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Abstract.—We revisit statistical tests for branches of evolutionary trees reconstructed upon molecular data. A new, fast, ap-
proximate likelihood-ratio test (aLRT) for branches is presented here as a competitive alternative to nonparametric bootstrap
and Bayesian estimation of branch support. The aLRT is based on the idea of the conventional LRT, with the null hypothesis
corresponding to the assumption that the inferred branch has length 0. We show that the LRT statistic is asymptotically dis-
tributed as a maximum of three random variables drawn from the 1

2
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1 distribution. The new aLRT of interior branch
uses this distribution for significance testing, but the test statistic is approximated in a slightly conservative but practical
way as 2(ℓ1 − ℓ2), i.e., double the difference between the maximum log-likelihood values corresponding to the best tree and
the second best topological arrangement around the branch of interest. Such a test is fast because the log-likelihood value ℓ2

is computed by optimizing only over the branch of interest and the four adjacent branches, whereas other parameters are
fixed at their optimal values corresponding to the best ML tree. The performance of the new test was studied on simulated
4-, 12-, and 100-taxon data sets with sequences of different lengths. The aLRT is shown to be accurate, powerful, and robust
to certain violations of model assumptions. The aLRT is implemented within the algorithm used by the recent fast maximum
likelihood tree estimation program PHYML (Guindon and Gascuel, 2003). [Accuracy; branch support; likelihood-ratio test;
phylogeny reconstruction; power.]

The increased interest in tree reconstruction in re-
cent years (e.g., “Tree of Life” project: http://tolweb.
org/tree/phylogeny.html; phylogenetic database Tree-
BASE: http://www.treebase.org/treebase/index.html)
prompts further methodological developments. One
common task in phylogenetic inference is to test various
phylogenetic relationships statistically and to measure
the support in favor of one or another hypothesis for the
given data and the chosen model. Here, we focus on this
task of statistically evaluating branch support in phy-
logenies. Several tests and support measures of phylo-
genetic relationships were proposed and explored more
than two decades ago, including the parametric and non-
parametric bootstrap and jackknife, the Bremer support,
the likelihood-ratio test, the interior-branch test, the con-
ditional probability of reconstruction, the relative sup-
port, and spectral plots (for review see Swofford et al.,
1996; Siddall, 2002; Felsenstein, 2004). Some branch sup-
port measures have since been shown to be inaccurate,
or difficult to interpret, whereas others, such as non-
parametric bootstrap supports (Felsenstein, 1985) and
Bayesian posterior probabilities (Li, 1996; Rannala and
Yang, 1996; Mau et al., 1997; Larget and Simon, 1999;
Huelsenbeck et al., 2001), have become standard practice.
However, even for these widely used methods, appro-
priate interpretation is controversial, and reliability has
been examined in a lengthy and intensive debate (Hillis
and Bull, 1993; Felsenstein and Kishino, 1993; Sanderson,
1995; Berry and Gascuel, 1996; Suzuki et al., 2002; Wilcox
et al., 2002; Alfaro et al., 2003; Cummings et al., 2003;
Douady et al., 2003a; Erixon et al., 2003; Simmons et al.,
2004; Taylor and Piel, 2004).

Although the theory of nonparametric bootstrap is
well established (Efron and Tibshirani, 1993), the full
implementation is too complicated to be applied in
phylogenetics due to the discontinuous nature of the

tree variable. Felsenstein’s bootstrap (Felsenstein, 1985),
by far the most commonly used implementation, is only
a first-order approximation, which may be poor in some
cases due to the curvature of the tree space (Efron et al.,
1996). Depending on local configuration of the topologi-
cal space around the inferred tree, it may be conservative
or liberal, and correcting for this effect is hard to achieve
(Efron et al., 1996). However, the nonparametric boot-
strap (including Felsenstein’s approximation) does not
depend on a priori specified hypotheses about the un-
derlying evolutionary processes and therefore generally
does not suffer from false assumptions (but see Galtier,
2004). Felsenstein’s bootstrap is often thought to be
consistently conservative, as bootstrap proportions tend
to underestimate the probability for the clades to be true
(Zharkikh and Li, 1992; Hillis and Bull, 1993), but this
finding and its interpretation was contested by Efron
et al. (1996) and Durbin et al. (1998) (see also our results
below). At least three different interpretations of boot-
strap were proposed (summarized in Yang and Rannala,
2005), which illustrates that the debate is still open.

Statistical theory behind the Bayesian phylogenetic in-
ference is well defined. The Bayesian branch support
represents the probability that the clade in question is
true conditional on the data, the model, and the param-
eter priors (e.g., Huelsenbeck et al., 2002; Huelsenbeck
and Rannala, 2004). In practice, MCMC chains are used
to approximate the Bayesian tree inference procedure,
but it is not always easy to decide how long (and how
many) MCMC chains should be run (e.g., Geyer, 1992;
Cowles and Carlin, 1996). In phylogenetics, large-taxon
data sets have much larger tree spaces, making it more
difficult to achieve convergence. Moreover, as any para-
metric method, Bayesian inference is sensitive to model
assumptions (Huelsenbeck and Rannala, 2004; Yang and
Rannala, 2005). Finally, some studies showed that the
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Bayesian analysis may produce high supports for nonex-
isting clades (Cummings et al., 2003; Erixon et al., 2003;
Suzuki et al., 2002) or simultaneously support contra-
dicting relationships (Buckley et al., 2002; Douady et al.,
2003b). Lewis et al. (2005) suggest that such phenom-
ena could often be due to the failure of current Bayesian
methods to account for polytomies and offer a simple
solution by introducing unresolved trees into the tree
space.

