclusions. [Distance method;
evolutionary distances; MRP; phylogenomics; supermatrix; supertree; total evidence.]

Phylogenomics, whereby phylogenies are built from
large sets of genes, is currently a popular trend that
benefits from the increased quantity of sequenced genes
within a huge variety of organisms (Daubin et al., 2002;
Gatesy et al., 2002; Eisen and Fraser, 2003; Driskell et al.,
2004; Philippe et al., 2004, 2005; Devulder et al., 2005).
One of the main difficulties in phylogenomics is that fast
methods are required to process the large collections of
taxa and genes. Missing data are another difficulty with
such data sets, as some genes or species are less repre-
sented in databases. Numerous approaches have been
proposed to deal with this problem (Bininda-Emonds,
2004); they can be classified into three main categories
(Schmidt, 2003; Chap. 7):

• The low-level (or total evidence) methods concate-
nate all genes to obtain a single alignment, also
called supermatrix of characters, which is then an-
alyzed using standard phylogeny reconstruction al-
gorithms. As some genes are missing for some taxa,
supermatrices usually contain numerous missing
characters (e.g., >90% in Driskell et al., 2004). The
various phylogenetic methods used to analyze such
supermatrices are more or less vulnerable to missing
characters, but the probabilistic ones seem to be not
much affected and still provide accurate trees with
sparse data (Philippe et al., 2004). Genes evolve un-
der different constraints, and heterogeneity of rates
and of evolutionary modes can also be problem-
atic (Yang, 1996; Pupko et al., 2002). Again, prob-
abilistic methods (e.g., MrBayes, Huelsenbeck and
Ronquist, 2001) provide ways to circumvent this dif-
ficulty, by allowing for different substitution models

to be defined among genes (or among codon posi-
tions). However, computing time is a main issue,
specially with most sophisticated (e.g., Bayesian)
approaches.

• The high-level methods arrange in a single tree
topological information contained in the set of
phylogenies inferred from each gene. Those source
phylogenies are inferred independently, possibly
using different evolutionary models, and may as
well be derived from other (e.g., morphological or
transposon-based) data types, which total evidence
methods hardly account for. As some genes are
missing for some taxa, the different phylogenies are
defined on partially overlapping sets of taxa. This
generalization of the consensus tree (Bryant, 2001) is
called the supertree problem (Bininda-Emonds, 2004).
Matrix representation with parsimony (MRP) (Baum,
1992; Ragan, 1992) is the most popular method to
deal with this problem. MRP involves coding the
topological information of every source tree in a
single matrix of partial binary characters, which
is then analyzed using parsimony to infer the su-
pertree. This approach has been refined in vari-
ous ways, such as weighted MRP (Ronquist, 1996)
and matrix representation with flipping (Eulenstein
et al., 2004). Numerous other combinatorial ap-
proaches have been proposed to deal with the su-
pertree problem (Bininda-Emonds, 2004), including
the MinCut (Semple and Steel, 2000) and modified
MinCut (Page, 2002) algorithms.

• The medium-level methods involve an intermedi-
ary gene analysis stage, between simple gene con-
catenation and complete tree inference. Numerous
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solutions do exist to extract information from every
single gene, without inferring the complete tree as
in high-level methods. The main idea is to extract
in a fast way elementary pieces of information from
each gene independently, then to combine all these
elements for all genes together. The hard combina-
tion task is thus performed just once with all genes
being accounted for. As the first analysis stage is per-
formed independently for each gene (or information
source), these methods offer simple ways to accomo-
date for genes evolving under different evolutionary
constraints or to combine heteregeneous data types.
A good example is the quartet approach (Strimmer
and von Haeseler, 1996; Schmidt et al., 2002; Piaggio-
Talice et al., 2004) whereby every quartet topology is
inferred using maximum likelihood from each gene
before combining them in a single tree. We shall see
in this paper a second example where first analysis
stage involves computing for each gene the evolu-
tionary distance between every taxon pair.

The outline of such large categories is blurred and
some methods can be seen as intermediary. For exam-
ple, the (medium-level) quartet approach has been pro-
posed by several authors (Strimmer and von Haeseler,
1996; Schmidt et al., 2002) to deal with the (high-level) su-
pertree problem, and the divide-and-conquer searching
methods (e.g., Huson et al., 1999) use a (high-level) tree
combination approach to solve the low-level problem.
Moreover, the criterion that the method seeks to optimize
gives another important point of view. Most practical
methods are based on maximum parsimony (MP) and
maximum likelihood (ML). However, one aim of phy-
logenomics is to build large phylogenies from large gene
collections. Therefore, it is essential to be able to pro-
cess huge data sets by low time-consuming methods.
The distance-based approach is the first choice from this
standpoint. Using fast algorithms such as NJ (Saitou and
Nei, 1987; Studier and Keppler, 1988), BIONJ (Gascuel,
1997), or FASTME (Desper and Gascuel, 2002), trees with
thousands of taxa can be inferred in a few minutes on a
standard computer. Moreover, these algorithms are fairly
accurate, though not as accurate as likelihood-based ap-
proaches. This computational efficiency is why distance-
based methods are frequently employed in exploratory
studies. They are also used to provide starting trees for
procedures aimed at optimizing more time-consuming
criteria. The PHYML program (Guindon and Gascuel,
2003) is a good example of this approach with respect
to the ML criterion.

Paradoxically, few distance-based approaches have
been proposed in phylogenomics. One simple method
is to directly estimate pairwise evolutionary distances
from the concatenated matrix of characters. For exam-
ple, PAUP*’s (Swofford, 2002) option MISSDIST=IGNORE

only takes sites that have no missing value in the
two sequences into account. This procedure is named
distance-based total evidence (DTE) in the following and is
obviously limited by large amounts of missing data and

severe rate heterogeneity. A second method, the average
consensus supertree (ACS) procedure, was proposed by
Lapointe and Cucumel (1997) to deal with the supertree
problem, where there can be large amounts of missing
data. The first step is to compute the path-length dis-
tance matrices corresponding to the source trees. Each
source matrix is then standardized, and ACS computes
the average of the standardized matrices to produce
the distance supermatrix that is analyzed using a least-
squares method. ACS has been shown to be the same
as MRP in the consensus setting with unitary branch
lengths, but both are different in the more general su-
pertree context (Lapointe et al., 2003). A similar aver-
aging method was used by Lapointe et al. (1999) and
Levasseur and Lapointe (2001) to compare and combine
various distance matrices being obtained directly (the
medium-level way) from sequences or from DNA hy-
bridization, or corresponding to (high-level) gene trees.
The standardization step proposed by Lapointe and
Cucumel (1997) involves dividing all distances in each
matrix by the maximum distance in that matrix. Other
standardization methods have been explored, but they
seem to be inaccurate with more than two trees and
Lapointe and Levasseur (2004) concluded that “other
ways of scaling path-length distance matrices need to
be investigated when combining more than two trees of
varying size” (p. 100). Recently, Creevey and McInerney
(2005) proposed another distance-based method to the
supertree problem, named most similar supertree (MSS).
The unitary (every branch has length 1) path-length
distance matrices corresponding to the source trees are
first computed; then, MSS searches for the supertree
that best represents these matrices using topological
rearrangements.

Here, we propose a novel distance method, which fol-
lows the same line as ACS but is based on a much more
involved standardization procedure that answers the
limitations outlined by Lapointe and Levasseur (2004).
This method, named super distance matrix (SDM), first de-
forms the source matrices without modifying their topo-
logical message, so as to bring them as close as possible
to each other; then, just as with ACS, so-deformed ma-
trices are averaged and analyzed by usual tree-building
algorithms. Simulations show that SDM deals efficiently
and accurately with collections containing a large num-
ber of source matrices of varying size. SDM was initially
designed as a medium-level method (source distance
matrices are directly computed from the sequences of
each gene), but it is an effective alternative within high-
level scenarios (source matrices are obtained from the
gene trees, just as with ACS) and within low-level sce-
narios, where good starting trees are obtained thanks to
its speed.

