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Abstract

Every pregroup grammar is shown to be strongly equivalent to one
which uses basic types and left and right adjoints of basic types only.
Therefore a semantical interpretation is independent of the order of the
associated logic. Lexical entries are read as expressions in a two sorted
predicate logic with € and functional symbols. The parsing of a sentence
defines a substitution that combines the expressions associated to the
individual words. The resulting variable free formula is the translation
of the sentence. It can be computed in time proportional to the parsing
structure. Non-logical axioms are associated to certain words (relative
pronouns, indefinite article, comparative determiners). Sample sentences
are used to derive the characterizing formula of the DRS corresponding
to the translation.

Keywords: categorial grammars, pregroup grammars, Discourse Representa-
tion, semantic interpretation

1 Introduction

Pregroups are introduced in [Lambek 1999] as a simplification of his syntactic
calculus [Lambek 1958] and belong to the group of categorial grammars. Like
these they use proofs in a formal system to derive sentences, but unlike these,
they do not have a canonical interpretation in Montague semantics. Therefore
the slogan characterizing categorial grammars, namely that ‘all the grammar is
in the dictionary’, seems no longer to apply, at least if one accepts the imperative
that a grammar should handle both syntax and semantics.

Below, standard pregroup dictionaries are defined. They involve the so-
called first order fragment of free pregroups and have a natural interpretation
in predicate logic. However, due to the Grishin Equalities, a distinction between
first order and higher order serves no purpose in pregroup grammars: Indeed,
the main theorem of this paper shows that all pregroup grammars are strongly
equivalent to standard grammars. Here, strongly equivalent means not only that
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the grammars generate the same sentences but also that a parsing of a sentence
in one grammar can be transformed into a parsing in the other grammar. In
fact, the geometrical structure of the two parsings remains the same, only the
labels of the nodes change. This geometrical structure, called reduction below,
is a simple planar graph formed by the under-links one draws to indicate that
the (generalized contraction) rule of the pregroup grammar applies. Reductions
correspond to the parsing trees of rewrite-grammars or the lambda-terms coding
proofs in categorial grammars. Hence a parsing of a sentence consists now of a
choice of types from the dictionary and a reduction to the sentence type.

Adding semantics, we extend the parsings of sentences to structures which
are close in concept to the situation schemata of [Fenstad et al.]. The main idea
is to assign logical expressions to words and then compute the translation of the
sentence from that of the words. Hence we define

e a translation map that assigns to each lexical entry one or more functional
symbols. Non-logical axioms are attached to some of these symbols.

e an interpretation map which assigns to each parsing a variable-free expres-
sion and instances of the non-logical axioms, both obtained by substitution
according to the under-links of the parsing.

The translation map is given in the dictionary. The interpretation map is com-
putable in time proportional to the reduction of the sentence. Such a reduction
can be computed by an algorithm which runs in time proportional to the cube
of the length n of the sentence. For example, [Degeilh-Preller] adapts [Earley]’s
parsing algorithm to pregroup dictionaries obtaining a constant of n that only
depends on the maximal length of types and the maximal number of types per
word in the dictionary. The dictionary need not be finite. Hence pregroup
grammars have an efficient cubic time algorithm which recognizes, parses and
interprets sentences by logic formulas.

First we recall the basic definitions including the geometrical notion of re-
ductions. Then we present the semantics, illustrating its working by a standard
dictionary. The sentences, given both in French and in English, cover existential
and universal quantifiers and long distance dependencies related to the relative
pronoun. In the next section, we prove the Strong Equivalence Theorem, after
introducing the main tool, the notion of complexity of a set of types. Complex-
ity is weaker than the notion of order in AB-grammars, a notion which can
also be defined in pregroup grammars. We show that every pregroup dictio-
nary of finite complexity, and therefore every pregroup grammar in the sense of
[Buszkowski] is strongly equivalent to a standard dictionary. Finally in Section
5, we use this theorem to define a semantically meaningful interpretation of the
long distance dependences caused by the comparative.

2 Geometry of derivations

We briefly recall the definition of pregroups and the construction of a freely
generated pregroup defined in [Lambek 1999]. As we are interested in parsing
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and semantical interpretation, we look at the actual derivations in a free pre-
group, concentrating on derivations that consist of generalized contractions only.
The geometrical structure of these derivations is at the base of the semantical
interpretation in the following Section 3.

A preordered monoid < P, 1, -, —> is a set with at least one element 1 € P,
a binary operation - and a binary relation — satisfying for all a,b,c,u,v € P

l-a=a=a-1

(a-b)e=a-(b-c)

a—a

a—band b— cimply a — ¢

a—bimpliesu-a-v—u-b-v.
The dot denotes multiplication and is generally omitted. The arrow — denotes
the preorder.

A pregroup is a partially preordered monoid in which each element a has
both a left adjoint o’ and a right adjoint a” satisfying

(Contraction) a‘a — 1, aa” — 1

(Expansion) 1 — a"a, 1 — aa’.

One derives
1. a — b if and only if b* — o' if and only if " — a”,
2. a — b if and only if ab” — 1 if and only if b%a — 1.

The free pregroup P(B) generated by a partially ordered set of basic types B is
characterized in [Lambek 1999] as the preordered free monoid generated from
the set of simple types X consisting of the basic types and their iterated adjoints

E:{a(z):aeB,zeZ}.
The elements of P(B) are called types, they are strings of the form

Ao,

where aq, ..., a; are basic types and z1, ..., 2; are integers. The unit 1 denotes
the empty string and multiplication is the same as concatenation.
The left and right adjoints of a type are defined by

(agzl) . a,(:’“)yZ = a,(j’“_l) . a(lzl_l)

(agzl) . a,(czk))r = a,(jk+1) .. agzﬁ_l).
Hence, identifying the basic type a € B with a(®) € & we have
a® =a? ¢t =0V g =a®, a" = a® 0" = a@ ete.
If s = a®) we call z the iterator of s.
Finally, the preorder on types is defined as the transitive closure of the union
of the following three relations

(Induced step) Xa?Y — XpY
(Generalized contraction) XaApEy - XY |
(Generalized expansion) Y — Xa*tp(2)y
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where X and Y are arbitrary types, a and b are basic and either z is even and
a—bor zisodd and b — a.