Numerous studies explored the association between
the two measures, and the possibility of using bootstrap
supports and Bayesian probabilities as lower and up-
per bounds of node reliability, respectively (Suzuki et al.,
2002; Alfaro et al., 2003; Cummings et al., 2003; Douady
et al., 2003a; Erixon et al., 2003; Taylor and Piel, 2004).
All authors agreed that Bayesian probabilities were on
average higher than nonparametric bootstrap support
values, but the relationship between Bayesian and boot-
strap supports was variable. Thus, direct comparison of
the two measures is difficult, especially considering the
sensitivity of Bayesian posterior probabilities to prior as-
sumptions (Yang and Rannala, 2005).

In this study we do not pursue the debate on the
advantages, limitations, and relationships of bootstrap
re-sampling and Bayesian methods, but we explore an al-
ternative. The new test for branches we propose is a mod-
ification of the standard likelihood-ratio test (LRT; e.g.,
Stuart et al., 1999), which compares an alternative hy-
pothesis of a positive branch length (t ≥ 0) to the nested
null hypothesis with the branch of interest being con-
strained to a zero-length (t = 0). The standard LRT statis-
tic is calculated as double the difference of the maximum
log-likelihood values under the alternative and the null
hypotheses, 2(ℓ1 − ℓ0) or 2�ℓ. Under regularity condi-
tions, the LRT statistic is asymptotically distributed as
χ2

1 with degrees-of-freedom (d.f.) equal to the difference
in the number of free parameters allowed by the alter-
native and the null hypotheses (Chernoff, 1954; Stuart
et al., 1999). The performance of the LRT for non-zero
interior branch length was previously assessed by Gaut
and Lewis (1995). The authors used χ2

1 for significance
testing and found the test to have high type I error rate.
This fault was attributed to data limitations. Moreover,
the authors suggested that the distribution of the LRT
statistics under the null may vary from χ2

1 . Indeed, the
null hypothesis has only one fewer parameter (t = 0),
but it is fixed at the boundary, since branch lengths are
non-negative, causing the asymptotic distribution to take
shape of a 50:50 mixture of χ2

0 and χ2
1 (Chernoff, 1954; Self

and Liang, 1987). This has been confirmed by simulations
when a tree topology in the alternative hypothesis is a
priori fixed, i.e., not inferred from the data at hand (Gold-
man and Whelan, 2000; Ota et al., 2000). However, this is
not generally the case in phylogeny reconstruction as a
single data set is usually used both to infer the tree and
to test the branches of the inferred tree.

Here we describe the theoretical shape of the distri-
bution of the standard LRT statistics when the alterna-
tive hypothesis allows different branching arrangements

around the branch of interest. This distribution is used for
significance testing in our new approximate LRT (aLRT),
where the standard null hypothesis “the branch has 0-
length” is approximated by the more general hypothe-
sis “the branch is incorrect.” More specifically, the aLRT
compares the likelihoods of the best and the second best
alternative arrangements around the branch of interest.
We explain the rationale for such an approximation and
show that our aLRT statistic has a null distribution close
to the theoretical null distribution of the standard LRT
statistic when multiple alternatives are accounted for.

Ideally a branch test should be fast for large trees, ac-
curate, powerful, and robust to misspecifications of key
assumptions. We therefore test partial optimization of
likelihood scores, which greatly reduces the computa-
tional time while retaining good accuracy and power
achieved with full optimization. Because aLRT is para-
metric, we evaluate the robustness of aLRT to model vio-
lations as these can have a negative effect on both the ML
phylogenetic inference and parameter estimation (e.g.,
Sullivan and Swofford, 2001). Performance of the aLRT is
studied on 4-, 12-, and 100-taxon simulated data sets. We
compare the accuracy and power of the aLRT and branch
tests based on ML bootstrap supports and Bayesian pos-
terior probabilities. The benefits and drawbacks of these
methods are discussed.

METHODS

Multiple Testing Correction

There exist only three alternative arrangements
around a branch of interest (Fig. 1A–C) and, therefore,
only three alternative topologies are allowed under the
alternative hypothesis (t > 0). Let X1, X2, and X3 be ran-
dom variables representing the LRT statistics calculated
for the three possible topological arrangements. In each
such LRT, the topology is fixed and so X1, X2, and X3 are

asymptotically distributed as 1
2
χ2

0 + 1
2
χ2

1 = f (x), under
the null hypothesis. Let F (x) be the cumulative proba-
bility function corresponding to density f (x). If, under
the null hypothesis, the topology around the branch of
interest is not fixed but inferred by ML using the (unique)
data set at hand, then the “LRT” statistic of such test is
distributed as the maximum of X1, X2, and X3. Denote
f ∗(x) and F ∗(x) as the corresponding density and cumu-
lative functions, respectively. By definition,

F ∗(x) = Pr{AND[max(Xi )] ≤ x} = 1 − Pr[OR(Xi > x)],

and so

F ∗(x) ≥ 1 −
∑

i

Pr(Xi > x) = 1 − 3[1 − F (x)]. (1)

Assume now that Xi variables are independent, we have:

F ∗(x) = F (x)3. (2)
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FIGURE 1. Representation of alternative topological arrangements
around the branch of interest for any tree with ≥4 taxa: (A) The best
ML tree with the ML score ℓ1; (B) the best ML tree rearranged around
the branch of interest with the second best ML score ℓ2; (C) the worst
rearrangement of the best ML around the branch of interest with the
ML score ℓ3; (D) the tree representing the null hypothesis (branch of
interest collapsed to zero length) with the ML score ℓ0. The triangles of
different shades represent different subtrees that remain unchanged in
each rearrangement. The branch of interest is in bold, the four adjacent
branches are in sharp.