In the following, we first describe the principle and
the main features of the SDM algorithm; we then pro-
vide comparisons of SDM to other gene combination
techniques using simulations; we further compare SDM
to other approaches using a phylogenomics data set of
placental mammals (Gatesy et al., 2002). Mathematical
proofs and equations are provided in the Appendix.
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THE SDM METHOD

Notations and Definitions

Let C = {(�1
i j ), (�2

i j ), . . . , (�
p
i j ), . . . , (�k

i j )} be a collec-
tion of k distance matrices (with no missing entries),
where �

p
i j is the evolutionary distance between taxa i

and j for the gene p. Lp is the set of taxa covered by the
gene p and defining the entries of (�

p
i j ); np is the size of

Lp; n is the size of L =
⋃

p Lp; and ki j is the number of
occurrences of the taxon pair i j in the collection C; i.e. ,
ki j = |{p : {i, j} ⊂ Lp}|. We set:

L̃p = {i ∈ Lp : ∃ j ∈ Lp − {i} , ki j ≥ 2} ,

ñp = |L̃p|,

L̃ =
⋃

p

L̃p, and

ñ =
∣∣L̃

∣∣.

Our method involves bringing each matrix (�
p
i j ) closer

(in the least-squares sense) relative to the others. L̃ is the
set of taxa to be used to compare the distances between
pairs of taxa appearing in more than one source matrix.

Method

Assume a high-level context and let T p be the tree
corresponding to gene p. (�

p
i j ) is then additive and is ob-

tained from T p by computing the path-length for every i j
pair. (�

p
i j ) is equivalent to T p as T p can be unambigously

recovered from (�
p
i j ). It is well known (Barthélemy and

Guénoche, 1991) that multiplication by a factor αp > 0
to obtain a new distance matrix (αp�

p
i j ) does not change

the topology of T p. This operation is equivalent to mul-
tiplying every branch length of T p by αp. Similarly, it is
easily shown that the addition of a constant ai p ≥ 0 to
each of the 2(np − 1) nondiagonal distances correspond-
ing to taxon i does not change the topology of T p. This
operation is equivalent to elongating, by length ai p, the
external branch corresponding to taxon i . This addition
can be performed independently for every taxon, and
both multiplication and addition operations can be com-
bined to obtain the new matrix (αp�

p
i j + ai p + a j p) that

contains the same topological information as (�
p
i j ).

In the medium-level context, distance matrices are
estimated from sequences (or other data) and are not
additive (i.e., do not exactly correspond to a tree). But
the above property still holds in some sense. Indeed, it
is easily shown (Gascuel, 1994) that NJ and a number of
related algorithms infer the same topology from the orig-
inal distance matrix (�

p
i j ) and from the deformed one

(αp�
p
i j + ai p + a j p). This is still true when using any of

the algorithms implemented in the FASTME package
(Desper and Gascuel, 2002). Moreover, simulation exper-
iments show that least-squares algorithms, e.g., FITCH

from the PHYLIP package (Felsenstein, 1993) and MW

(Makarenkov and Leclerc, 1999) from the TREX program
(Makarenkov, 2001), are almost insensitive to multiplica-
tion and addition operations.

The different ACS standardization methods (Lapointe
and Levasseur, 2004) all correspond to the use of the mul-
tiplication operation to rescale matrices before averag-
ing them. SDM uses both multiplication and addition,
which greatly increases flexibility as multiplication in-
volves one free parameter per source matrix, whereas ad-
dition involves one parameter per taxon for each source
matrix. The basic principle of SDM is to deform each
of the k distance matrices (�

p
i j ) by multiplying them by

a positive factor αp and adding constants ai p in order
to bring them as close as possible to each other in the
least-squares sense. All distances that are shared by at
least two matrices of C (i.e., such that ki j ≥ 2) are taken
into account in the computation of deformation param-
eters. Moreover, weights (wp) are associated to each of
the source matrices to give them a confidence value (see
below for more). Thus, for every pair i j such that ki j ≥ 2,
we aim at minimizing the variance term:

Vi j =
∑

p:{i j}⊂Lp

wp

(
αp�

p
i j + ai p + a j p − �̄i j

)2
(1)

where �̄i j is the weighted average of the deformed
distances:

�̄i j =
1

Wi j

∑

p:{i j}⊂Lp

wp(αp�
p
i j + ai p + a j p)

with Wi j =
∑

p:{i j}⊂Lp

wp. (2)

The (�̄i j ) matrix is the SDM output, once optimal val-
ues of the αp and ai p parameters have been computed.
By minimizing criterion (1), we bring closer the �

p
i j dis-

tances, and we obtain a reliable estimation of their aver-
age that defines the SDM superdistance.

As said above, wp weights allow to give a confidence
value to each of the source matrices. Typically, the vari-
ance of any distance estimate is inversely proportional
to the length of the sequences used for estimation (Nei
and Jin, 1989). Thus, it is coherent to set wp to be equal to
the sequence length, which is denoted as ℓp. On the other
hand, matrices involving few taxa might have a poor in-
fluence in comparison to matrices with many taxa. To
compensate for this effect, we can use ℓp/[ñp (ñp − 1)],
or the intermediate value ℓp/ñp as the matrix weight. A
number of other weightings are possible, and SDM is eas-
ily extended to the case where each distance is associated
to a confidence value, just as in weighted least-squares
tree building methods (Fitch and Margoliash, 1967).

With the minimization of Vi j being applied for every
relevant pair of taxa i j , SDM thus involves minimizing
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the sum:

∑

i, j :i �= j
ki j ≥2

Vi j . (3)

Several linear constraints on the variables are associ-
ated with minimization of criterion (3). The αp factors
deal with the various evolutionary rates of each gene
in a similar way as the gene-specific rate models first sug-
gested by Yang (1996). Constraint (4), identical to that of
the proportional model of Pupko et al. (2002), forces the αp

factors to be equal on average to 1.0:

∑

p

αp = k. (4)

This constraint gives interpretable scaling and is required
to avoid the trivial solution αp = 0, ∀p.

External branches of a phylogeny are generally longer
than the internal branches. Consequently, most of the
variance of each pairwise distance is generally supported
by the two external branches. Moreover, Lapointe and
Levasseur (2004) noticed that high heterogeneity in the
branch lengths of source trees deteriorates ACS topo-
logical accuracy. The ai p variables thus try to normalize
the external branch lengths in the various matrices. Con-
straint (2) forces, for each taxon i , the sum of ai p to be
equal to 0 and forbids overelongation (or shortening) of
external branch lengths corresponding to taxon i :

∑

p:i∈L̃p

ai p = 0, ∀i ∈ L̃. (5)

Constraint (6) forces, for each matrix (�
p
i j ), the sum of ai p

to be equal to zero:

∑

i∈L̃p

ai p = 0, ∀p = 1, 2, . . . , k − 1. (6)

This avoids having some of the matrices deformed into
star-like distances by global elongation of the external
branches and small αp values. The topological signal of
the original matrix would then be stifled, as was experi-
mentally observed (in the absence of constraint (6)) with
matrices having few taxa and low (or contradictory) sig-
nal. Note that constraint

∑
i∈L̃k

aik = 0 is useless as it is
induced by the other constraints (5) and (6) on ai p val-
ues; adding this constraint to the system induces linear
dependency and perturbs the resolution.

Minimization of criterion (3) involves calculating its
partial derivatives for each of the k +

∑
p ñp variables αp

and ai p, adding Lagrange multipliers (Luenberger, 1984:
Chap. 10) that are associated with each of the ñ + k lin-
ear constraints. We thus obtain a linear system defined
by O(ñk) variables and equations which has a unique so-
lution (see Appendix). Resolving this system has O(ñ3k3)

time complexity, which is theoretically equivalent to the
running time of the NJ algorithm with a distance ma-
trix of size ñk. However, as this linear system is very
sparse, the practical time required to solve it is much
lower (see below) using an appropriate library (MTJ,
available at https://mtj.dev.java.net/, is used in our
implementation).

Let α∗
p and a∗

i p be the optimal values of the parameters
we obtain this way, then the SDM distance supermatrix
(�SDM

i j ) is defined by:

�SDM
i j =

1

Wi j

∑

p:{i j}⊂Lp

wp

(
α∗

p�
p
i j + a∗

i p + a∗
j p

)

where Wi j =
∑

p:{i j}⊂Lp

wp.

Note that this formula applies to all available distances
(i.e. , ki j ≥ 1), not only to those used to compute the op-
timal parameter values (i.e. ki j ≥ 2). This last step of the
SDM approach is fast and requires O(n2k) running time.

To check the SDM practical running time, we gen-
erated 100 collections of distance matrices with k =
4, 8, 12, 16 and n from 50 to 500 and then measured the
running time t of SDM. Assuming t = b(nk)a , we per-
formed a linear regression on log(t) as a function of
log(nk) and found that the estimated value of a is be-
low 2.0. Thus, in practice, SDM requires computing time
that is at most quadratic in nk. For example, it only takes a
few minutes to deal with a collection of distance matrices
with n = 500 and k = 20, using a 1.8 GHz Pentium IV PC
with 1 Gb RAM.