The property which makes the theory of pregroups decidable is expressed in
the so-called
Switching Lemma (Proposition 2 of [Lambek 1999]):
Let ay,...,a, and by, ..., b, be simple types. Then a;...a, — by...b,, if and

only if there are a substring a;, ...a;, of a;...a, and a substring b;, ...b;, of
by ...b,, such that

k

a1 ...Qp = Qjy ... @, — by . by, — b1 by,

a;, — b;,,for 1 <p <k,

where a;, ...a;, is obtained from a;...a, by generalized contractions only,
b1 ...by, is obtained from b;, ...b;, by generalized expansions only and b;, ... b
is obtained from a;, ...a;, by induced steps only.
In linguistic applications, the relevant inequalities have the form s; ... s, —

s, where the s;’s are simple and s is a basic type. A derivation of such an
inequality can be obtained by generalized contractions and induced steps only.
For example, consider the dictionary

Marie : v

Jean : v

adore : 7w"so

ik

4

The basic types v, 7,0 and s stand for ‘proper name’, ‘subject third person
singular’!, ‘object’ and ‘sentence in the present’ respectively. They satisfy v — o

and v — 7. To analyze the French sentence
Marie adore Jean (MARY ADORES JOHN)

concatenate the types from the dictionary in the order of the words. The ob-
tained type has a derivation to the sentence type

Marie  adore  Jean
(v) (7'('7“‘8‘0@) (v) —s

This derivation is justified by the generalized contractions va” — 1 and ofv — 1.
As customary, the types have been written under the words and the generalized
contractions are indicated by under-links.

By Property 2. above, every derivation of s;...s, — s is equivalent to a
derivation of s1...s,s" — 1. In the case of the example above, the previously
unlinked s is now linked to s”:

v " sot v s

= 1 e | *
In fact, the under-links uniquely determine the derivation to the empty string.
We decompose such a derivation into a geometrical part called reduction, con-
sisting of the set of under-links, and an algebraic part, consisting of generalized
contractions. Following [Preller-Lambek], such geometrical representations of
derivations will be called transitions.

I'We ignore agreement in person, number, gender etc. to keep exposition simple.
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Definition 1 (Reduction)
A set R consisting of sets {i,k}, 1 <i# k <mn, is a reduction with respect to n
if the following two geometrical conditions hold

1) for every ¢ with 1 <4 < n, there is exactly one k such that {i,k}€ R,
2)if {i,k}, {{,m} € Rand i <l <k, then i <m < k.

A reduction R with respect to n and a string of simple types s; ... s, are said to
form a transition of s ...s, to the empty string 1, in symbols R : s1...s, = 1,
if the following algebraic condition is satisfied

3) s;sg — 1, whenever {i,k} € R and i < k.
The element {i, k} € R is represented graphically by the under-link

..Si...8k..., where i < k.
| I

Thus, a reduction R is a planar graph where the integers from 1 to n form the
linearly ordered set of vertices. It satisfies the geometrical conditions, which
can be reformulated thus

e there are no loops
e every i is endpoint of exactly one under-link,
e under-links do not cross.

The same reduction may constitute a transition to the empty string for quite
different strings of simple types. For example, the transitions

a" ot aaaam—1, bR Y -1, ceed =1

e T (= T (BT

have the same links, namely {1,6}, {2,5} and {3,4}. Hence their geometrical
structures are identical. We say that transitions R : s7...s, = 1 and R’ :
8y ...sh, = lare similar if R = R'. This implies in particular that n = n/, but of
course in general s; # s;. Clearly, the isomorphic image of a transition is similar
to the original transition. However, similarity is weaker than isomorphism.
Indeed, isomorphism is a global notion whereas similarity is local. If a is an
isolated element we can define an isomorphism that maps a to a” and hence
aa“a’“ata’a” to a"a’aaaa’ , but no isomorphism would ever map any of these
two types to ccec”c"c".

Note that if R : s1...s, = 1 is a transition then the iterator of a right
endpoint of a link is the successor of the iterator of its left endpoint: Indeed,
if {i,k} € R and i < k, then the algebraic condition s;sp — 1 implies that
s; = a® and s, = b*T1) for some integer z and appropriate basic types a and
b.



Discourse Representation via Pregroups 6

3 Interpretation of sentences in predicate logic

The interpretation of the sample sentences below is presented in the style of
discourse representation in [Kamp-Reyle]. We use two-sorted predicate logic,
one sort for individuals and the other one for sets of individuals. This two-
sorted approach is motivated by the handling of singulars and plurals in a way
similar to natural language. It has two primitive relational symbols, namely
€ and =. The former requires individuals on the left and sets on the right,
the latter accepts either sets on both sides or individuals on both sides. We
refer to an individual or a set as an entity. Variables are denoted by lower
case letters x,y,... and range over entities. Hence in the formula x € y, the
variable z stands for an individual and y for a set. Moreover, there are a set
constant §2, the set of truth values, and individual constants T € Q, 1L € Q.
The specific properties of €2 my be specified as usual, they do not matter for
this introduction. The symbols mentioned so far are called logical.

To the logical symbols are added non-logical symbols, which are functional
symbols, defined by the entries in the dictionary. They come with an arity and
a sort. The former indicates the number of argument places of the interpreting
function, the latter is the sort of its values. Each argument place can be occupied
indifferently by a set or an individual. Among the non-logical individual symbols
we distinguish the predicate symbols for which the interpreting function takes
its values in 2. Expressions are defined from the variables and the non-logical
symbols by induction as usual, hence they have no occurrences of = or €. If
the dominating symbol is a predicate symbol, we call the expression a predicate
expression. The other expressions are the entity expressions. For example, the
sentences MARY LIKES BOOKS and JOHN LIKES MARY add individual constants
mary, john, a set constant Book and a binary predicate symbol like to the
logic. The translation of a sentence is a variable free predicate expression,
for example, 1like (mary,Book) and like(john,mary). This translation with
its tree-like structure replaces the D(iscourse) R(epresentation) S(tructure) of
[Kamp-Reyle].