Using Equation (1), to get a confidence level 1 − α∗ it is
sufficient to chose a threshold x∗ such that

F ∗(x∗) = 1 − α∗ = 1 − 3[1 − F (x∗)],

which is equivalent to

F (x∗) = 1 − α∗/3.

In other words, to test for the significance at level α∗ of the
maximum of three identically distributed variables with
distribution f , it is sufficient to apply the standard test
with α = α∗/3. This is known as the Bonferroni correction
(Miller, 1981: pp. 67–70). It should be noted that this cor-
rection applies whether or not the variables are indepen-
dent. However, consider Equation (2), which assumes

independence and set

F (x∗) = 1 − α,

we get

F ∗(x∗) = (1 − α)3 = 1 − 3α + O(α2),

which means that Bonferroni correction closely fits the
independence case. When the variables are positively
correlated, Bonferroni correction tends to be conserva-
tive. But here correlations among Xi should be negative,
as when one topology has high likelihood, the other two
are usually poor and close to the null hypothesis. This
means that our case is “between” independence and the
extreme case represented by Equation (1), and that the
Bonferroni correction should not be conservative in prac-
tice. To test for the significance of the inferred branch, we

thus use the 1
2
χ2

0 + 1
2
χ2

1 distribution but apply Bonferroni
correction. For example, to achieve 0.05 and 0.01 signifi-
cance levels, we use α = 0.01666 and 0.00333, which cor-
responds to statistic values 4.529 and 7.361, respectively.

However, Equation (1) and Bonferroni correction are
only applicable for small α values (as usual in statistical
testing) and should not be used to estimate branch sup-
port when the statistics value becomes low, as it may
produce negative values. To estimate branch support
we then use cubic approximation (2). For example, as-
suming that the statistic has value 1.0, F (1.0) = 0.84 and
F ∗(1.0) = 0.843 = 0.59, whereas using Equation (1) we
get 1 − 3(1 − 0.84) = 0.52. However, as explained above,
both cubic and Bonferroni solutions become identical
with higher value of the statistic.

Approximate LRT for Branches

The three possible topological arrangements (Fig. 1A–
C) can be ordered according to their maximum log-
likelihood values from the best tree to the worst: ℓ1 ≥

ℓ2 ≥ ℓ3. The standard LRT compares the ML value ℓ1 of
the best tree with the ML value ℓ0 of a tree represent-
ing the null hypothesis (branch of interest is collapsed;
Fig. 1D), relying on the calculation of the LRT statistic
2(ℓ1 − ℓ0). Consider instead using the statistic 2(ℓ1−ℓ2),
which compares the maximum likelihood value of the
best tree with a maximum likelihood value of a less likely
tree. In comparison with the null (tree D; Fig. 1), the hy-
pothesis corresponding to tree B has an extra free param-
eter: the length of the branch under consideration. Thus,
the ML value ℓ2 can never be lower than ℓ0, and the in-
equality 2(ℓ1 − ℓ0) ≥ 2(ℓ1 − ℓ2) follows. This means that
using the statistic 2(ℓ1 − ℓ2) instead of 2(ℓ1 − ℓ0) should
result in a more conservative test, i.e., with lower type I
error rate but possibly with lower power. Intuitively, the
statistics 2(ℓ1 − ℓ0) and 2(ℓ1 − ℓ2) should be close, as the
second best topology B usually does not provide a much
better fit than does the star tree. Additionally, the statis-
tic 2(ℓ1 − ℓ2) avoids conflicts reported for the standard
LRT, which, in some rare cases, can be significant for all
three or two possible topological arrangements around
the branch of interest (Tateno et al., 1994).
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Although the alternative hypothesis (and hence the
ML value ℓ1) remains the same for every internal branch,
the null hypothesis changes with a change of the internal
branch, and so the ML values ℓ0 and ℓ2 have to be calcu-
lated for each internal branch. Full optimization of those
statistics is slow for large trees, so partial optimization
should be advantageous. However, if approximation is
not good enough, the LRT statistic is overestimated and
the test becomes too liberal. We performed simulation
experiments to determine the number of branches to be
reestimated such that the approximation of ℓ0 and ℓ2 is
reliable. We first explored the possibility of estimating
ℓ0 and ℓ2 by recalculating the likelihood value with the
branch of interest collapsed to zero length (in case of
ℓ0), or optimizing only the internal branch of interest (in
case of ℓ2). Next, we considered more accurate estimates
of statistics by optimizing the internal branch of interest
(but not in case of ℓ0) and the four branches adjacent to it
(branches shown in Fig. 1). In both experiments all model
parameters were kept as estimated for the best tree.

Accuracy and Power of Tree Inference Based on a Branch Test

Under the null hypothesis (t = 0), no substitutions
have occurred along the branch of interest. This does
not fully correspond to what users envision when they
perform branch tests. The basic question is whether the
studied branch is correct or not. We therefore define mea-
sures of accuracy and power of tree inference based on a
branch test, which are distinct from the accuracy and
power of the LRT of non-zero branch length.

As usual, Accuracy = 1 – type I error rate, and power
= 1 – type II error rate, but

Type I error rate = Pr(test is significant|the branch is

not correct), and

Type II error rate = Pr(test is not significant|

the branch is correct).

These definitions are similar to the standard measures
of accuracy and power of statistical tests. Recall that for
the standard LRT, the type I error rate = Pr(LRT is sig-
nificant |t = 0), and the type II error rate = Pr(LRT is
not significant |t ≥ 0). Thus, if the null hypothesis “the
branch length t = 0” can be approximated by the hy-
pothesis “the branch is incorrect,” then the accuracy and
power of the LRT of non-zero branch length should be
similar to the accuracy and power of tree inference. This
means that for the hard (i.e., short) branches, which are
the branches of interest when testing, we should have a
strong correlation between tree inference and the stan-
dard test measures. Moreover, tree inference accuracy
and power correspond to the practical measures that are
biologically relevant, and they can be applied to estimate
the accuracy and power of branch tests other than LRT.
Type I and II error rates of tree inference were evaluated
by simulation.

