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Pregroup grammars with linear parsing: long

distance dependency of clitics in French

Anne Preller
Violaine Prince

Abstract

The linear parsing algorithm for pregroup grammars presented here
exploits regularities of types in the dictionary. Sufficient conditions on
the dictionary are given for the algorithm to be complete. Its working is
illustrated by a grammar with distant agreement of features in French,
including modal verbs, clitics, the compound past and the passive mode.
The semantic interpretation of sentences parsed with this grammar is a
predicate formula and can be computed from the parsing in time propor-
tional to the size of the parsing.

keywords: Categorial grammars, pregroup grammars, linear parsing algorithm, dis-
tant dependencies, agreement of features, French clitics

1 Introduction

Pregroup grammars are introduced in [Lambek 1999] and simplify the earlier syntactic
calculus of [Lambek 1958]. Pregroup grammars are lexical like other categorial gram-
mars. A pregroup grammar consists of a dictionary and just one rule: generalized
contraction. A dictionary is a list of ordered pairs v : X, called lexical entries, where
v is a word of the language and X an element of the pregroup, called type. The same
word may be listed several times, but with different types. To analyze a string of
words v1 . . . vn one chooses types Xl such that vl : Xl belongs to the dictionary for
1 ≤ l ≤ n and checks if successive applications of the generalized contraction rule re-
duce the concatenation X1 . . . Xn to the sentence type s. For a fixed string X1 . . . Xn,
there may be several ways how to apply the generalized contraction rule. Each such
choice of contractions is a reduction of X1 . . . Xn to s . A string of words v1 . . . vn is
recognized as a sentence, if there is at least one choice of types X1 . . . Xn and at least
one reduction of X1 . . . Xn to s. Each such reduction constitutes a parsing of v1 . . . vn.

Pregroup grammars have a cubic-time parsing algorithm which interweaves type
assignment and type checking by processing the string of words from left to right. This
algorithm does not take into account any properties specific to natural languages. In
fact, it can be used as an algorithm for proof search in the theory of pregroups,
[Degeilh-Preller]. Our believe is that humans process strings of words in linear time
and that pregroups are versatile enough to simulate such processing. Strings of types
from a dictionary for a natural language are not arbitrary. In this paper we formulate
some of the properties such dictionaries may have and show that they are sufficient
for a complete linear-time parsing algorithm.
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The algorithm is illustrated by a grammar which handles long distance agreement
of person, gender and number of the past participle with clitics in French. Clitics have
been studied with pregroup grammars in French, [Bargelli-Lambek], and in Italian,
[Casadio-Lambek], but without agreement. Our analysis differs from that given in
[loc. cit.] for two reasons. First of all, we want to avoid the meta-rule used there and
base the analysis inside an ordinary pregroup grammar. The other reason is that we
prefer to think of clitics as designating individuals or sets of individuals, not operators
on relations. Long distant dependency are captured by certain basic types called
shadows. They are part of the semantical interpretation we extract from the words
and as such are persistent throughout the sentence. As a side effect, they transmit
long distant dependency. Whereas the other basic types represent grammatical notions
like sentences, pronouns, etc, the shadows are implicit in the syntax and of anaphoric
nature.

The next section briefly recalls some basic properties of pregroups and the rudi-
ments of a semantical interpretation into predicate logic. The following section presents
the sample grammar and in the last section, we define the parsing algorithm.

2 Basic notions

We briefly recall the definition of pregroups and the construction of a freely gen-
erated pregroup by [Lambek 1999]. Then we describe reductions geometrically as
graphs and give the corresponding semantical interpretation into predicate logic. More
about this interpretation following the lines of Discourse Representation Structures in
[Kamp-Reyle] can be found in [Preller06].

A preordered monoid < P, 1, ·,→> is a set P with a distinguished element 1, a
binary operation · and a binary relation → satisfying for all a, b, c, u, v ∈ P

1 · a = a = a · 1
(a · b) · c = a · (b · c)
a → a
a → b and b → c implies a → c
a → b implies u · a · v → u · b · v.

The dot denoting multiplication is generally omitted. As usual, we say that two
elements a and b are non-comparable if a 6→ b and b 6→ a .

A pregroup is a preordered monoid in which each element a has both a left adjoint
a` and a right adjoint ar satisfying

(Contraction) a`a → 1, aar → 1

(Expansion) 1 → ara, 1 → aa`.

One derives

1. a → b if and only if b` → a` if and only if br → ar,

2. a → b if and only if abr → 1 if and only if b`a → 1.

The free pregroup P (B) generated by a partially ordered set of basic types B =
{..., a, b, ...} is characterized in [Lambek 1999] as the free monoid generated from the
set of simple types Σ consisting of the iterated adjoints of basic types

Σ =
n

a(z) : a ∈ B, z ∈ Z
o

.

The basic types a ∈ B are identified with a(0) ∈ Σ and therefore included in the simple
types. Elements of P (B) are called types, they are of the form
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a
(z1)
1 . . . a

(zk)
k ,

where a1, . . . , ak are basic types and z1, ..., zk are integers. The unit 1 denotes the
empty string and multiplication is the same as concatenation.