Instead of conditions under which a DRS is true, we have non-logical axioms
associated to words, explaining their meaning. The truth of a predicate expres-
sion p is expressed by the equality p = T. To increase readability, this atomic
formula is replaced by the expression p alone, if the context permits. For exam-
ple, Vz(z € X = p(z)) stands for Vz(z € X = p(z) = T). The instances of the
non-logical axioms together with the translation constitute the interpretation of
the sentence. They imply the variable free first order formula associated to the
DRS in [Kamp-Reyle]. The reason why the DRS formula is sometimes weaker
than the translation is that we treat quantifiers as functions from sets to sets.

The first non-logical axiom explains the meaning of count-nouns. For exam-
ple,

like(mary,Book) < Vz(z € Book = like(mary, z))

says that Mary likes the set of books if and only if she likes every book. We can
safely assume that this property is valid for all predicate and set expressions
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of the language, provided the new variable does not occur within the scope
of proper subexpressions. Hence we say that the variable z is accessible in
the predicate expression p if for every subexpression p’ of p, either z has no
occurrence in p’ or at least one of its occurrences in p’ is not inside a proper
subexpression of p’.

Non-logical Axiom
(1) p(X) & Vz(z € X = p(2)),
where X is a set expression, p a predicate expression and z is accessible in p.

The interpretation of sentences via pregroup grammars can be computed by
an algorithm. Here, we illustrate its working with a few examples where we
ignore the dependence on person, number and gender of noun phrases, verbs
etc., for simplicity’s sake. Consider the sentence

Jean aime Marie (JOHN LIKES MARY)
and its usual rendering in predicate logic, the atomic formula

aimer (jean,marie)
where aimer is a binary relational symbol and jean and marie are individual
constants. We represent this correspondence by

Jean : v jean
Marie : v marie
aime : 7so’ aimer(zy,s)

In the last item, 1 and x5 are variables or argument places. By convention, x;
corresponds to the first non-basic type, here 7", and x> to the second non-basic
type, here of. We assume
v — 7 and v — o.
The corresponding translation,
aimer (jean,marie) = aimer(z1,x2)[x1,z2|jean, marie]
can be computed by substituting the constants at the first and second argument
place of the binary symbol. This substitution follows the links of the reduction
Jean aime Marie

) @ s) ) s
We remark that
e each basic type corresponds to a functional symbol,
e each non-basic type corresponds to an argument place

e a transition to the sentence type defines a translation of the string of
words into a variable free expression. The links indicate the argument
place where the translated expressions are substituted.

Consider another, slightly more complicated example:

un . met un(y)
homme : ¢ Homme
aime : 7'so’ aimer(zi,ms)
Marie : v marie

where c is the type for count nouns.
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The translation of un : wc’ is a unary individual functional symbol. The

count noun is translated by a set constant. Using the links of the reduction
Un homme aime Marie
A  MAN LIKES MARY
(mc) (¢) (7" sob) (v) s"
‘ | | ‘ ‘ | ‘ ’
we compute the translation by substituting

aimer(xy, z2) [1, 22|un(y) [y|Homme] ,marie]

= aimer(z1, x2) [2122|un(Homme), marie]

= aimer(un(Homme),marie)) .

However, finding the translation of the sentence is not enough. We have to
express our understanding of the words by non-logical axioms. For example, the
indefinite article un is interpreted as a unary functional symbol, which a model
must realize as a function that maps a set of individuals to an individual in the
set. Hence the

Non-logical Axiom

(2) un(X) € X , where X ranges over set expressions.

Then we have the following instance of the non logical axiom
un(Homme) € Homme .

Introducing a new constant
¢ = un(Homme),
we derive from the translation
aimer(un(Homme), marie))
the following formulas
aimer(c,marie), ¢ € Homme, 3z(z € Homme A aimer(z,marie)).

The latter is the first order formula chosen by [Kamp-Reyle] for the Discourse
Representation Structure representing similar sentences.

c marie

c € Homme

aimer(c,marie)

Jz(z € Homme A aimer(x,mary)).

Not much changes, if the indefinite article un (A) is replaced by the deter-
miner chaque (EACH, EVERY):

Jean v jean

achéte : 7"so’ acheter(zy, )
chaque : nct chaque(y)

livre : ¢ Livre,

where n — m and n — o. Note that the lexical entry chaque : nct is again

translated by a unary functional symbol. The non-logical axiom accompanying
the entry will give it the appropriate meaning.



Discourse Representation via Pregroups 9

Non-logical Axiom
(3) chaque(X) = X, where X ranges over set expressions.

This axiom expresses that a function selecting every individual of the set selects
the whole set.

The reduction of the sentence
Jean achete chaque livre
JOHN BUYS EVERY BOOK

(¥) (n"s0") (n¢) (e

produces the translation
acheter(jean, chaque(Livre)) .

)= s,

The instances of the non-logical axioms are

chaque(Livre) = Livre

acheter(jean,Livre) < Vz(z € Livre = acheter(jean, z)) .
From these and the translation of the sentence we derive

acheter(jean,Livre)
Vz(z € Livre = acheter(jean, z)).

Compare this with the corresponding DRS and its characterizing first order
formula

jean

z

) = ’ acheter(jean, 2) ‘
z € Livre

Vz(z € Livre = acheter(jean, z))

Note that the characterizing formula of the DRS and the non-logical axioms
imply our translation.

If a noun phrase formed with the indefinite article is not in subject position,
the selected individual in general depends on the preceding subject, for example
Chaque homme achéte un livre (EVERY MAN BUYS A BOOK) or Jean achéte un
livre (JOHN BUYS A BOOK). The answer to this difference in meaning is to add
new types for the verb and the indefinite article:

achéte :  w"so’
¢

7 acheter(zy,z2) id(zq)

un(z, y)
where 7 is a new isolated basic type. The new functional symbols are subject
to the

un : 7"oc

Non-logical axioms
(4) id(F)=E, E arbitrary expression
(5) zeX=un(z,Y)€eY, XY set expressions.