Computer Simulations

To explore properties of the null distribution of the stan-
dard LRT for internal non-zero branch length, we simu-
lated 10,000 star trees with 4 taxa and branches drawn
from the exponential distribution with expectation 0.25
substitutions per site. For each tree we simulated a data
set under HKY+Ŵ with 4 rate categories and shape
parameter 1.0, κ = 4.5, and unequal base frequencies:
fA = 0.18, fC = 0.24, fG = 0.32, fT = 0.26. The sequence
length was 1000 nucleotides (nt) in all simulations, un-
less otherwise stated. The simulated data were analyzed
assuming first the star tree (the null) and then a fixed
non-star tree (the alternative). We also analyzed data
when the alternative non-star topology was unknown
and therefore inferred from data, which more closely cor-
responds to actual phylogenetic studies. As we shall see,
the Bonferroni correction is quite satisfactory in such (re-
alistic) case. In all other simulations the alternative hy-
pothesis assumed the topology to be unknown and the
Bonferroni correction was used to account for multiple
testing.

We explored the effect of model misspecification on
the null distribution by analyzing these 4-taxon data
sets with the correct model HKY+Ŵ as well as with
simpler models JC, JC+Ŵ, and HKY. For each of 10,000
simulated star trees, we also generated data under more
complex models and analyzed them using a simpler
model HKY+Ŵ with all parameters being estimated
from data. These more complex simulation models
were (1) GTR+Ŵ with arbitrary parameters: nucleotide
frequencies fA = 0.18, fC = 0.24, fG = 0.32, fT = 0.26,
4 rate categories of Ŵ shape parameter 1.0, and
rates of nucleotide changes rA↔C = 3.0, rA↔G =

10.5, rA↔T = 1.3, rC↔G = 1.4, rC↔T = 15.0, rG↔T = 1; (2)
GTR+Ŵ with estimates from an HIV data set
(Posada and Crandall, 2001): nucleotide frequen-
cies fA = 0.40, fC = 0.20, fG = 0.22, fT = 0.18, four rate
categories of Ŵ shape parameter 0.969, and rates of
nucleotide changes rA↔C = 1.72, rA↔G = 5.03, rA↔T =

0.84, rC↔G = 0.91, rC↔T = 7.70, rG↔T = 1; (3) discrete
codon model M3 with positive selection (Yang et al.,
2000), with codon frequencies estimated from sperm ly-
sine of 25 abalone species (as supplied in an example file
in PAML package of Yang, 1997), transition/transversion
ratio κ = 4, and three ω-classes with ω0 = 0.1, ω1 = 0.8,
and ω2 = 4.0 in proportions p0 = 0.6, p1 = 0.3, and
p2 = 0.1, respectively.

To evaluate and compare the type I error rate and the
power of tree inference based on the standard and approx-
imate LRTs we simulated data under the alternative hy-
pothesis (i.e., the true tree was non-star). With 4 taxa,
we simulated 10,000 topologies with branches drawn
from the exponential distribution with expectation of
0.15 changes per nucleotide. For each tree, data were
simulated under HKY+Ŵ with parameters used to gen-
erate the null distribution of the standard LRT statistic
for 4 taxa (see above). The results of 10,000 LRTs were re-
ordered according to the tree length (S), the long-branch
attraction (LBA), and the interior branch length (t) of the
true tree, and the type I error rate and power were plotted
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against these characteristics of the true tree. Both S and
t were measured in expected nt changes per site along
the tree or branch, respectively. Note that when t is close
to 0, we expect results close to those obtained with star
trees and standard statistical error measures. The LBA
measure was calculated as the difference of the sum of
the two longest branches (one on each side of the internal
branch) and the sum of the two shortest branches (again,
one on each side of the internal branch). For 4-taxon data,
all branch lengths were optimized when computing the
ML values ℓ0 and ℓ2.

Next, we evaluated properties of the new aLRT us-
ing 12- and 100-taxon data sets with 10,000 and 500
replicates, respectively. Data generation was analogous
to Guindon and Gascuel (2003), to be referred to for
more explanations and details. Non-star trees were sim-
ulated using the standard speciation process. Deviations
from molecular clock were created by multiplying ev-
ery branch length by (1 + X), where X was exponen-
tially distributed with expectation µ, which varied be-
tween the trees and was equal to 0.2/(0.001 + U) with
uniform U drawn from [0, 1]. The greater the µ, the
greater is the deviation from molecular clock. Finally, the
tree length was rescaled to be uniformly distributed in
the range [Smin, Smax] by multiplying every branch length
by [Smin + V × (Smax − Smin)]/T , where T was the tree
length and V varied between the trees and was uniformly
drawn from [0, 1]. The tree length range was [0.1, 2.5] for
12-taxon data and [0.5, 10] for 100-taxon data, so that
both 12- and 100-taxon data had comparable maximum
pairwise divergence. Phylogenies simulated this way re-
flect variability of evolutionary rates and differences in
deviations from molecular clock, which is observed in
real data sets. For each 12-taxon tree, sequences contain-
ing 1000, 500, 250, and 100 nt were simulated under the
model HKY+Ŵ and the codon model M3 with positive
selection as described above for 4-taxon simulations. For
100-taxon data, sequences with 1000 nt were simulated
under HKY+Ŵ, as described earlier. To further check
robustness of our aLRT to over- and underparametrization,
we also evaluated 100-taxon data sets used in Desper
and Gascuel (2004) and publicly available from http://
www.lirmm.fr/mab/sommaire english.php3 (together
with details of simulation). These test data were sim-
ulated under (1) K2P+Ŵ model and (2) the covarion
model and contained 500 replicates simulated under
each model with sequences of 600 nt. All 12- and 100-
taxon data sets were analyzed assuming HKY+Ŵ.