Phylogenetic Reconstruction Using SDM

A distance-based algorithm is applied to the SDM dis-
tance supermatrix to obtain a phylogeny. However, just
as with ACS, missing entries may occur in this distance
supermatrix depending on the extent of taxon overlap
within the source matrices. It has been shown (Farach
et al., 1995) that tree reconstruction from distance matri-
ces with missing entries is computationally hard, and
heuristics approaches have to be used. Two types of
method have been proposed:

• The indirect method involves first estimating miss-
ing distances by applying an ultrametric (De Soete,
1984), additive (Landry et al., 1996), decomposition-
based (Lapointe and Landry, 2001), or quartet-based
(Guénoche and Grandcolas, 1999) completion algo-
rithm. The TREX package (Makarenkov, 2001) pro-
vides several implementations of such algorithms
to be used before tree building using any standard
method with the completed matrix.

• The direct method involves using a weighted least-
squares algorithm and associating missing dis-
tances with null weight, which means that missing
distances are simply discarded from weighted
least-squares computations (Swofford et al., 1996:
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449). The MWMODIF algorithm (Makarenkov and
Leclerc, 1999) from TREX and the FITCH algo-
rithm (Felsenstein, 1997) from the PHYLIP package
(Felsenstein, 1993) implement this technique.

A combination of both direct and indirect meth-
ods is provided by MW* (Makarenkov and Lapointe,
2004) (also available in TREX); this algorithm first ap-
plies an ultrametric or additive completion algorithm
(depending on the density of missing distances) and
then infers a tree using the weighted least-squares al-
gorithm MW (Makarenkov and Leclerc, 1999), where
weights are set at 1.0 for known distances, 0.5 for
estimated distances, and 0.0 for missing distances
(if any remain).

However, missing distances are relatively rare, though
the amount of missing characters is usually high in the
gene collections that are commonly used in phyloge-
nomics studies. For example, data sets of Gatesy et al.
(2002) and Philippe et al. (2004, 2005) have high ratio
of missing character states (about 68%, 25%, 35%, re-
spectively) but do not produce any missing distances
when using SDM. Indeed, in these data sets some genes
(e.g., cytochrome b and ribosomic protein L10) have been se-
quenced for all taxa; at least one gene distance matrix is
then complete, which induces that the SDM supermatrix
is also complete. Moreover, it is a simple consequence of
randomness that the number of missing distances tends
to decrease when the number of genes increases. For ex-
ample, with the two very large data sets of Driskell et al.
(2004), which were collected from Swiss-Prot and Gen-
Bank thanks to a computer program (previous collections
were collected manually), the ratio of missing distances
is ≈19% and ≈1%, whereas the ratio of missing charac-
ters is ≈92% and ≈87%, respectively. In the same way, in
our simulations study (see below), missing distances are
very rarely observed when the number of genes is above
10 and when the ratio of missing characters (equal in ex-
pectation to the taxon deletion rate) is of 25%. When the
SDM distance supermatrix is complete, fast algorithms
(e.g., NJ, BIONJ, or FASTME) can be used to infer the
corresponding tree.

S IMULATION PROTOCOL

We conducted large-scale simulations to evaluate the
topological accuracy of SDM. Our aim was to com-
pare the ability to recover the correct topology and
the running times of low-, high-, and medium-level
approaches. In the three cases, we present standard
methods that are compared to SDM-based scenarios.
Moreover, we emphasize distance-based methods as
SDM belongs to this category. We first describe the way
trees and sequences were generated, then the various
methods we tested, and finally the criteria we used in the
comparisons.

Tree Generation

The procedure was similar to the one used in Guindon
and Gascuel (2003), which can be referred to for fur-

ther details. Random 48-taxon trees were generated us-
ing the standard Yule-Harding process, via the R8S pro-
gram (Sanderson, 2003). This process makes the trees
clocklike, so we created a deviation from this model by
multiplying every branch length by (1 + X), where X
followed an exponential distribution with expectation
µ. The µ value represents the extent of deviation and
was identical within each tree but different from tree
to tree and equal to 0.2/(0.001 + U), with U being uni-
formly drawn from [0, 1]. The smaller the U, the larger
the µ and the larger the deviation from the molecular
clock. Let tbl be the total branch length of the gener-
ated tree. We obtained the nonclocklike tree T with to-
tal length 1.0 by dividing every branch length by tbl. T
was the “correct” tree that the various methods aimed at
recovering.

To simulate the evolution of the different genes, we
generated k trees T p from T by multiplying every branch
length of T by 0.4 + 8.6 Vp, where Vp was uniformly
drawn from [0, 1]. The Vp value was the same within each
tree T p, but different from tree to tree. These k source trees
T p thus have the same topology as the tree T . However,
they have their own evolutionary rates with relative val-
ues ranging from 1.0 to 22.5 (= (0.4 + 8.6)/0.4) in extreme
cases; such values are in agreement with real values (see
Guindon and Gascuel, 2003, for more and, below, our
analysis of Gatesy et al. data, 2002).

Sequence Generation

We considered gene collections of size k =
2, 4, 6, . . . , 20 and generated 500 data sets per k
value. For each of these data sets, we first generated
a correct tree T and then a collection of k gene trees
T p, as explained above. For each gene p, we uniformly
drew sequence length ℓp between 200 and 1000 bp,
and then used the SEQ-GEN program (Rambaut and
Grassly, 1997) to simulate the sequence evolution along
T p according to the K2P substitution model (Kimura,
1980). We used a transition/transversion ratio of 2.0
and did not rescale the T p trees. To simulate partial
overlap that occurs in real data sets, we randomly
removed some of the taxa within each gene alignment
obtained. Following Eulenstein et al. (2004), two overlap
conditions were studied, corresponding to 25% taxon
deletion per gene (strong overlap) and 75% deletion
(low overlap). However, an overlap of at least four taxa
was preserved between each gene pair to maintain a
common evolutionary history between genes and avoid
meaningless data sets. Note that the expected ratio of
missing characters was also equal to 25% and 75%,
respectively, due the random processes we used for
sequence length generation and taxon deletion.

Inference Methods

The (10 gene collection size × 500 collections × 2 over-
lap conditions =) 10,000 generated datasets were used
to compare a number of tree building approaches. Our
aim was (1) to check the properties of SDM when used
in various scenarios of low-, medium-, and high level;
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FIGURE 1. Flowchart of the reconstruction scenarios. Starting from the data comprising a collection of k genes, the various scenarios combine
several methods, as indicated by the successive arrows. Triangles represent distance matrices, and hatched areas indicate missing data (characters
or distances).

(2) to compare these SDM-based scenarios to classical
approches (e.g., MRP), and (3) to compare SDM with
other distance-based methods (e.g., ACS). All tested
methods and scenarios are described below, grouped ac-
cording to their combination level. Figure 1 displays a
flowchart indicating the way the various scenarios com-
bine several methods to achieve tree construction from
gene collections (e.g., PHYML+MRP scenario involves
first inferring gene trees using PHYML, then combining
these trees using MRP).

Medium-level, Distance-Based Approaches.—For each
dataset, we used PAUP* with K2P to estimate k distance
matrices from the k sequence alignments. The SDM dis-
tance supermatrix was computed from this collection of
matrices, with each matrix weighted by the length of the
corresponding sequences (i.e. wp = ℓp) in formula (1).

We then used the FITCH program (with all default op-
tions, notably without global rearrangements) to build
a phylogeny from the SDM distance supermatrix that
(possibly) contains missing entries. This tree-building
scenario is called SDM+FITCH (Fig. 1). In order to test
for the advantage of using ai p variables, instead of solely
using αp variables that deal with gene rate heterogeneity,
we ran another similar scenario, where the ai p variables
were forced to be zero. This second scenario is called
SDM∗+ FITCH; it is close to ACS as it only uses mul-
tiplication operation to rescale matrices (see also Bevan
et al., 2005). We tested other approaches to deal with
missing entries, as listed in the Introduction, but they all
performed poorer than the FITCH weighted least-squares
program (see further results and discussions regarding
MW* by Makarenkov and Lapointe, 2004).
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Low-Level Combination.——For each dataset, a super-
matrix of characters was obtained by concatenating the
k partially deleted genes. We computed the K2P dis-
tance matrix from this supermatrix of characters using
the PAUP*’s MISSDIST = IGNORE option (see the Intro-
duction) and then used BIONJ to infer the DTE (distance-
based total evidence) phylogeny.