For this choice of types, the reduction of the sentence is
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Chaque homme achéte un  liwre
EVERY MAN BUYS A BOOK
4 T 0 A A7 4 T
(nc) (¢) (7" so° @) (FToc") (¢) s".

\ 1l |—— |
The translation defined by this reductions is
acheter(chaque(Homme), un(id(chaque(Homme)),Livre)).

Using the non-logical axioms we derive
acheter(Homme, un(Homme, Livre))
z € Homme = acheter(z,un(z,Livre))
z € Homme = un(z,Livre) € Livre
z € Homme = un(z,Livre) € Livre A acheter(z,un(z,Livre))
Vz(z € Homme = Jy(y € Livre A acheter(z,y))).

Our next example extends the noun phrases by restriction to relative clauses.
Consider the dictionary

Jean : v jean

aime : 7w"so'n  aimer(zi,xs) id(zy)
un : #Toct  un(z,y)

livre : ¢ Livre

que : c"co8®  Que(yi,ysz), Dummy
Marie : v marie

déteste : 7w"§6"  détester(zi,zq) .

Here we added new basic types § and 6. The latter differs from the type for
pseudo-objects introduced in [Lambek 2004], denoted by the same symbol, be-
cause we assume 0 to be isolated in the set of basic types B = {v, m,n, ¢, 0,0, s, §},
where only v — 7, n — m, v — o0 and n — o hold. Note the new type for the
transitive verb déteste which uses the sentence type § for relative clauses.

Two of the simple types in the string ¢"c65’ are basic, namely ¢ and 6.
The translation therefore has two non-logical symbols, the binary functional set
symbol Que and the set constant Dummy. The symbol Que corresponds to the
basic type ¢, its argument places y; and ys correspond to the non basic types
¢" and §° in that order. The other basic type 6 is translated by the constant
Dummy. This reflects our understanding that the relative pronoun selects among
the individuals characterized by the preceding noun those which satisfy the
predicate expressed by the following relative clause. Hence the

Non-logical axiom

(6) z € Que(X,p(Dummy)) < z € X Ap(z),
where X ranges over set expressions, p(z) over predicate expressions and z is
accessible in p.

The reduction of the sentence
Jean aime un livre  que Marie déteste
(JOHN LIKES A BOOK WHICH MARY DETESTS)

(v) (7" s‘oé‘ﬁ')(ﬁr‘o‘ ‘ce)‘(c) (" c‘ ‘é‘éé) (v) (=" §‘ o) s
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defines the translation

aimer(jean,un(id(jean), Que(Livre,détester(marie, Dummy))).
Assuming ¢ = un(id(jean), Que(Livre,détester(marie, Dummy))), we derive

c € Que(Livre,détester(marie, Dummy))

z € Que(Livre,détester(marie, Dummy)) <

z € Livre A détester(marie, z)

c € Livre A détester(marie, c)

aimer(jean,c)

Jz(z € Livre A détester(marie, z) A aimer(jean, z)) .

The latter is the formula characterizing the Discourse Representation Structure

jean c¢ marie
c € Livre

détester(marie, c)
aimer(jean,c)

Jz(z € Livre A détester(marie, z) A aimer(jean, 2)) .

As the last example of this section, consider the sentence

Jean aime chaque livre que Marie déteste
JOHN LIKES EVERY BOOK WHICH MARY DETESTS

(v) (=" 3‘06) (n ‘ce)(‘c) (", c‘ ‘6‘§£) (v) (a" §‘ 67"‘) s

The links define the translation
aimer(jean, chaque(Que(Livre,détester(marie, Dummy)))

together with the instances of the non-logical axioms
chaque(Q) = Q
z € Livre A détester(marie,z) & 2z € Q
aimer(jean, Q) A z € Q = aimer(jean, z),

where @) abbreviates Que(Livre,détester(marie, Dummy)). From these, we de-
rive the first order formula characterizing the Discourse Representation Struc-
ture corresponding to this sentence, namely

V(z € Livre A détester(marie, z) = aimer(jean, z)).
Note that the characterizing formula together with the non-logical axioms im-
plies the translation of the sentence.

Intuitively, the constant Dummy represents an entity satisfying the relative
clause. Hence the translation of a sentence with several occurrences of a relative
pronoun introduces a new copy Dummy;, Dummy,,... for every new occurrence.
The non-logical axiom schema (6) is in fact a separation schema for expressions.

We conclude this section by summing up the properties of the semantical
interpretation

Translation:
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A. each basic type of a lexical entry is translated by a functional or relational
symbol,

B. each non-basic type of a lexical entry corresponds to an argument of a func-
tional or relational symbol of the entry,

C. non-logical axioms are associated to some of the non-logical symbols,

D. in a string of types corresponding to a string of words, each occurrence of
the constant Dummy is replaced by a new copy Dummy;, Dummys, ... .

E. substitution, based on the links of the reduction, computes the translation
of the sentence and the instances of the non-logical axioms.

These rules are formulated for the sample dictionaries above, which do not use
double or higher adjoints. We call such a dictionary standard. Many dictio-
naries proposed up to now for (fragments of) modern European languages are
not standard. In the next section, however, we shall see that every pregroup
grammar is strongly equivalent to one with a standard dictionary.

4 Strong equivalence to standard dictionaries

We show in this section that every finite pregroup dictionary, hence every pre-
group grammar in the sense of [Buszkowski], is strongly equivalent to a standard
dictionary. Here strongly equivalent means that not only the dictionary has the
same sentences, but also that the sentences have the same reductions. The
restriction that the dictionary must be finite can be replaced by the weaker
condition that the dictionary is of finite complexity. Complexity is a concept
tailored to pregroups, generalizing order of types in AB-grammars. Moreover, if
the original dictionary is finite, the strongly equivalent standard dictionary given
by the proof can be effectively computed. This will be exploited in the next sec-
tion when defining semantics for non-standard pregroup grammars. However,
finiteness is only a sufficient, not a necessary condition for an effective interpre-
tation.

Definition 2 (Dictionaries, finite, standard, etc.)