Nucleotide data described in this section were simu-
lated using Seq-Gen (Rambaut and Grassly, 1997), but
evolver from PAML package was used to generate data
under codon model. Although all our simulations in-
volve nucleotide sequences, the same approach can be
applied to amino acid sequences.

Comparison with Branch Tests Based on ML Bootstrap
Supports and Bayesian Posterior Probabilities

The first 1500 replicates of 12-taxon data simulated
previously under HKY+Ŵ were used to compare the
accuracy and power of tree inference based on the

aLRT, ML bootstrap supports, and Bayesian posterior
probabilities. All three methods used the correct anal-
ysis model. The aLRT branch supports were calculated
using cubic approximation (2) and the mixture distribu-

tion 1
2
χ2

0 + 1
2
χ2

1 , as explained earlier. PHYML (Guindon
and Gascuel, 2003) was used to estimate ML bootstrap
branch support; only 100 replicates were performed to
minimize the computational costs during our simulation.
Although a higher replicate number is desirable, only 100
replicates are often used in research papers for comput-
ing reasons (e.g., Wilcox et al., 2002; Rokas et al., 2003).
MrBayes v3.1 (Huelsenbeck and Ronquist, 2001) was em-
ployed to estimate the Bayesian posterior probabilities
of inferred internal branches. We used two independent
runs of 3 × 104 generations (after a 5000-generation burn-
in), with 4 differently heated MCMC chains (as specified
by default) and a sampling frequency of 10. Despite the
short chains, we achieved good convergence as assessed
by the average standard deviation of split frequencies be-
tween the two runs, which averaged 0.004. In addition,
for the first 10 replicates we verified the convergence and
the estimates of posterior probabilities using longer runs
(106 generations with 4 heated chains and sampling ev-
ery 100). In all 10 replicates the same trees were inferred,
and the correlation between the posterior probabilities
for inferred branches during short and long runs was as
high as 0.995. Consequently, we assumed a similar gen-
eral behavior in the full sample. The inferred internal
branches were compared to the true tree and the corre-
sponding Bayesian posterior probabilities were used to
calculate the type I error and the power of tree inference.

RESULTS AND DISCUSSION

Null Distribution with Fixed and Inferred Topology

Using simulated 4-taxon star trees, we compared the
null distributions of the standard LRT statistics when
(1) the tree topology was fixed a priori and when (2) the
tree topology was inferred from data. The distribution
observed in the first case closely matched the expected
1
2
χ2

0 + 1
2
χ2

1 distribution (result not shown). This confirms
and generalizes the result of Ota et al. (2000), who simu-
lated 4-taxon trees with fixed branch lengths (recall that
in our simulation branch lengths were drawn from the
exponential distribution with expectation 0.25). When
the topological arrangement around the branch of inter-
est was not fixed a priori but inferred from data, the null

distribution clearly varied from 1
2
χ2

0 + 1
2
χ2

1 , as expected
(Fig. 2A). For confidence levels above 90%, the observed,
the Bonferroni, and the cubic corrected mixture distribu-
tions were very similar, while the cubic correction gave
better fit in the 80% to 90% range. For example, in our
simulations the uncorrected type I error rate was 0.031
at the significance level α = 0.01 and 0.143 at α = 0.05,
which confirms that correction for multiple testing is nec-
essary. The Bonferroni and cubic corrections reduced the
type I error rates to almost perfect 0.012 at α = 0.01 and
0.052 at α = 0.05. Thus, the Bonferroni correction seems
to be well suited in the standard range α < 0.1.
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FIGURE 2. Cumulative frequency graphs comparing (A) the uncorrected mixture distribution 1
2
χ 2

0 + 1
2
χ 2

1 , the observed null distribution when
tree is not fixed a priori, and corrected mixture distributions using Bonferroni and cubic corrections; (B) distributions of statistics 2(ℓ1 − ℓ2) and
2(ℓ1 − ℓ0), observed under the null hypothesis. Data were simulated and analyzed using HKY+Ŵ. The ML values ℓ2 and ℓ0 were fully optimized.
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To check the robustness to model misspecifications,
we repeated the analysis of the same 4-taxon data, sim-
ulated under HKY+Ŵ, assuming the oversimplified nu-
cleotide models: JC, JC+Ŵ, and HKY. As the tree was
assumed unknown under the alternative hypothesis, the
Bonferroni correction was applied to estimate type I error
rates. Even then, these were unacceptably high: 0.93 for
model JC, 0.67 for HKY, and 0.33 for JC+Ŵ at α = 0.05.
The shape of the null distribution varied considerably
(not shown). Such behavior was not unexpected since
very important factors, transition/transversion bias, un-
equal nucleotide frequency bias, and unequal rates of
evolution amongst sites were not accounted for. This
shows the (expected) sensitivity of the LRT to model
assumptions.