The left and right adjoints of a type are defined by

(a
(z1)
1 . . . a

(zk)
k )` = a

(zk−1)
k . . . a

(z1−1)
1

(a
(z1)
1 . . . a

(zk)
k )r = a

(zk+1)
k . . . a

(z1+1)
1 .

Hence, we have

a`` = a(−2), a` = a(−1), a = a(0), ar = a(1), arr = a(2) etc.

If s = a(z) we call z the iterator of s.
Finally, the preorder on types is defined as the transitive closure of the union of

the following three relations

(Induced step) Xa(z)Y → Xb(z)Y

(Generalized contraction) Xa(z)b(z+1)Y → XY

(Generalized expansion) Y → Xa(z+1)b(z)Y
where X and Y are arbitrary types, a and b are basic and either z is even and a → b
or z is odd and b → a.

In linguistic applications, the relevant inequalities have the form
t1 . . . tm → s ,

where the ti’s are simple and s is a basic type. A derivation of such an inequality can
be obtained by generalized contractions and induced steps only, see Proposition 2 of
[Lambek 1999]. For example, consider the dictionary

Marie : π3fs

Marie : o
Jean : π3ms

Jean : o

examine : πr
3sso`

The basic type π3fs stands for ’subject third person feminine singular’, or more gen-
erally, πpgn for ’subject of person p , gender g and number n’, where p ∈ {1, 2, 3} ,
g ∈ {m, f} and n ∈ {s, p}. Here, m stands for ’masculine’, f for ’feminine’, s for ’sin-
gular’ and p for ’plural’. We also have the basic types πpn for the subject when only
the person and the number matter and π when person, gender and number do not
matter. The basic types o and s stand for ’direct object’ respectively for ’sentence in
the present’. It is assumed that

πpgn → πpn → π , for p ∈ {1, 2, 3} , g ∈ {m, f} and n ∈ {s, p}.
To analyze a string of words, concatenate the types from the dictionary in the order
of the words. The string of words is reputed a sentence if and only if the concatenated
type has a derivation to the sentence type. For example,

Marie examine Jean
(Mary examines John)

(π3fs) (πr
3s s o`) (o ) → s

This derivation is justified by the generalized contractions π3fsπ
r
3s → 1 and o`o → 1.

As customary, the types have been written under the words and the generalized con-
tractions are indicated by under-links. In fact, the under-links uniquely determine the
derivation. A systematic study of graphs as proofs in pregroups has been undertaken
in [Preller-Lambek]. For our purposes here it suffices to remark that a derivation of
s1 . . . sn to a substring si1 . . . sip consisting of generalized contractions only is entirely
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determined by an algebraic part and a geometrical part R called reduction. A reduction
R is a set of two-element subsets {i, k} ⊆ {1, . . . , n}, called under-links, and satisfies

if i 6= il for 1 ≤ l ≤ p, there is exactly one k such that {i, k} ∈ R,

if {i, k} ∈ R then there is no l ∈ {1, . . . , p} such that i ≤ il ≤ k or k ≤ il ≤ i

if {i, k}, {j, m} ∈ R and i < j < k, then i < m < k.

The algebraic part consists of the generalized contractions

sisk → 1, for i < k such that {i, k} ∈ R

A reduction R is called a reduction from s1 . . . sn to si1 . . . sip , written
R : s1 . . . sn ⇒ si1 . . . sip

if all four conditions above hold. If the substring si1 . . . sip cannot be contracted any
further, it is called an irreducible form of s1 . . . sn.

The empty string 1 and every simple type is irreducible. A string of simple
types has at least one irreducible form, but their may be more than one, for ex-
ample a`aararr → 1 and a`aararr → a`arr. Even if a type has a unique irreducible
form, there may be different reductions bringing it to that form, e.g. both

a` a a`a ar a and a`a a` aar a

are reductions to the empty string.
After associating relational or functional symbols to the entries in the dictionary,

we construct a translation into predicate logic from a reduction to the sentence type.
This is done by replacing each basic type of the chosen lexical entry by the expression
given in the dictionary and substituting in each argument place the symbol linked to
its corresponding right or left adjoint. In our example the transitive verb examine is
interpreted as a binary relation. Looking at the type πr

3sso` of examine, the basic type
s indicates that the lexical entry defines a relational symbol and the right and left
adjoints of basic types determine the argument places. Here, π3s

r correspond to the
first argument place x1 and o` to the second x2 . According to this convention, the
types for proper names, which are just single basic types, do not introduce argument
places and are translated by constants.

Marie : π3fs marie

Marie : o marie

Jean : π3ms jean

Jean : o jean

examine : πr
3sso` examiner(x1, x2)

Now the under-link from π3fs to πr
3s tells us that the constant marie corresponding

to the basic type π3fs occupies the first argument place x1 corresponding to the right
adjoint πr

3s . Similarly, the under-link from o` to o puts the second constant jean into
the second argument place. Hence the translation of

Marie examine Jean
(π3fs) (πr

3s s o`) (o ) → s

becomes, after substitution,
examiner(marie, jean).