To obtain an ML-based total evidence phylogeny, we
analyzed the supermatrix of characters using PHYML
with K2P. This program searches for the optimal tree
according to the ML criterion, via topological rearrange-
ments from a starting tree. As these topological rear-
rangements are local and solely based on nearest neighbor
interchange (NNI) (Swofford et al., 1996), the resulting
tree depends, to some extent, on the starting tree. We call
DTE+PHYML the scenario whereby the PHYML default
option is used, which involves using DTE (see above and
Fig. 1) to compute the starting tree. As we suspected that
DTE would generate poor trees in this phylogenomics
context, we also used SDM+FITCH (see above and Fig. 1)
to infer the starting tree to be then refined by PHYML; we
call this scenario SDM+FITCH+PHYML (Fig. 1). Our aim
was to check that using the improved SDM starting tree,
we improve the resulting PHYML tree and reduce the
number of NNIs and the running time.

High-Level Combination.——A collection of k ML phy-
logenies was built from the k partially deleted genes
using PHYML with K2P. We then combined these trees
using the standard MRP technique, which involves first
coding the tree topologies in a partial binary matrix,
then inferring the supertree by maximum parsimony. To
achieve this task, we used TNT (Goloboff et al., 2003),
which is well known for its efficiency, and followed the
standard approach (Bininda-Emonds and Bryant, 1998)
that defines the MRP supertree as the strict consensus
of the most parsimonious trees. TNT was run with 25
random addition sequences, TBR branch swapping and
ratchet default option. We call this supertree construction
scenario PHYML+MRP (Fig. 1).

We also tested three distance-based supertree ap-
proaches, using the same PHYML source trees as with
MRP. First, we evaluated ACS regarding its pioneer
role in the field. Gene trees were transformed into
path-length matrices, and we used the standardization
procedure of Lapointe and Cucumel (1997), which ap-
plies to any number of source matrices, unlike the other
standardizations presented by Lapointe and Levasseur
(2004). This version of ACS was combined with the re-
cent MW∗ algorithm (Makarenkov and Lapointe, 2004),
which invokes both indirect and direct algorithms to
deal with missing distances (see above). This scenario is
called PHYML+ACS97+MW∗ (Fig. 1). We selected MW∗

to be combined with ACS as it was designed by the same
author group, but we also performed experiments substi-
tuting MW∗ by FITCH. We applied SDM to the same path-
length matrices as ACS and combined it with FITCH; this
scenario is called PHYML+SDM+FITCH (Fig. 1). Finally,
we evaluated MSS (Creevey and McInerney, 2005) using
default parameters and recommended options: NJ was
applied to the MRP matrix using p-distances to obtain a

starting tree; unitary path-length matrices correspond-
ing to each gene tree were then computed and fed into
MSS, which was run with SPR rearrangements. This
scenario is called PHYML+MSS (Fig. 1).

Topological Accuracy Measure

We measured the topological accuracy of every
scenario using the quartet distance dq (Estabrook
et al., 1985) between the inferred tree T̂ and the model
tree T . dq counts the number of resolved 4-trees (i.e.,
four-taxon trees) present in one tree but not in the other.
dq is then the sum of two error types: the type I error
corresponding to resolved 4-trees induced by T̂ but not
present in T , the type II error corresponding to resolved
4-trees in T but not induced by T̂ . As any fully resolved
tree with n taxa induces

(
n
4

)
4-trees, this measure can

take any integer value between 0 and 2
(

n
4

)
. dq is then

more precise than the widely used bipartition distance
(Bourque, 1978; Robinson and Foulds, 1979), which
counts the number of internal branches present in one
tree but not in the other, and then takes integer values
between 0 and 2(n − 3). Moreover, dq is less sensitive to
slight topological differences; e.g., when just one taxon
is misplaced and far away from its correct location, the
bipartition distance is high as a number of bipartitions
are incorrect, whiereas the dq distance remains moderate
as only quartets involving this taxon are modified. Thus,
dq is better suited than bipartition distance to compare
remote trees Steel and Penny, 1993, as obtained with 75%
deletion rate where tree inference is hard (see below).
dq was normalized by dividing its value by 2

(
n
4

)
; 0 then

corresponds to identical trees, whereas a distance of 1
means that both trees do not share any 4-tree. To avoid
giving a topological meaning to very short branches in
the infered trees, every branch length less than 0.0001
was collapsed to make a multifurcation.

S IMULATION RESULTS

Topological Accuracy

For each of the 20 conditions (10 gene collection sizes
× 2 overlap conditions), the collected 500 dq values were
averaged and are graphically represented in Figure 2.
These graphs show the average dq value as a function of
the number (k) of genes.

As expected, all curves in Figure 2 are decreasing: the
correct tree T is better recovered (i.e., the dq distance
between T̂ and T decreases) as the number of genes
increases. As also expected, the inferred phylogeny is
closer to the correct tree as the taxon deletion rate de-
creases. The more information we have, the easier tree
building is, whatever the reconstruction scenario. How-
ever, some of the scenarios are clearly more accurate than
others.

Among pure distance-based scenarios, SDM+FITCH is
best. It outperforms SDM∗+FITCH in all conditions, in-
dicating that incorporating ai p variables in criterion (1)
gives a significant improvement over using only the αp

multiplication factors. As expected, DTE performance is
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FIGURE 2. Accuracy of the eight reconstruction scenarios for 25% and 75% taxon deletion rates. k: number of genes used in the reconstruction.
dq : quartet distance between the correct tree and the inferred tree. Triangles: medium-level, distance-based methods; circles and diamonds: high-
level scenarios; squares: low-level scenarios. DTE does not appear in the graphics due to its poor accuracy (dq > 0.06 and > 0.3 with 25% and
75% deletion rates, respectively). Note the difference between the two dq scales in the two graphics.

very poor and its results are out of the scales used in Fig-
ure 1. This is due to weak distance estimation caused by
rate heterogeneity among genes and missing sequences.
Indeed, when two taxa share slow genes, they are esti-
mated to be close, whereas when their common genes are
evolving fast, they are predicted to be distant. Applying
BIONJ (or any other algorithm) to such a poor distance
matrix inevitably results in a poor tree.

High-level scenarios combine the source trees in-
ferred by PHYML into a supertree. Among the three
distance approaches, PHYML+SDM+FITCH is best
in all conditions, and PHYML+ACS97+MW∗ tends
to outperform PHYML+MSS when the gene num-
ber (k) is relatively high. We also tested other
combinations, substituting FITCH and MW* to obtain
the PHYML+ACS97+FITCH and PHYML+SDM+MW∗

scenarios. Neither one nor the other is better than
PHYML+SDM+FITCH, and PHYML+ACS97+FITCH

outperforms PHYML+ACS97+MW∗. This seems to in-
dicate that FITCH (direct method) could be better suited
than MW∗ (combining direct and indirect algorithms) to
deal with distance matrices obtained in phylogenomics
studies and containing missing entries. This somewhat
contradicts findings presented by Makarenkov and La-
pointe (2004), but could be explained by differences in the
simulation protocols. These authors used a single dis-
tance (super)matrix with random deletion of pre-fixed
numbers of entries, whereas our protocol is based on the
assembly of several gene distance matrices and closer to
phylogenomics data. Thus, our supermatrices are likely
to be more perturbed than those in Makarenkov and
Lapointe (2004), which could penalize indirect methods
that only use a few distances to fill each of the miss-
ing entries. Note, moreover, that FITCH slightly outper-
formed MW∗ in one of the two experiments presented
by Makarenkov and Lapointe (2004).
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Comparing now SDM and MRP, we see that
PHYML+MRP and PHYML+SDM+FITCH show similar
accuracy with 25% taxon deletion, whereas the SDM-
based scenario outperforms MRP with 75% deletion. In
fact, it can be seen that PHYML+SDM+FITCH deals bet-
ter with missing information (e.g., k = 2 with 25% and
75% deletion), whereas PHYML+MRP performs well
when information is abundant (e.g., k = 20, where the
two methods are close in both deletion conditions). This
could be explained by the often poor resolution of MRP
supertrees, which is due to the use of strict consensus and
is higher with low source tree overlap (e.g., for k = 10
and 75% deletion rate, MRP supertrees contain 17% un-
resolved quartets on average). However, in the bootstrap
analysis context, we showed that collapsing poorly sup-
ported branches improves topological accuracy (Berry
and Gascuel, 1996) by decreasing type I error without
significantly augmenting type II. A better explanation
(Lapointe and Cucumel, 1997) could be that SDM not
only uses the topology of the source trees (as MRP) but
also their branch lengths. SDM-based trees then have
more information than MRP trees. This could also ex-
plain the poor results of MSS, which loses information
by setting all branches to length 1. Weighted MRP (where
branches of the source trees are weighted by their boot-
strap support; Ronquist, 1996) performs better than stan-
dard MRP (Bininda-Emonds and Sanderson, 2001), but
at the expense of huge computing times, as with this ap-
proach the initial tree building algorithm (here, PHYML)
has to run a number of times (at least 100) on each of the
source data sets. However, fast branch support estimates
could be used to accelerate these computations (Kishino
et al., 1990; Waddell et al., 2002; Anisimova and Gascuel,
2006).