We further checked the extent to which the test was
sensitive to model violations by simulating under a more
complex model (GTR+Ŵ or codon model with positive
selection) but analyzing with a simpler heterogeneous
rates model (HKY+Ŵ). The resultant null distributions
were relatively close in shape to the distribution obtained
when the same (HKY+Ŵ) model was used for both data
generation and analysis (curves not shown). Type I error
rates were within acceptable limits: 0.012 at α = 0.01 and
0.054 at α = 0.05 for model GTR+Ŵ with arbitrarily cho-
sen parameters; 0.01 at α = 0.01 and 0.045 at α = 0.05
for GTR+Ŵ with parameter estimates from HIV but
slightly elevated 0.016 at α = 0.01 and 0.082 at α = 0.05
for codon data with positive selection. In these three cases
the LRT performs well, despite significant model viola-
tion (P < 0.001 using the Goldman-Cox test; Goldman,
1993).

We can then draw conclusions about accuracy and
robustness of the standard LRT with 4 taxa. When the
analysis model describes data well, the type I error rate
obtained using Bonferroni corrected mixture distribution
is close to the significance level α, so that the standard
LRT remains accurate. Moreover, our results suggest that
minor (but detectable) deviations from model assump-
tions do not significantly affect its accuracy. However,
when important factors (e.g., transition/transversion ra-
tio, rate variation among sites) are not accounted for, the
test can become very inaccurate.

Using 2(ℓ1 − ℓ2) Statistic

Next, we considered whether a more convenient statis-
tic 2(ℓ1 − ℓ2) provides a suitable approximation of the
standard LRT statistics. Figure 2B shows the observed
cumulative null distributions (i.e., data simulated us-
ing star trees) of fully optimized statistics 2(ℓ1 − ℓ0) and
2(ℓ1 − ℓ2) for 4 taxa; both distributions are very close
when the cumulative frequency is larger than 0.9 (i.e.,
in the region of practical interest). These results confirm
that using 2(ℓ1 − ℓ2) makes the test slightly more con-
servative than using 2(ℓ1 − ℓ0): at the 0.05 significance
level, the type I error rate was 0.044 when using 2(ℓ1 − ℓ2)
and 0.052 when using 2(ℓ1 − ℓ0). Although the difference
for 4 taxa is very small, we expect the more conserva-
tive nature of 2(ℓ1 − ℓ2) to be somewhat compensated in

larger trees by partial optimization of the ML values (see
below).

In sum, the null hypothesis can be conveniently re-
placed by the second best-fitting alternative arrangement
around the branch of interest. A branch test formulated
using ℓ2 uniquely chooses between the three competing
arrangements around the branch of interest and cannot
statistically support all three or two at the same time.

Accuracy and Power of Tree Inference of the aLRT

The aLRT should be able to offer an objective statistical
test of an interior branch, as well as a way to calculate
branch supports. We tested this for 4-, 12-, and 100-taxon
trees, using our definitions of accuracy and power of tree
inference.

First, we evaluated the standard and approximate
LRTs using 4-taxon non-star trees. The standard power
(the proportion of internal branches with significant
LRT) was high: 0.833 at α = 0.01 and 0.871 at α = 0.05.
The standard power of the aLRT was almost identical:
0.830 at α = 0.01 and 0.867 at α = 0.05. For the aLRT,
the type I error rate of tree inference (the proportion
of incorrectly inferred branches supported by signifi-
cant aLRT) was close to the significance level: 0.007 at
α = 0.01 and 0.052 at α = 0.05, with very similar results
for the standard LRT. The power of tree inference (the
proportion correctly inferred branches supported by sig-
nificant aLRT) was as high as 0.866 at α = 0.01 and 0.905
at α = 0.05, with the power of the LRT being similarly
high. Because the results for 4 taxa were very close with
both the standard and approximate LRTs, all further re-
sults are presented only for the aLRT.

In our simulations, the type I error rate of tree inference
did not seem to depend on tree characteristics such as tree
length (S), long branch attraction (LBA) and length (t) of
the true interior branch (Fig. 3). But the power of tree
inference, intuitively, decreased as tree inference became
harder. For example, at α = 0.05 we observed an increase
of power as S increased from 0.1 to 0.5, since more and
more informative sites were available. For S ≈ 0.5, the
power reached an optimum of 0.92 (Fig. 3A); a further
increase of S from 0.5 to 3.0 caused a decrease of power
to 0.83 (Fig. 3A). The power decreased with an increase
of LBA (Fig. 3B), because tree inference becomes more
difficult for larger LBA (Felsenstein, 1978). An increase of
t facilitated a rapid increase of power (Fig. 3C). However,
for trees with a very short interior branch, the power
was not absolutely lost (Fig. 3C). In sum, the aLRT based
on the Bonferroni-corrected mixture distribution has an
acceptable accuracy and a high power of tree inference
for 4-taxa trees.

Further, we evaluated properties of the aLRT on larger
data sets. First, for 12-taxon trees we compared the per-
formance of the aLRT using partial and full optimiza-
tion of ℓ2. When ℓ2 was optimized only over the branch
of interest, the test had unsatisfactory accuracy (results
not shown). However, when we optimized ℓ2 over five
branches, the branch of interest and the four adjacent
branches, and analyzed the data with the generating
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FIGURE 3. The power and the type I error rate of tree inference based on the aLRTs for data with 4 taxa (α = 0.05), plotted versus: (A) tree
length, S; (B) LBA measure of long branch attraction; (C) interior branch length, t. Lines connecting data points in shape of a hollow circle (◦)
illustrate power; lines connecting data points in shape of a black triangle (�) illustrate type I error rate. Note that two data points in graph C are
missing for the type I error rate line as error could not be calculated due to 100% correct inference.
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(HKY+Ŵ) model, the type I error rate of tree inference
was 0.015 at α = 0.01 and 0.048 at α = 0.05, whereas the
power of tree inference was 0.847 at α = 0.01 and 0.890 at
α = 0.05. When all branches and parameters were reopti-
mized, the type I error rate was surprisingly similar: 0.015
at α = 0.01 and 0.049 at α = 0.05, and the power was
slightly lower: 0.846 at α = 0.01 and 0.859 at α = 0.05.
Moreover, for 100-taxon trees, the optimization of ℓ2 over
five branches resulted in an accurate test: the type I error
rate of the aLRT was 0.052, very close to α = 0.05. Given
this result, it seems that optimization of more branches is
unlikely to bring noteworthy benefits, but would make
the calculation slower. Thus, all following results are pre-
sented for the aLRT with ℓ2 optimized only over five
branches.