Let V be a non-empty set and B a partially ordered set. In the following we
refer to V' as vocabulary and to its elements as words. The free pregroup gener-
ated by B is denoted P(B).

A dictionary D over B for V is a map from V to the set of subsets of P(B). It
is said to be finite, if the sets V, B and D(v) are finite for every v € V.

The set of types Tp of D is formed by the types belonging to some D(v)
TD:U{D(U):UEV} .

A simple type t occurs in D if there is a string of simple types X = s1...s,, € Tp
such that t = s; for some 1.
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A dictionary D is standard if every simple type occurring in D is either basic
or the right or the left adjoint of a basic type.

A dictionary D is of rigidity r, if every set D(v) has at most r elements.

A set of types T' C P(B) has width w, if every string of simple types s;...sp =
X € T has length &k < w. A dictionary has width w if its set of types has this
property.

A type assignment for a string vi...v, of words is a string X;...X,, of types in
P(B) such that X; € D(v;), for 1 <14 <n. A lezical entry of D is a pair v : X
where v € V and X € D(v).

A sequence v;...v, is an s-sentence of D if X7...X,, — s for some type assignment
X; € D(v;). The s-language of D is the set of its s-sentences. It is assumed
that s is a basic type. If s is understood, we simply say language respectively
sentence of D.

AB-grammars of order at most 1 provide examples of standard dictionaries.
Indeed, the translation of a\...a;;\b/c;.../c, into pregroups is

L

_r r YA
X =adj..abecy...cp,

where the a;’s ¢;’s and b are basic types. In a general standard grammar,
however, more than one of the simple types may be basic. Moreover, basic
types, right adjoints and left adjoints may intermingle arbitrarily.

Even standard pregroup dictionaries are more powerful than grammars based
on Lambek Calculus. Recall the translation from Lambek Calculus to pregroup
calculus: it maps a ® b to ab, a/b to ab’ and b\a to b"a. This translation
transforms a derivable sequent into a derivable inequality of types. However, the
converse does not hold: A well-known example from Lambek Calculus is the non-
derivable sequent (a®b)/c Ff a®(b/c). The left hand side and the right hand side
translate to the same type, namely (ab)c’ = a(bct). A fortiori, (ab)c’ — a(bct)
holds in pregroups. Other examples can be found in [Moortgart-Oehrle].

Definition 3 (Complexity)

Let D be a pregroup dictionary and C' a connected component of the set of basic
types B. A sequence of simple types sq, ..., S, occurring in D is continuous in
C' if there are a sequence of basic types by € C,...,by € C and an integer z

such that

S = b(()z), S1 = b§z+1), ceey S = b](cz+k) .

A dictionary D has complexity cif k < c for every continuous sequence Sg, . .., Sk .
A dictionary is of finite complexity if it has complexity ¢ for some integer ¢ > 0.

Complexity is the pregroup concept corresponding to order in Lambek Cal-
culus. The former counts successive iterations of adjoints, the latter depth under
the slashes / and \. In pregroups, however, counting does not necessarily start
at basic types, it may start at different levels of iteration. Only the consecutive
iterations are relevant. The presence of preorder makes it necessary to include
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all elements of a connected component when counting consecutive iterators. For
example, if only a*, a, a"™" and a""""" occur in D, then D has complexity 0.
On the other hand, if all types in the dictionary are of the form aj...a" bct...c!,
it has complexity 2 in general, but if none of the a;’s or ¢;’s belongs to the
connected components of the s, it has complexity 0. A standard dictionary
has complexity 2, but the converse is false. Note that a finite dictionary always
is of finite width, rigidity or complexity.

Definition 4 (Strong Equivalence)

Dictionaries D and D’ over the same vocabulary V are strongly equivalent, if
for every type assignment X; € D(v;) and every reduction R that is a transition
R : X;..X, = s there exists a type assignment X; € D’(v;) such that the
strings X; and X/ have the same length and R is a transition from X7...X] to
s. The same must hold, if the roles of D and D’ are exchanged.

L0 ol

For example, if we define the type of the relative pronoun WHICH as ¢"¢6“§
and for the definite verb-form DETESTS as 7" §6%, the sentence below will have
the same reduction in this grammar as in the standard grammar of the previous
section:

MARY LIKES A BOOK WHICH JOHN DETESTS
T (4 l oAbl ol ra oAl T
(v) (7" s0) (n“c) (e) (c cwo ‘s) (v) (m s‘o‘) s‘
MARY LIKES A BOOK WHICH JOHN DETESTS
L

(v) (7" s0°) (n“cz) (¢) (crcwé‘éz) (v) (7T7'§‘ 61) s"

The first step toward standard dictionaries consists in switching to a strongly
equivalent centered dictionary.

Definition 5 (Centered dictionaries)

Let D be a pregroup dictionary and C' a connected component of basic types. A
sequence béz)7 bng) , b,(€2+k), continuous in C, is said to be maximal and the
associated integer interval I = {z,z + 1, ...,z + k} is called a complexity interval
of C' if

for all a € C neither a*=Y nor a+++1Y occur in D.

P

D is said to be centered if 0 belongs to every complexity interval.

All pregroup dictionaries designed so far for natural language processing are
centered around 0. Also note that a connected component can have several
mutually disjoint complexity intervals. If, however, the dictionary is centered
then all complexity intervals of a connected component have a common element
and are therefore identical.

Lemma 1 FEvery dictionary of finite complexity can be replaced by a strongly
equivalent centered dictionary of the same complexity, same width and same
rigidity. Therefore the constant of the general parsing algorithm is the same for
both dictionaries.
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Proof: Note that for every simple type a(*) occurring in D there are a unique
connected component C' and a unique complexity interval I = {vy,...,us} such
that a € C and v; < z < uy. The midpoint m; of the complexity interval
I ={vy,vr+1,...,ur} is defined by m; = vy +d; where d; is the unique integer
such that 2d; — 1 < uy — vy < 2d;. Then —d; < z — m; < dj follows from
v; < z < wuy. For every connected component C' and every complexity interval
I of C we make a new copy

Cr={a;:aeC}
and let B’ be the disjoint union of these copies. Order C; C B’ isomorphically
to C, if m is even and by the dual order if m; is odd. Then

a®) — b in P(B) if and only if a\""™") — b*"™) in P(B).
The dictionary D’ is obtained from D, by replacing every simple type a(*)
occurring in D by
o(al) = a0
It follows that for every reduction R
R:s1...8,m = 1if and only if R: ¢(s1)...0(8m) = 1.