Low-level scenarios analyze the supermatrix
of characters using PHYML, which improves,
via NNIs, a starting tree built by a fast distance
method. SDM+FITCH+PHYML clearly outperforms
DTE+PHYML, which is a poor method with 75% taxon
deletion. This is due to the extreme weakness of DTE
with phylogenomics data, but not true with single gene
study or when there are no missing characters. NNIs
considerably improve DTE trees (see 25% deletion,
where DTE+PHYML shows similar accuracy as MRP),
but NNIs are not powerful enough to obtain a satisfac-
tory tree when starting from quasirandom trees, as is
the case with 75% deletion.

We then see the advantage of using SDM within
the three combination levels. The medium-level
SDM+FITCH scenario is even better than stan-
dard MRP with 75% deletion, whereas low-level
SDM+FITCH+PHYML is clearly the best in all condi-
tions, among the methods we tested. Moreover, this latter
scenario could likely be improved by incorporating the
specific rate of every gene in likelihood computations,
as proposed by Yang (1996), Pupko et al. (2002), and Be-
van et al. (2005). Finally, in the high-level context (which
greatly simplifies the processing of various data types
and evolutionary modes), SDM offers a relevant alter-
native to MRP as it is nearly equivalent with low (25%)

taxon deletion, but significantly better with high (75%)
deletion rate. Comparing the three SDM-based scenar-
ios, we see a clear ordering: the low-level approach is best
in all conditions, the medium-level method is worst, and
the high-level combination is in between. As we shall see
(and not surprisingly), this ordering is inverse of that in-
duced by the computing times, the low-level scenario
being much heavier than the two other methods. More-
over, the gap between high-level and low-level scenarios
is moderate, and their ordering could be inverted with
complex data sets showing strong heterogeneity in the
evolutionary modes.

Running Time

The average running times of the main scenarios used
in the simulations are displayed in Table 1, with k =
10, 20, and 25% and 75% taxon deletion. We also gen-
erated additional data sets with n = 96 taxa (10 per con-
dition), using the previously described procedure and
the same k values and taxon deletion rates, and reported
the running times in Table 1. Note that all these times
strongly depend on implementation. For example, the
weighted least-squares procedure in PAUP* is clearly
faster than FITCH, whereas both follow a closely related
scheme. Thus, results in Table 1 illustrate the main ten-
dencies but should not be overinterpreted.

We first see that SDM on its own is a fast algorithm.
For example, it only requires 48 s with 96 taxa, k = 20,
and 25% taxon deletion. It follows that the running
times of the SDM-based scenarios mostly depend on
the other components of the scenarios, which tend to
be (much) slower than SDM itself. The medium-level
SDM+FITCH scenario is one of the fastest methods. For
example, with 96 taxa, k = 20, and 25% taxon deletion,
SDM+FITCH requires 539 s. Thanks to the speed of
PHYML and TNT, PHYML+MRP is also quite efficient,
being slower than SDM+FITCH with 48 taxa, but gen-
erally faster with 96. However, most of the computing
time required by SDM+FITCH is spent by FITCH (e.g.,
491 s as compared to 539 s, in our previous example).
FITCH is useful as it copes with missing entries, but, as
explained earlier, real data sets often yield full superma-
trices of distance. In such cases, much faster inference
algorithms do exist. In our simulations, all distance su-
permatrices are full when k = 20, n = 48, 96, and for both
taxon deletion rates. With this (k = 20) data sets, we then
used FASTME instead of FITCH. Topological accuracy re-
mains similar (e.g., with 48 taxa and 25% deletion, aver-
age dq topological distances are 0.0242 for SDM+FITCH

and 0.0268 for SDM+FASTME) but the tree inference
time is less than 1 s in all settings; e.g., with 96 taxa,
k = 20, and 25% taxon deletion, the SDM+FASTME sce-
nario requires approximately 50 s, as compared to 539 s
when using FITCH. In this biologically common case,
SDM+FASTME is the fastest inference scenario, by a
factor of 10- to 100-fold with 96 taxa, and this factor
increases with the number of taxa. With 500 taxa and
k = 20, SDM+FASTME requires a few minutes, while
other scenarios require hours (or days) of computation.
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TABLE 1. Running times. The values correspond to the average running time in seconds using a 1.8-GHz Pentium IV PC with 1.8 Gb RAM. k: number of genes used in the
reconstruction. 25%, 75%: taxon deletion rates. Sums in parentheses provide the running times required by the different components of the scenarios.

SDM∗+FITCH SDM+FITCH SDM+FASTME DTE+PHYML SDM+FITCH+PHYML

k = k = k = k = k =

10 20 10 20 20 10 20 10 20

48 taxa 25% 24 24 25 32 10 902 1224 455 840
(1+23) (1+23) (2+23) (9+23) (9+1) (1+901) (1+1223) (2+23+430) (9+23+808)

75% 18 24 18 25 3 2475 4105 1006 2159
(1+17) (1+23) (1+17) (2+23) (2+1) (1+2474) (1+4104) (1+17+988) (2+23+2134)

96 taxa 25% 500 501 507 539 49 1249 2110 1353 1814
(3+497) (10+491) (10+497) (48+491) (48+1) (1+1248) (2+2108) (10+497+846) (48+491+1275)

75% 349 487 349 490 5 3163 6326 2226 4286
(1+348) (1+486) (1+348) (4+486) (4+1) (1+3162) (1+6325) (1+348+1877) (4+486+3796)

PHYML+MRP PHYML+MSS PHYML+ACS97+MW∗ PHYML+SDM+FITCH

k = k = k = k =

10 20 10 20 10 20 10 20

48 taxa 25% 155 290 246 407 209 338 168 299
(143+12) (267+23) (143+103) (267+150) (143+1+65) (267+1+70) (143+2+23) (267+9+23)

75% 44 101 387 824 84 162 65 111
(37+7) (86+15) (37+350) (86+738) (37+1+46) (86+1+75) (37+1+17) (86+2+23)

96 taxa 25% 268 562 16,778 18,451 2218 2456 737 990
(230+38) (451+71) (230+16548) (451+18000) (230+1+1987) (451+1+2004) (230+10+497) (451+48+491)

75% 53 147 18,050 18,101 1915 2066 399 591
(50+3) (101+46) (50+18,000) (101+18,000) (50+1+1864) (101+1+1964) (50+1+348) (101+4+486)
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Comparing high-level scenarios, we see that with
n = 96 PHYML+SDM+FITCH tends to be handicapped
in comparison to PHYML+MRP, due to the use of
FITCH. Replacing FITCH by FASTME in case of full dis-
tance supermatrix does not significantly change the
topological accuracy (e.g., with k = 20, 48 taxa, and
25% deletion rate, average dq topological distances
are 0.0162 for PHYML+SDM+FITCH and 0.0168 for
PHYML+SDM+FASTME) but makes the SDM approach
faster than PHYML+MRP. The two other high-level
scenarios, PHYML+ACS97+MW∗ and PHYML+MSS,
are slower than MRP- and SDM-based scenarios.
PHYML+ACS97+MW∗ is penalyzed by MW∗ that is
slower than FITCH (used here without global rearrange-
ments, contrary to Makarenkov and Lapointe, 2004).
MSS appears as a slow algorithm, likely due to the com-
bination of its complex optimality criterion and of SPR
topological rearrangements.

Finally, as trees built with SDM+FITCH are close to
the correct tree T , we observe a clear improvement in
PHYML running time when using SDM+FITCH as start-
ing tree instead of DTE. Thus, with 96 taxa, k = 20, and
75% taxon deletion, SDM+FITCH+PHYML runs 4,286 s,
as compared to 6,329 s for DTE+PHYML, i.e., a relative
gain of around 50%.

We see from these comparisons that SDM-based sce-
narios not only have high topological accuracy but are
also efficient relative to the other approaches. Moreover,
they become much faster when the distance supermatrix
does not contain any missing entry, thanks to the use of
a fast distance-based tree building method.