The type I error rate and power of the aLRT (α = 0.05)
for 12- and 100-taxon data were plotted against max-
imum pairwise divergence, deviation from molecular
clock, and sequence length (Fig. 4). We observed a mild
increase of type I error rates for trees with high maximum
pairwise divergence (Fig. 4A) or very short sequences
(Fig. 4C). But the type I error rate was always close to
the significance level. As with 4 taxa, the power reduced
for more “difficult” trees or for data sets that were either
too similar or too divergent. These patterns were mild
but still discernable. For example, there was a tendency
for the power to be lower for trees with very small or
very large maximum pairwise divergence when data had
either little information or essentially randomized se-
quences (Fig. 4A). Deviations from molecular clock were
measured by the ratio of the length of the longest to the
length of the shortest lineages, so that perfect molecular
clock was indicated by ratio ≈1.0. We observed a decline
of power with the increasing deviation from molecular
clock (Fig. 4B). However, even in the worst cases, the
power was as high as 0.86 at α = 0.05 (Fig. 4A, B). Other
properties relating to tree shape may also influence the
power, as tree shape affects the complexity of tree recon-
struction. For example, we noticed that the power was
higher for more symmetrical trees than for unbalanced
trees, but this did not seem to affect the type I error rate
(results not shown). However, as expected the most in-
fluential parameter is sequence length: for 12 taxa, the
power of tree inference was reduced from 0.89 at α = 0.05
for 1000 nt to 0.60 at α = 0.05 for 100 nt (Fig. 4C).

To test robustness of our aLRT to oversimplification
of model assumptions, we considered 12-taxon data sets
simulated under the codon model M3 with positive se-
lection. This was the strongest model violation simu-
lated with 4 taxa (see above). Data were analyzed with
the incorrect HKY+Ŵ model, which was rejected by the
Goldman-Cox test (P < 0.001), indicating significant vi-
olation. Nevertheless, for the longest sequences (1000 nt),
assuming a wrong model did not visibly affect the type I
error rate, nor the power of tree inference. For example,
at α = 0.05 the type I error rate was 0.055 and the power
was 0.88 (compared to 0.049 and 0.89, respectively, when
the correct model was used in the analysis). For short-
est sequences (100 nt), we observed a slightly elevated
type I error rate, whereas power was still very similar:

at α = 0.05 the type I error rate was 0.079 and the power
was 0.56 (compared to 0.066 and 0.60, respectively, when
the correct model was used in the analysis).

We also compared the accuracy and the power using
100-taxon data simulated under K2P+Ŵ and the covarion
model and analyzed them with HKY+Ŵ. Data simulated
under the covarion model rejected the analysis model
with the Goldman-Cox test (P < 0.001). The type I er-
ror rate was satisfactory: when the K2P+Ŵ data were
analyzed with an overparameterized model, at α = 0.05
the type I error rate and power were 0.06 and 0.79, re-
spectively. When the covarion data were analyzed with
an incorrect model, at α = 0.05 the type I error rate and
power were 0.066 and 0.79, respectively.

From the above experiments we may conclude that
our fast aLRT, based on 2(ℓ1 − ℓ2) statistic and partial
optimization, (1) has accuracy and power similar to the
standard LRT; (2) provides an accurate branch test even
with certain (mild but discernible) model misspecifica-
tions. Although none of the models can incorporate full
biological complexity, it is advisable to perform the aLRT
using a model that reflects the most important trends
present in data. For example, such model selection could
be done using ModelTest (Posada and Crandall, 1998). Fi-
nally, the power of the test is generally high and mostly
depends on sequence length, but also may be influenced
by factors affecting the complexity of tree reconstruction,
such as long branch attraction, elevated maximum pair-
wise divergence and departure from molecular clock.

Comparison with Branch Tests Based on ML Bootstrap
Supports and Bayesian Posterior Probabilities

Regardless of differences in interpretation of ML boot-
strap supports and Bayesian posterior probabilities,
many researchers subconsciously use these values to
make a rule-based decision (e.g., Leaché and Reeder,
2002; Rokas et al., 2003). In other words, the support
values are typically compared to a certain threshold,
and branches with supports higher than this threshold
are considered to be reliable. As a consequence of such
decision rule, it is natural to evaluate performance of the
branch tests based on ML bootstrap supports or Bayesian
posterior probabilities by estimating the type I error rate
and the power of tree inference as defined in this paper.