Hence D and D’ are strongly equivalent. Moreover, to see that D’ is centered,
note that a maximal continuous sequence b((;”), bg”lﬂ), cey b,(;”) of D is mapped

to a maximal continuous sequence of D’ with corresponding complexity interval
I'={v, vy +1,..,u}}

where v} = vy — (vr +dr) and v} = uy — (vr +dy). It is then easily checked that
the midpoint of I’ is 0. Finally, the constant of the general parsing algorithm
depends on the width and rigidity of the dictionary.

The next step, which constructs the standard dictionary associated to a
centered dictionary, will increase rigidity. A careful look at the constant of the
general algorithm shows that it remains the same for both dictionaries.

Lemma 2 (Escaping higher order) For every dictionary D of complexity
c > 3 there is a strongly equivalent dictionary D' of complexity c—1. Moreover,
D’ has the same width as D.

Proof: By the preceding lemma, we may assume that D is centered. For every
connected component C' that has a necessarily unique complexity interval I =
{ve,...uc} we decrease the upper limit uc > 2 and increase the lower limit
ve < —2. This is achieved by adding new basic types to C.

Case I) (decreasing upper limits)
Define

B'=BU{a:a€ C, C connected component of B, uc > 2}.

Order the new basic types by
a— bif and only if @ — b.

Suppose al®) occurs in D and let C be the connected component of a. Define
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p(a®) =a® ifuc <2orifz <uc—1
and else

a®  if ue is odd (uo—1)y _ a®  if ue is odd
¢la )= a=Y  if ue is even

(uc)y —
¢l ) {d(o) if uc is even

We remark that
pre=Dge) 1 if and only if ¢(b“e~Y)p(aMe)) — 1.

The dictionary D’ over B’ is constructed from the entries in D by replacing
every simple type t by ¢(t) except that ¢ = a(*~1) may remain unchanged.

D'(v)={s}...s,:3s1...5, € D) Vj(1<j<p=
(sh =(s;) vV IC Ja e C (s; =al"e™H = s/))}

Consider a type assignment X; € D(v;), 1 <4 <n and a reduction R such that
R:X;...X,s" = 1. Write X7...X,,s" as a string of simple types

X1..X,8" = 81...8m,.
Suppose s, = a(¥c) where a € C and uc > 2. Then s is linked to a simple
type s; on its left such that s;s; — 1. Hence R contains the under-link

... 8j...Sk ..., where ¢ < k and s;s — 1.
| I

Therefore s; has the form s; = b(*¢=1 for some b € C. Replace s; and s; by
their respective ¢-values, obtaining s;, = ¢(si) and s, = ¢(s;). By the remark
above it follows that

sjs), — L.
The other simple types remain unchanged. In particular, if s; = b(ue—1 ig not

a left end-point, we have s’ = s;. Then R: X{...X}s" = 1 and

sho.sh = X1...X)s"
defines a type assignment X! € D'(v), 1 <i<mn.

Conversely, let X! € D'(v;), 1 < i < n, be a type assignment from D’
and R’ a reduction of X{...X)s" = s} ...s, to the empty type 1. Consider
an under-link {i,k} € R’ with ¢ < k. As s}s, — 1, either both s} and s
belong to P(B) or s} = b(*~ and s}, = a'*) where a and b belong both to one
and the same connected component C' of B such that uc > 2. In the former
case, we let s; = s} and sy = s). In the latter, we define s; = pluc=1) and
sk = alc). This defines a type assignment X; € D(v;), 1 < i < n, such that
R :X,...X,s" =51...8, = 1. Hence D and D’ are strongly equivalent.

Case II) (increasing the lower limits)
Define

(=1 i 0 ; i
d)(a(”C)) _Ja if vo is odd ¢(a(vc+l)) _Ja if v is odd ,
a® if v is even aM) if vo is even
whenever vo < —2 and continue the argument similarly to step I). After apply-
ing both steps, we have constructed a strongly equivalent centered dictionary of
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complexity ¢ — 1.

As every finite pregroup dictionary is of finite complexity, the following theorem
is an immediate consequence.

Theorem 3 (Strong Equivalence) A pregroup dictionary is strongly equiva-
lent to a standard pregroup dictionary if and and only if it is of finite complexity.
In particular every pregroup grammar in the sense of [Buszkowski] is strongly
equivalent to a standard pregroup dictionary.

Dictionaries with double or higher adjoints have a natural higher order in-
terpretation. For example, suppose we assign the type ¢"c6%5 to the relative
pronoun que (WHICH). By the Grishin laws, we have the equality

o5t = "e(36)".

This suggests to read the type as a two-argument function which transforms a
noun and a verb-phrase to a noun-phrase. The construction of the equivalent
standard dictionary replaces 6 by 6. Therefore the higher order argument place
(36%)¢ has become 65 in the strongly equivalent standard dictionary. But the
latter has a natural first order interpretation. Hence compactness, the property
which distinguishes compact bilinear logic from Lambek Calculus, makes pre-
group dictionaries independent of an higher order interpretation. Technically,
this is achieved by a derivable separation schema for formulas involving only

symbols introduced by the translation.

5 The Comparative in English

So far we have used dummies to represent sets of individuals referred to implic-
itly when a relative pronoun is used. For similar reasons, dummies model ellipsis
in comparative sentences. The dictionary presented below is not standard. How-
ever, the construction of the Equivalence Theorem in Section 4 transforms it
into a strongly equivalent standard dictionary. This construction maps a simple
type with an even iterator into a basic type. Moreover, it preserves left and
right adjoints. Therefore the Translation Rules A. and B. of Section 3 may be
reformulated thus

A. each simple type of the form a(??) in a lexical entry is translated by a func-
tional symbol,

B. each simple type of the form 522t in a lexical entry corresponds to an
argument place of a functional symbol associated to a simple type in the
same entry.