APPLICATION

To illustrate the properties of SDM, we analyzed a
data set of placental mammals (with focus on Cetar-
tiodactyla), which was used by Gatesy et al. (2002) in
a parsimony-based low-level combination framework.
This taxonomic group was recently studied using differ-
ent data and high-level approaches by Mahon (2004) and
Price et al. (2005). We first describe Gatesy et al.’s data
set and the various tree-building scenarios we tested,
then provide the results, both in terms of running time
and likelihood of the inferred trees. As we shall see,
these results confirm our findings with simulated data
sets.

Data and Tree Building Scenarios

The original Gatesy et al. data set comprises 57
character sources: 3 morphological data sets, 5 protein
sequences, 1 tranposon, 33 nuclear genes, and 15
mitochondrial genes. As the current version of PHYML
does no allow for separate analysis of various data
types, we only retained the DNA coding sequences.
We then considered a data set of 48 genes, 36,639 sites,
and 75 placental mammals, from which 7 Afrotherians
were used to root the inferred trees. As shown in
Gatesy et al., this gene collection has high taxonomic
sampling heterogeneity, and 68% of the characters are
missing. To obtain a fair comparison between Gatesy

et al.’s tree-building approach and the other scenarios,
we run TNT on the 48 concatenated genes, with 25
random taxon additions, TBR branch swapping, and
ratchet default option. The corresponding tree is called
Gatesy-TNT in the following.

All scenarios described in our simulations were also
applied to this gene collection. The distance matrices
were estimated using the GTR model (Rodriguez et al.,
1990). To weight source matrices in SDM, we used
wp = ℓp/[ñp(ñp − 1)] in Equation (1), which compen-
sates for taxon number heterogeneity among genes (e.g.,
10 taxa for α-lactalbumin and 75 for cytochrome b). As
the cytochrome b gene is present for all of the 75 taxa,
the SDM distance supermatrix does not contain any
missing entry and we used FASTME instead of FITCH.
Likelihood computations were performed using PHYML
with the GTR+Ŵ model; we used eight rate categories
and the gamma distribution parameter was estimated
from the data. Invariant sites were not used as their pro-
portion was estimated to be zero in preliminary studies.
Moreover, to estimate the likelihood of all the topolo-
gies from the various scenarios, we fitted branch lengths
and parameters to the original supermatrix of charac-
ters, using PHYML with the same GTR+Ŵ8 substitution
model.

Results

The most likely tree is built by SDM+FASTME+
PHYML. This phylogeny is shown in Figure 3 and
its log-likelihood is equal to −330,354. This tree is
relatively close to Gatesy et al.’s original tree, which has
a log-likelihood of −330,492. Quartet distance between
both is of 0.028. Although Gatesy et al. found that
Camelidae+Tayassuidae+Suidae were monophyletic,
our tree displays a basal position of Camelidae among
Cetartiodactyla and a sister-group relationship between
Suina and Hippopotamidae+Cetacea+Ruminantia.
Such basal position of Camelidae has already been
proposed and discussed by Madsen et al. (2001) and
Waddell et al. (2003) in low-level combination studies,
and by Price et al. (2005) in a high-level combination
framework. We also found that Pholidota+Carnivora is
the nearest parent of Perissodactyla, which is another
different branching relative to the topology found by
Gatesy et al. As the corresponding branching has low
bootstrap support in the tree of Gatesy et al., the tree in
Figure 3 represents a likely alternative (biologically and
mathematically). Gatesy-TNT tree is not much different
from Gatesy et al.’s original tree; its log-likelihood is
of −330,428 (instead of −330,492) and quartet distance
between both is equal to 0.007.

Results of all the scenarios are summarized in Table 2.
We measured (1) the log-likelihood (as explained above),
(2) the running time (using a 1.8-GHz Pentium IV
PC with 1 Gb RAM), and (3) the topological dis-
tance between the corresponding tree and the best
(SDM+FASTME+PHYML) tree. As all trees are rela-
tively close, we used the bipartition distance instead of
the quartet distance to augment the contrast (see above
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FIGURE 3. Phylogeny inferred by the SDM+FASTME+PHYML scenario on the 48-gene data set of Gatesy et al. (2002). This data set comprises
75 taxa and 36,639 sites. The tree log-likelihood is −330,354. The Afrotheria root the topology. Suina = Tayassuidae+Suidae. Cetartiodactyla =

Camelidae+Tayassuidae+Suidae+Hippopotamidae+Cetacea+Ruminantia.
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TABLE 2. Results of the various tree buiding scenarios with Gatesy
et al.’s (2002) data set. Gatesy-TNT stands for the MP tree that is inferred
by TNT from the 48 concatenated genes; dRF denotes the bipartition
(Robinson and Foulds) distance between the best and the inferred tree.

P value

Log- Running (Shimodaira

Scenario likelihood time dRF AU test)

SDM+FASTME+PHYML −330,354 4.6 h 0.000 0.986
DTE+PHYML −330,394 4.7 h 0.097 0.014
PHYML+MRP −330,427 2.0 h 0.160 10−4

Gatesy-TNT −330,428 48 min 0.188 <10−4

PHYML+SDM+FASTME −330,577 2.0 h 0.236 <10−4

SDM+FASTME −331,532 30 s 0.458 <10−4

PHYML+MSS −332,212 4.1 h 0.458 <10−4

SDM*+FASTME −332,224 5 s 0.486 <10−4

PHYML+ACS97+MW∗ −332,261 2.2 h 0.444 <10−4

DTE −333,692 2 s 0.590 < 10−4

comparison between both measures). This distance, also
called Robinson and Foulds (dRF) distance, was normal-
ized; 0 corresponds to identical trees, whereas 1 means
that both trees do not share any bipartition (clade). Fi-
nally (4), we checked for the significance of our findings
using Shimodaira asymptotically unbiased test (2002), as
implemented in CONSEL software.

The SDM+FASTME+PHYML tree is significantly bet-
ter than the other trees (P = 0.986). Overall, the re-
sults are in good accordance with simulations, even
though the ranking criteria are not the same (likeli-
hood versus topological distance with the model tree).
Low-level methods tend to be the best ones, includ-
ing Gatesy-TNT parsimony-based approach (but exclud-
ing DTE). Moreover, using SDM+FastME (instead of
DTE) to build a starting tree increases the likelihood
of the resulting PHYML tree. Among high-level scenar-
ios, PHYML+MRP performs best (∼70 log-likelihood
units below the best tree), PHYML+SDM+FASTME is
also efficient (∼220 log-likelihood units below the best
tree), whereas PHYML+MSS and PHYML+ACS+MW∗

are outperformed (∼1900 log-likelihood units below
the best tree). SDM+FASTME medium-level scenario
(∼1200 log-likelihood units below the best tree) is behind
the best high-level methods, but performs better than
PHYML+MSS and PHYML+ACS+MW∗. Finally, DTE
is the worst of all methods, just as in simulations (∼3,000
log-likelihood units below the best tree). Topological dis-
tances (measured by dRF) between the best and the other
trees are also significant; e.g., DTE and the best trees share
only 41% of clades, whereas the PHYML+MRP value
is of 84%. Results with quartet distance are much less
contrasted as those measures become 88.5% and 98.5%,
respectively.

This ordering of the scenarios is very similar to that
of Figure 2, with 25% taxon deletion and large number
of genes. Even though the ratio of missing characters in
the Gatesy et al. data set is closer to 75% than to 25%, the
gene number in this data set is large (48) and some genes
are sequenced for all taxa (e.g., cytochrome b); information
is then abundant, which explains the closeness with 25%
(rather than 75%) taxon deletion.

The SDM+FASTME tree is inferred in a running time
of approximately 30 s, considerably faster than any other
scenario (except SDM*+FASTME and DTE). This con-
firms the benefits of this medium-level approach at an
exploratory stage, or for building a starting tree. This
speed should also be useful to perform bootstrap analy-
sis, which is hardly achievable with other scenarios. The
αp values estimated by SDM range from 0.26 to 2.80,
with a median value of 1.17. As the αp parameters are
inversely proportional to the evolutionary rates, these
results show that the data set of Gatesy et al. is com-
posed of genes with quite heterogeneous rates. For ex-
ample, 1/αp = 0.356 corresponds to the slowest gene, the
nuclear ZFX, and 1/αp = 3.755 corresponds to the fastest
one, the mitochondrial ATP8; the rate ratio between both
is about 11.0. SDM medium-level based scenario can then
be used to obtain the evolutionary rates of the studied
genes in a quick way (i.e., much faster than any ML-based
method). The advantage of such approach was already
discussed by Bevan et al. (2005), who used it to account
for gene rate heterogeneity in ML-based tree inference
with very low computational cost.