We compared the type I error rates and power of tree
inference of the aLRT and branch tests based on nonpara-
metric ML bootstrap supports and Bayesian posterior
probabilities using 1500 data sets with 12 taxa. The aLRT
outperformed the ML bootstrap with respect to both ac-
curacy and power (Fig. 5). For example, for the aLRT
the type I error rate was 0.015 at α = 0.01 and 0.049 at
α = 0.05 (the aLRT is close to exact), whereas the power
was 0.848 at α = 0.01 and 0.889 at α = 0.05. For the ML
bootstrap the type I error rate was 0.056 at α = 0.01 and
0.086 at α = 0.05. Moreover, the error rate remained as
high as 0.052 at α = 0.001, due to the significant propor-
tion of incorrectly inferred branches with 100% support.
This may be attributed to low number of replicates (100)
used in our simulation. However, only 100 replicates are
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FIGURE 4. The power and the type I error rates of tree inference based on the aLRTs for data with 12 and 100 taxa (α = 0.05), plotted against:
(A) maximum pairwise divergence; (B) deviation from molecular clock; (C) sequence length.
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FIGURE 5. Comparison of the power and the type I error rates of tree inference based on nonparametric ML bootstrap supports, Bayesian
posterior probabilities, and the aLRT for 12 taxa, plotted against the cut-off probability (1 − α).

often used in publications as this still requires heavy
computing time. Note that although the test was liberal
for the ML bootstrap, its power was also lower than the
corresponding power of the aLRT (Fig. 5). In sum, for
α ≤ 0.1 the aLRT of an interior branch is almost exact
(with the type I error rate ≈ α), but the ML bootstrap
(as a branch test with a cut-off ≥ 1 − α) is liberal. This
might seem contrary to a general belief that nonpara-
metric bootstrap is conservative (although it is accepted
that this might not be true in situations that cause in-
consistency). However, we suggest that our conclusions
are not at odds with previous reports, which focused on
the meaning of the bootstrap probabilities rather than
the performance of non-parametric bootstrap as a deci-
sion rule branch test. The seeming discrepancy is due to
differences in measures used to assess the accuracy of
bootstrap branch supports in this article and in previ-
ous studies. Previous studies (e.g., Hillis and Bull, 1993)
plotted the probability of the branch to be true depend-
ing on its bootstrap proportion, usually showing that for
bootstrap proportions ≥80% or even 70% the probabil-

ity of a clade to be true was much higher. Whereas Hillis
and Bull (1993) showed this for parsimony bootstrap, we
observed a similar behavior for the ML bootstrap in our
simulations (Fig. 6). But the resulting curve strongly de-
pends on the simulation settings (e.g., tree shape, devia-
tion from molecular clock), so it is much more preferable
to estimate the type I error rate and power on the ba-
sis of conditional probabilities, as is done here and as is
common in the statistics literature.

In contrast to bootstrap, using Bayesian probabilities
made the test slightly conservative for significance lev-
els α < 0.2 (Fig. 5). For example, the type I error rate
was 0.002 at α = 0.01 and 0.027 at α = 0.05. Although
at α = 0.05 the power was almost identical to that of
the aLRT, at α = 0.01 the power of the Bayesian test
decreased to 0.81 (lower than for the aLRT); and for
α = 0.001, it fell to 0.435, significantly lower than for
both, bootstrap and aLRT. In this simulation, branch tests
based on Bayesian posteriors appear to be conservative,
which may seem surprising. Yet it has been noted pre-
viously that, despite being higher than nonparametric
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FIGURE 6. Probability of the inferred branch to be true based on nonparametric ML bootstrap proportions, aLRT supports, and Bayesian
posterior probabilities calculated using cubic approximation. Curves are obtained using a sliding window with length 500.

bootstrap values, the Bayesian posterior probabilities
should be accurate estimates that a clade is correct if the
assumptions of the method are satisfied (Wilcox et al.,
2002; Alfaro et al., 2003). Just like in the case of boot-
strap, previous discussions about the accuracy of the
branch supports concentrated around their meaning. In
our simulations, Bayesian posteriors for branches come
very close to the actual probabilities (Fig. 6), as indi-
cated by the Bayesian theory and was already shown by
simulation (Huelsenbeck and Rannala, 2004). However,
this excellent behavior could be affected by model vio-
lation (Waddell et al., 2002; Huelsenbeck and Rannala,
2004), including unrealistic branch priors (Yang and
Rannala, 2005) and insufficiently long MCMC chains,
especially for large taxon samples. Being model-based,
the aLRT can also be affected by strong model violations
(see above), but with mild violations, elevated type I er-
ror rates may be avoided (i.e., the violated model may
nevertheless be sufficient). This is critical, because al-
though only some model violations were explored in
this study, a variety of unaccounted processes might oc-
cur in real data. Finally, it must be understood that aLRT
supports and Bayesian posteriors are fundamentally dif-
ferent. There is no theory to suggest that Bayesian poste-
riors should provide a valid statistical test and therefore
fit with our expectations in Figure 5. In turn, there is
no theoretical foundation to suggest that aLRT supports
should reflect probabilities of a clade to be true, and fit
with the scheme in Figure 6. It is thus quite satisfactory
to observe that within their own theoretical frameworks

aLRT and Bayesian posteriors are excellent. However, it
is also important to keep in mind that both approaches
are parametric, and that bootstrap, being nonparametric,
could be more robust to serious model violations, which
in some way could compensate the fact that it is so hard
to give it any simple statistical interpretation.

The main advantage of the aLRT is that it is much
faster than either the ML bootstrap or the Bayesian infer-
ence. Even though the implementation of the aLRT for
this study was largely suboptimal, for 12 taxa, the aLRT
was about 5 times faster than performing the ML boot-
strap with 100 replicates, and about 10 times faster than
the Bayesian method with 2 × 30,000 generations. How-
ever, many more bootstrap replicates and much longer
MCMC runs are usually required, which dramatically in-
creases the computational time rendering the aLRT espe-
cially useful for large-taxon data. It would be of interest
to compare this aLRT to the recent fast approximations
(e.g., Waddell et al., 2002) of nonparametric bootstrap
supports (such as RELL) and Bayesian posterior proba-
bilities (BIC and BIC-J).

The aLRT was developed within the ML tree esti-
mation software PHYML (Guindon and Gascuel, 2003;
http://www.lirmm.fr/atgc/phyml) and an efficient im-
plementation will be available as an option in the next
release version of PHYML upon publication.
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