Consider the following sentences:
1. Mary reads more novels than John

2. Mary reads more novels than poems
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3. Mary reads more novels than John poems
4. Mary reads more novels than John writes poems

The information an English speaker can extract from these sentences must be
derivable from the interpretation. This is to say, the interpretation must imply

I. 323y(Vz(z € © & z € Novel A read(mary,z)) AVz(z € y & z € Novel A
read(john, 2)) A geq(z,y))

II. 323y(Vz(z € © & z € Novel A read(mary,z)) AVz(z € y & z € Poem A
read(mary, z)) A geq(z,y))

III. 323y(Vz(z € © & z € Novel A read(mary,z)) AVz(z € y & z € Poem A
read(john, z)) A geq(z,y))

IV. 323y(Vz(z € © & z € Novel A read(mary, 2)) AVz(z € y & 2 € Poem A
write(jom, 2)) A geq(s,y))

respectively.? Here geq is a binary predicate, which is interpreted as a relation
between sets, i.e. a generalized quantifier.

Comparing the formula with its corresponding sentence, we see that natu-
ral language is more succinct than logic. In the sentence, only the new con-
stituent(s) of the mentally implied statement is (are) present. This new con-
stituent is introduced by than, namely the new subject John in Sentence 1 and
the new object poems in Sentence 2. In Sentence 3, both object and subject are
different in the implied statement and are therefore explicit in the comparison.
Finally, in Sentence 4, the words following than form a complete sentence. Ac-
cording to this analysis, the word more prepares the listener for a comparison
of two quantities. The first quantity is in all four sample sentences the set of
novels read by Mary. The second quantity, introduced by than, consists of the
poems Mary reads, respectively the novels John reads and so on. Hence the
natural language sentence determines two sets and compares them. The logic
formula represents the comparison by the predicate symbol geq.

Quantities are either expressed by mass nouns or plural count nouns. We
assume that the plural of a count noun is given with its singular in the dictionary.
In English, count nouns sometimes stand for the whole, e.g. Mary likes poems,
sometimes for a part, e.g. Mary writes poems. We will ignore this here and
translate plurals by the same constant as the corresponding singular. Hence
we add a new basic type p for plural count nouns and require that p — o and
p — .

Syntax without semantics

The following simple dictionary for more and than recognizes the sentences
above, but does not make sense in the semantics proposed here. Suppose we
would have the entries

2Though = and y denote sets, the formulas remain first order because our predicate logic
is two-sorted
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more : pp'p"® more(zs,x)
than : pn® than(z)

than : pp* than(z)

novels : p Novel

poems : p Poem
The new type p instead of p serves to prevent a reduction to the sentence type
of *Mary reads more novels poems. There are two entries for than so that both
Sentence 1 and Sentence 2 can be recognized. In the case of Sentence 1, the
reduction to the sentence type

Mary reads more novels than John
(v) (=" ‘5 o) ? p) (p) (B n') (v) ST‘

would give the translation

read(mary, more(Novel, than(John))) .
Now the semantical problems start. How are we to interpret the functional
symbol more ? Obviously, the claim that than(John) represents the quantity
of novels read by John is unsustainable. Formula 1. is certainly not a logical
consequence of this translation. What we need is a translation which is true if
the quantity of novels read by Mary is greater than the quantity of novels read
by John.

We have to resolve ourselves to invent more talkative types for more and
than.

Syntax with semantics

Case of Sentence 1 : Mary reads more novels than John.

reads : " s0" read(z1,2)

more  :ps"pp" St psof plp’  Dummy, More(ys, y1) geq(yz, ys)
id(ys) rep(y3,ya)

novels ) Novel

than cps"ppt Than(zy, z2) Dummy,

The types for more and than are now explicit enough to recuperate the logical
formulas. The type of more creates the implicit binary relational symbol geq
comparing two quantities. Next, it introduces a functional symbol More and a
constant Dummy, creating the quantity determined by the first statement. It also
introduces a predicate symbol rep for the implicitly repeated verb. Finally, the
unary functional symbol id repeats the object. The type of than introduces a set
constant Dummy, and a binary functional symbol Than determining a quantity.
According to the Translation Rules A end B, the simple types with an odd

iterator are numbered in the order of their occurrence in the entry from left to
right and correspond to the argument places. Similarly, each simple type with
an even iterator corresponds to a functional symbol according to the order given
by the lexical entry. For example, the correspondences in the entries of more
and than are as follows
more

P s p‘ 257’ 3 71.[ pM s Oé ]32 pé

Dummy, 31 ~ More 'y geq w3 id rep w1 Ys Yo

T
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than : .
P s p p
Than 2z Dummy, 2o
The reduction to the sentence type is

Mary reads more novels  than  John
T 4 rosr oz 4 000 ~0 0 ~ l
(v) (7" s0°) (p s" pp" § @ p ‘0 ‘s?g)(p)(ps pp) (v).

As the type of the sentence is rather long, we give the details of the procedure
how to compute the translation and the relevant instances of the non-logical
axioms from this reduction.
The links define the substitutions

[z1, T2 |mary, Dummy,|

[y1,v2,Y3, Y4, Y5, Ys|Tead, More, john, Dummy,, Than, Novel]

[21, z2|rep, id]

The expressions constructed by the appropriate substitutions are therefore
read(mary, Dummy, )
More(Novel, read(mary, Dummy, ))
rep(john, Dummy, ))
Than(id(Novel), rep(john, Dummy,))
geq(More(Novel, read(mary, Dummy, )),
Than(id(Novel), rep(John, Dummy,))).