CONCLUSION

We have presented a novel method, named SDM, to
combine a collection of source distance matrices into a
single distance supermatrix. SDM can be used in tree-
building scenarios of various levels and computational
costs. Using large-scale simulations and a real phyloge-
nomics case study, we have shown that SDM, used to-
gether with FITCH or FASTME tree building programs,
has topological accuracy similar to that of the popular
MRP method. With low taxon overlap, SDM tends to
outperform MRP, notably when it is used in a high-level
way to combine gene trees. Moreover, in a low-level con-
text, SDM can be used to quickly construct a starting
tree to be refined by a maximum likelihood method. Ac-
cording to our simulations, this latter approach seems to
be the most accurate gene combination method to date.
This result could be affected by strong heterogeneity in
the evolutionary modes of the studied genes, which was
not incorporated in our simulations but may occur with
real phylogenomic data. However, likelihood-based sep-
arate analysis (e.g., MrBayes; Huelsenbeck and Ronquist,
2001) provides a way to deal with such schemes in the
low-level context, and SDM-based medium and high-
level scenarios should not be affected as different mod-
els can be used to estimate their input (i.e., distances and
trees, respectively).

The SDM algorithm is very fast. The computing time
required by the SDM approach (i.e., first running SDM,
then inferring the tree from the SDM supermatrix us-
ing a distance algorithm) greatly depends on the taxon
overlap among genes. When the SDM supermatrix is
complete (which occurs frequently, as some genes have
been sequenced for a large number of species), the SDM
approach is very efficient thanks to the use of fast algo-
rithms such as NJ, BIONJ, or FASTME; in this case, huge
data sets can be dealt with in a few minutes on a standard
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computer. When the SDM supermatrix contains miss-
ing entries, as is the case for some recent very sparse
data sets selected by computer programs (Driskell et al.,
2004), slower algorithms such as FITCH or MW∗ must
be used; then the SDM approach is not as efficient with
running times similar to those of MRP.

A key direction for further research is to develop fast
algorithms, as fast as NJ or FASTME, to accurately re-
construct trees from distance matrices with missing en-
tries. Other directions include exploring new weighting
schemes within the SDM optimality criterion (1), or new
linear constraints on the parameters.

Our implementation of the SDM method, in JAVA
1.4 for better portability, is available at http://www.
lirmm.fr/∼criscuol/soft/sdm. All simulated data sets
can be downloaded from http://www.lirmm.fr/∼
criscuol/soft/sdm/data sets.
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Lapointe, F.-J., and C. Levasseur. 2004. Everything you always wanted
to know about the average consensus, and more. Pages 87–105 in
Phylogenetic supertrees: Combining information to reveal the tree
of life (O. R. P. Bininda-Emonds, ed.). Kluwer Academic, Dordrecht.

Lapointe, F.-J., M. Wilkinson, and D. Bryant . 2003. Matrix representa-
tion with parsimony or with distances: Two sides of the same coin?
Syst. Biol. 52:865–868.

Levasseur, C., and F.-J. Lapointe. 2001. War and peace in phylogenetics:
A rejoinder on total evidence and consensus. Syst. Biol. 50:881–891.

Luenberger, D. G. 1984. Linear and nonlinear programming. Addison-
Wesley, London.

Madsen, O., M. Scally, C. J. Douady, D. J. Kao, R. W. DeBry, R. Adkins,
H. M. Amrine, M. J. Stanhope, W. W. de Jong, and M. S. Springer.
2001. Parallel adaptive radiations in two major clades of placental
mammals. Nature 409:610–614.

Mahon, S. A. 2004. A molecular supertree of the Artiodactyla. Pages
411–437 in Phylogenetic supertrees: Combining information to reveal
the tree of life (O. R. P. Bininda-Emonds, ed.). Kluwer Academic,
Dordrecht.

Makarenkov, V. 2001. TREX: Reconstructing and visualizing phyloge-
netic trees and reticulation networks. Bioinformatics 17:664–668.

Makarenkov, V., and F.-J. Lapointe. 2004. A weighted least-squares ap-
proach for inferring phylogenies from incomplete distance matrices.
Bioinformatics 20:2113–2121.

Makarenkov, V., and B. Leclerc. 1999. An algorithm for the fitting of
a phylogenetic tree according to a weighted least-squares criterion.
J. Classif. 16:3–26.

Nei, M., and L. Jin. 1989. Variances of the average numbers of nu-
cleotides substitutions within and between populations. Mol. Biol.
Evol. 6:290–300.

Page, R. 2002. Modified mincut supertrees. Pages 537–552 in Lecture
notes in computer science volume 2452 (R. Guigo and D. Gusfield,
eds.).

Philippe, H., N. Lartillot, and H. Brinkmann. 2005. Multigene
analyses of bilaterian animals corroborate the monophyly of Ecdyso-
zoa, Lophotrochozoa, and Protostomia. Mol. Biol. Evol. 22:1246–
1253.

Philippe, H., E. A. Snell, E. Bapteste, P. Lopez, P. W. H. Holland, and D.
Casane. 2004. Phylogenomics of eukaryotes: Impact of missing data
on large alignments. Mol. Biol. Evol. 21:1740–1752.

Piaggio-Talice, R., G. Burleigh and O. Eulenstein. 2004. Quartet su-
pertrees. Pages 173–191 in Phylogenetic supertrees: Combining in-
formation to reveal the tree of life (O. R. P. Bininda-Emonds, ed.).
Kluwer Academic, Dordrecht.

Price, S. A., O. R. P. Bininda-Emonds, and J. L. Gittleman. 2005. A
complete phylogeny of the whales, dolphins and even-toed hoofed
mammals (Cetartiodactyla). Biol. Rev. Comb. Philos. Soc. 80:445–
473.

Pupko, T., D. Huchon, Y. Cao, N. Okada, and M. Hasegawa. 2002.
Combining multiple data sets in a likelihood analysis: Which models
are the best? Mol. Biol. Evol. 19:2294–2307.

Ragan, M. A. 1992. Phylogenetic inference based on matrix represen-
tation of trees. Mol. Phylogenet. Evol. 1:53–58.

Rambaut, A., and N. C. Grassly. 1997. SEQ-GEN: An application for the
Monte Carlo simulation of DNA sequence evolution along phyloge-
netic trees. Comp. Appl. Biosi. 13:235–238.

Robinson, D., and L. Foulds. 1979. Comparison of weighted labeled
trees. Lect. Notes Math. 748:119–126.

Rodriguez, R., J. L. Oliver, A. Marin, and J. R. Medina. 1990. The general
stochastic model of nucleotide substitution. J. Theo. Biol. 142:485–
501.

Ronquist, F. 1996. Matrix representation of trees, redundancy, and
weighting. Syst. Biol. 45:247–253.

Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new
method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–
425.

Sanderson, M. J. 2003. Inferring absolute rates of molecular evolution
and divergence times in the absence of molecular clock. Bioinfor-
matics 19:301–302.

Schmidt, H. A. 2003. Phylogenetic Trees from Large Datasets. PhD
thesis, Düsseldorf, Germany.

Schmidt, H. A., K. Strimmer, M. Vingron, and A. von Haeseler. 2002.
TREE-PUZZLE: Maximum likelihood phylogenetic analysis using
quartets and parallel computing. Bioinformatics 18:502–504.

Semple, C., and M. Steel. 2000. A supertree method for rooted trees.
Disc. Appl. Math. 105:147–158.

Shimodaira, H. 2002. An approximately unbiased test of phylogenetic
tree selection. Syst. Biol. 51:492–508.

Steel, M. A., and D. Penny. 1993. Distribution of tree comparison
metrics—Some new results. Syst. Biol. 42:126–141.

Strimmer, K., and A. von Haeseler. 1996. Quartet puzzling: A quar-
tet maximum likelihood method for reconstructing tree topologies.
Mol. Biol. Evol. 13:964–969.

Studier, J. A., and K. J. Keppler. 1988. A note on the neighbor-joining
method of Saitou and Nei. Mol. Biol. Evol. 5:729–731.

Swofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony
(*and other methods), version 10. Sinauer Associates, Sunderland,
Massachussetts.

Swofford, D. L., G. J. Olsen, P. J. Waddell, and D. M. Hillis. 1996.
Phylogenetic inference. Pages 407–514 in Molecular systematics (D.
M. Hillis, C. Moritz, and B. K. Mable, eds.). Sinauer Associates,
Sunderland, Massachussetts.

Waddell, P. J., H. Kishino, and R. Ota. 2002. Very fast algorithms for
evaluating the stability of ML and Bayesian phylogenetic trees from
sequence data. Genome Inform. 13:82–92.

Waddell, P. J., and S. Shelley. 2003. Evaluating placental inter-ordinal
phylogenies with novel sequences including RAG1, γ -fibriogen,
ND6, and mt-tRNA, plus MCMC-driven nucleotide, amino acid, and
codon models. Mol. Phylogenet. Evol. 28:197–224.

Wiens, J. J. 1998. Does adding characters with missing data increase or
decrease phylogenetic accuracy? Syst. Biol. 47:625–640.

Wiens, J. J., and T. W. Reeder. 1995. Combining data sets with different
numbers of taxa for phylogenetic analysis. Syst. Biol. 44:548–558.

Yang, Z. 1996. Maximum-likelihood models for combined analysis of
multiple sequence data. J. Mol. Evol. 42:587–596.

First submitted 30 September 2005; reviews returned 10 December 2005;
final acceptence 12 April 2006

Associate Editor: Olaf Bininda-Emonds

APPENDIX

The goal is to minimize criterion (3), which can be written as

f (v) =
∑

i, j :i �= j
ki j ≥2

∑

p:{i j}⊂L̃p

wp(αp�
p
i j + a i p + a j p − �̄i j )

2

where v = (α1, . . . , αp , . . . , αk , . . . , a i p , . . . ) and

�̄i j =
1

Wi j

∑

p:{i j}⊂L̃p

wp(αp�
p
i j + a i p + a j p) with Wi j =

∑

p:{i j}⊂L̃p

wp ,

subject to linear constraints (4), (5), and (6):

h(1)(v) =
∑

p

αp = k,

h(2)
i (v) =

∑

p:i∈L̃p

a i p = 0, ∀i ∈ L̃,

h(3)
p (v) =

∑

i∈L̃p

a i p = 0, ∀p �= k.

This is a quadratic programming problem with equality constraints.
In principle, inequalities αp ≥ 0 should be added, but in practice
we have never found negative αp values, neither with simulated se-
quences nor with biological data sets. The necessary first-order con-
dition (equivalent to nullity of the first derivative in unconstrained



2006 CRISCUOLO ET AL.—FAST METHOD TO COMBINE DISTANCE MATRICES 755

monodimensional optimization) that any minimizer must satisfy is
(Luenberger, 1984: 300):

S






∂

∂αm

f (v) + λ
∂

∂αm

h(1)(v) = 0, ∀m = 1, 2, . . . , k,

∂

∂a im

f (v) + µi

∂

∂a im

h(2)
i (v) + ηm

∂

∂a im

h(3)
m (v) = 0, ∀m < k, ∀i ∈ L̃m,

∂

∂a ik

f (v) + µi

∂

∂a ik

h(2)
i (v) = 0, ∀i ∈ L̃k ,

h(1)(v) = k,

h(2)
i (v) = 0, ∀i ∈ L̃,

h(3)
p (v) = 0, ∀p �= k.

where λ, µi and ηp are the Lagrange multipliers induced by linear

constraints h(1), h(2)
i , and h(3)

p , respectively.
We have:

∂

∂αm

f (v) = 2
∑

i, j :i �= j

{i j}⊂L̃m

[
wm

(
�m

i j −
wm

Wi j

�m
i j

)(
αm�m

i j + a im + a jm − �̄i j

)

+
∑

p:{i j}⊂L̃p
p �=m

wp

(
−

wm

Wi j

�m
i j

)(
αp�

p
i j + a i p + a j p − �̄i j

)]

= 2wm

∑

i, j :i �= j

{i j}⊂L̃m

�m
i j

[
αm�m

i j + a im + a jm − �̄i j

−
1

Wi j

∑

p:{i j}⊂L̃p

wp

(
αp�

p
i j + a i p + a j p − �̄i j

)]

= 2wm

∑

i, j :i �= j

{i j}⊂L̃m

�m
i j

(
αm�m

i j + a im + a jm − �̄i j

)

and, with similar arithmetic,

∂

∂a im

f (v) = 4wm

∑
j∈L̃m−{i}

(
αm�m

i j + a im + a jm − �̄i j

)
.

Linear system S can then be written as:






∑
i, j :i �= j

{i j}⊂L̃p

�
p
i j

(
αp�

p
i j + a i p + a j p − �̄i j

)
+ λ = 0, ∀p = 1, 2, . . . , k,

wp

∑
j∈L̃p−{i}

(
αp�

p
i j + a i p + a j p − �̄i j

)
+ µi + ηp = 0, ∀p < k, ∀i ∈ L̃p ,

∑
j∈L̃k −{i}

(
αk�

k
i j + a ik + a jk − �̄i j

)
+ µi = 0, ∀i ∈ L̃k ,

∑
p

αp = k,

∑
p:i∈L̃p

a i p = 0, ∀i ∈ L̃,

∑
i∈L̃p

a i p = 0, ∀p �= k.

S is a square linear system, with ñ + 2k +
∑

p ñp equations and pa-
rameters (including Lagrange multipliers), and S has at least one solu-
tion. For S to define the unique global optimum of f (v) subject to the
constraints, the second-order necessary condition (Luenberger, 1984:
306) must be fulfilled (equivalent to positivity of the second derivative
in unconstrained mono dimensional minimization). In our quadratic
programming problem, where f (v) is non-negative, this condition
becomes:

f (v) = 0

h(1)(v) = 0

h(2)
i (v) = 0, ∀i ∈ L̃

h(3)
p (v) = 0, ∀p �= k





⇒ v = 0.

f (v) is a sum of squares. f (v) = 0 implies that all the squares
are null, which means that for any i, j pair (ki j ≥ 2) we have
αp�

p
i j + a i p + a j p = αp′ �

p′

i j + a i p′ + a j p′ , ∀p, p′ : {i, j} ⊂ L̃p , L̃p′ . f (v) =

0 then induces
∑

i, j :i< j,ki j ≥2(ki j − 1) independent linear equations. Com-

bining these equations with the k + ñ constraints, we obtain a linear
system with k +

∑
p ñp parameters (i.e., the size of v). The second-order

sufficiency condition is then equivalent to testing the linear indepen-
dence of the set of column vectors defining this linear system. This can
easily be achieved numerically. However, except in very special cases
(corresponding to equalities or redundancies, see example below), this
vector set is linearly independent as soon as the number of vectors is
less than, or equal to, the vector dimension, that is:

k +
∑

p

ñp ≤ k + ñ +
∑

i, j :i< j
ki j ≥2

(ki j − 1),

which simplifies into:

∑

i, j :i< j
ki j ≥2

(ki j − 1) + ñ −
∑

p

ñp ≥ 0 (7)

When (7) is fulfilled, the linear system S should then define the unique
global optimum of our constrained optimization problem. The only
exception we were able to find in all our simulations and experi-
ments involved flawed data sets, where one of the source matrices
was duplicated.

The left-hand side term in (7) measures the matrix overlap. For ex-
ample, in the extreme case where we only have two source matrices
that only share two taxa, the three components in this term equal 1,
2, and −4, respectively, and (7) is violated; in other words, a single
(1) distance comparison plus 4 (= 2 + k) constraints is not enough to
estimate 6 (= 4 + k) parameters. Assuming now that the two matrices
share 3 taxa, the sum in (7) becomes 3 + 3 − 6 = 0, i.e. , 3 comparisons
are enough to estimate 8 parameters subject to 5 constraints, and S
defines a unique global optimum.

Unicity of the global optimum yields the consistency of the SDM
approach in estimating the relative rates of the genes. Assume that all
source matrices are issued from a single (�i j ) matrix through multi-
plication by θp factors, each representing the evolutionary rate of gene
p. We have (�p

i j ) = (θp�i j ), just as in the proportional model of Yang
(1996). Moreover, without loss of generality, assume that the θps are
rescaled to obtain

∑
p 1/θp = k. SDM then consistently estimates the

θp values, as soon as condition (7) is fulfilled. Let v∗ be defined by
α∗

p = 1/θp and a i p = 0, ∀i, p. It is easily seen that f (v∗) = 0 and that all
the constraints are satisfied by v∗. As (7) is fulfilled, v∗ is the unique so-
lution of S, and θ̂p = 1/α∗

p is a consistent estimator of θp , which finishes
the consistency proof.