The truth of the whole sentence depends on the value of geq for two quantities,
namely those substituted in places yo and ys. The first quantity is defined
by More, the second by Than. Both operators act like the restrictive relative
pronoun in Section 3. Hence the

Non-logical axioms

(7.1) z € More(X, p(Dummy,)) < z € X Ap(z)
(7.2) z € Than(X, p(Dummy,)) < z € X Ap(z) ’
where X is a set expression, p a predicate expression and z is accessible in p,
(7.3) Tep =y .
The latter is not a formula, but a shorthand how to construct the non-logical
axiom. After substitution of y; by the predicate symbol given by the reduction,
for example read, it becomes an equality of two functional symbols
rep = read,
which stands for the first order formula
VaVy(rep(z,y) = read(x,y)) .
Applying the substitution to the non-logical axioms, we obtain the instances
rep = read id(Novel) = Novel
Therefore the translation is equal to
geq(More(Novel, read(mary, Dummy, )),
Than(Novel, read(John, Dummy,))) .
The relevant instances concerning More and Than are
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z € More(Novel, read(mary, Dummy, )) < z € Novel A read(mary, z)
z € Than(Novel, read(john, Dummy,)) < 2z € Novel A read(john, z).
The logical content of the translation can now easily be derived, i.e.
JxIy(Vz(z € © & z € Novel A read(mary, z)) AVz(z € y < z € Novel A
read(john, z)) A geq(z,y)) -

Case of Sentence 2 : Mary reads more novels than poems.

The analysis of Sentence 2 is similar to that of Sentence 1. This time the
verb and the subject are repeated, but the two objects are different. We add
a new entry for more to our dictionary, whereas the other translations remain
unchanged.

T TT

more : ps"ATTHp 550 P p’ Dummy; id(ys) More(ys,y1)
geq(ys, ys) rep(yz, ya)

In this case, the functional symbol id is associated to the basic type 7n"" and
depends on ys. Therefore it repeats the common subject of the explicit and
the implicit statement. The non-logical axioms (7.1)-(7.3) remain unchanged.
Formula II. can be derived as in the previous example.

Case of Sentence 3 : Mary reads more novels than John poems.

Neither subject nor object are implicitly repeated. Hence, the type of more
only repeats the verb by introducing rep associated to the basic type s as in
the other cases. The dictionary entries are

more  ps"pp" srtot Sﬁzpe Dummy; More(ys, Y1) ged(yz, ys)

rep(ys; ya)

than  ps" prpint Than(z1, z2) Dummy, id(z3)
The simple types 7 and 7¢ figure in the type of than for purely syntactical
reasons. Their joint effect is to change the order of the two words John poems
to poems John. This is achieved by the functional symbol id(z3). Again the
non-logical axioms (7.1)-(7.3) remain unchanged.

The reduction to the sentence type, the interpretation of the sentence and

the characterizing Formula III. are derived as in the other cases.

Case of Sentence 4 : Mary reads more novels than John writes poems.

The statement defining the second quantity is explicit. Hence the type of more
no longer needs types for implicit repetition. Only the implicitly understood
comparing relation geq is still present besides More and Dummy; .

more:ps"pp" 5p'p’ Dummy, More(zy,z1) geq(za,z3)

than : ppt p** s Than(yi, y2) Dummy,

The non-logical axioms are those concerning More and Than, namely (7.1) and
(7.2). Formula IV. can now be derived as in the other cases. We remark that in
spite of the four different entries for more and the three different ones for than,
the meaning of More and Than as reflected by the non-logical axioms remains
unchanged.

The relatively long type associated to a single word like more is the price to
pay for the substitution algorithm which computes the translation of a sentence
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for every transition to the sentence type. As the algorithm is linear, the extra
effort required for a dictionary with semantics may be worth while paying.

6 Conclusion

Our approach is similar in spirit, but not in form, to that given in [Fenstad et al.].
Dictionaries list each syntactical entry with a semantical translation. The in-
sistence that the translation of the sentence must be pieced together from the
translations of the individual words makes interpretation a function defined for
reductions of sentences. The translation can be computed by an algorithm which
runs in time proportional to the size of the reduction.

Moreover, the strong equivalence theorem shows that reduction, i.e. the
geometrical structure of pregroup derivations, is the invariant which caries the
semantical meaning. The strong equivalence of ‘higher order’ with ‘first order’
pregroup grammars is the syntactical counterpart for equivalence of fragments
of higher order logic with first order logic. The only functional symbols depend-
ing on predicate symbols introduced so far are Que (Which), More and Than.
They are definable by comprehension restricted to expressions from the natural
language. Axiom-schema (1) is the corner stone on which the interpretation
rests. The others concern particular words, which are interpreted as quantifiers,
comprehension operators etc. The working assumption here is that the logi-
cal and set theoretical content of words can be expressed within the persistent
fragment of second order logic. This fragment is effectively axiomatizable and
equivalent to a two-sorted first order logic with a primitive €. There, compre-
hension axioms for set existence can be expressed as first order axioms. A more
comprehensive language fragment will have to be analysed with pregroup gram-
mars to confirm that the corresponding semantics stays in the frame outlined
in [van Benthem].

The strong equivalence theorem assures that nothing is lost in expressive-
ness by restricting attention to standard grammars. A semantically meaningful
pregroup grammar may require more, or more complicated types per word than
one intended for mere syntactical recognition. However, instead of making the
design of a pregroup grammar more difficult, semantics may make it more easy:
once we know the semantic translation of the words, the corresponding types
can be learned, see [Béchet-Forét-Tellier]. Moreover, the proliferation of types
does not necessarily increase the complexity of parsing. In fact, the dictionaries
proposed here can be parsed by an algorithm with a runtime proportional to
the length of the sentence.

The step toward an interpretation in categorical logic is quite feasible, if
based on a category satisfying functional completeness in the sense of
[Lambek-Scott]. Indeed, a functionally complete category simulates substitution
of terms as composition of arrows. An example how to compute an interpreta-
tion using composition in a 2-category is given in [Preller]. Interpretation in a
categorical system incorporating higher order logic will also permit a compari-
son between pregroup grammars and Head-driven Phrase Structure Grammars,
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following the higher order categorical grammars of [Pollard].

For many reasons, the ideas proposed in the present paper can only be a first
step toward semantics for pregroup grammars. In a next step, the tree-structure
of the translations could be exploited to describe the accessibility conditions of
discourse referents and develop an anaphoric theory by adding equalities as
non-logical axioms.
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