More generally, according to [Preller06], the basic type(s) in a lexical entry are
translated by functional or relational symbols. The argument places of these symbols
are identified with right or left adjoints of basic types of the lexical entry. Each non
basic type must be an argument place of at least one functional or relational symbol.
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The translation of the sentence is constructed from the translations of the words by
substitution. The translation then implies a characterizing formula of predicate logic,
in the style of [Kamp-Reyle].

The insistence that every simple type of the entry must correspond to a symbol of
the logic may force us to choose more involved types than needed for mere syntactic
recognition. Suppose we added a new basic type p standing for the past participle and
the lexical entries examiné : p o` and a : πr

3ssp` to our dictionary. The augmented
dictionary would recognize the sentence

Jean a examiné Marie
John has examined Mary

π3ms (πr
3s s p`) (p o`) (o) .

However, the entry examiné : p o` would correspond to a unary relation. Surely,
the relation translating a verb should depend on a stable number of variables in all
its temporal aspects. And the semantic function of the auxiliary is to provide the
temporal aspect rather than the missing argument place. If we add

examiné : πrpo` examiner(x1, x2)

a : πr
3ssp`π3s avoir(y) id(x)

,

we get the following parsing

Jean a examiné Marie
John has examined Mary

π3ms (πr
3s s p` π3s) (πr p o`) (o ) .

Now we can correctly interpret the past participle by a binary relation, in fact the same
we used for other forms of the same verb. The type for the auxiliary a has two basic
types, namely s and π3s. Hence we translate the entry jointly by the predicate avoir(y)
and the unary functional symbol id(x). The predicate symbol avoir translates the
first basic type s. Its argument-place y corresponds to p` . The functional symbol id
translates the second basic type π3s with the argument-place x given by πr

3s. A model
will interpret id as the identity function, hence we impose the axiom

id(x) = x .
The auxiliary verb avoir has the role of a temporal operator. Axioms could be added
to the logic to express the temporal meaning, but this goes beyond the scope of our en-
deavor here. The interpretation of the sentence above is now obtained by substituting
according to the under-links, i.e.

avoir(examiner(id(jean), marie)).
Using the equality id(jean) = jean, we derive

avoir(examiner(jean, marie)).

Similarly, the infinitive of a verb will have the same number of arguments than
finite forms, i.e. the lexical entry with the semantic interpretation is

examiner : πrio` examiner(x1, x2)
The motivation given above for the extra non-basic type in the infinitive or the

past participle is semantical. We will see in the next section that it also serves for
agreement of distant constituents in compound tenses or in the presence of modal
verbs.
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3 Agreement in the French sentence

In French, the personal pronoun in the role of a direct object precedes the verb. In the
compound past of the active form, the past participle agrees in gender and number with
the direct object clitic. If the verb is in passive form or forms its compound past with
the auxiliary être, the past participle agrees in gender and number with the subject.
Below, we will only consider clitics in the role of a direct object complement to the verb.
An extension of the dictionary to include indirect object clitics is straightforward, but
would extend this section beyond reasonable limits.

3.1 A dictionary with multiple entries

We add to the basic types of the preceding section new basic types for direct object
clitics opgn, depending on the features of person p = 1, 2, 3, gender g = m, f and number
n = s, p. Moreover, they have ’shadows’, ôpgn and ô, to capture distant dependencies.
The types ôgn are used if the person does not matter, but gender and number do. The
type of the clitic depends on the person because certain combinations of two clitics
are impossible depending on the person, but we do not discuss this topic here. We
assume

ôpgn → ôgn → ô , opgn → ôgn → ô ,
for p = 1, 2, 3, g = m, f and n = s, p.

Next we will extend the dictionary to cover sentences like
Marie les examine Marie s’examine
(mary examines them) (mary examines herself)
Marie les a examinés Marie s’est examinée
(mary has examined them) (mary has examined herself )
Marie doit les examiner Marie doit s’examiner
(mary must examine them) (mary must examine herself)
Marie doit les avoir examinés Marie doit s’être examinée
(mary must have examined them) (mary must have examined herself)
Marie est examinée par Jean Marie est examinée
(mary is examined by john) (mary is examined)

The lexical entries for personal pronoun les and the reflexive pronoun s’ are
les : o3mp C

les : o3fp C

s ′ : π3ms
rπ3msô3ms id(x) id(x)

s ′ : π3fs
rπ3fsô3fs id(x) id(x)

s ′ : π3mp
rπ3mpô3mp id(x) id(x)

s ′ : π3fp
rπ3fpô3fp id(x) id(x)

As the semantical translation does not depend on the features of gender and number,
we may represent these six entries by the abbreviation

les : o3gp C

s’ : πr
3gnπ3gnô3gn id(x) id(x)

, where g ∈ {m, f} , n ∈ {s, p}.

If the context permits, the set of values for the indices p, g, n is omitted.
We remark that the lexical entries s ′ : πr

3gnπ3gnô3gn express a dependence on the
gender and number of the subject and hand these features to the shadow object. This is
achieved by using the same indices in πr

3gn and ô3gn . The anaphoric content is captured
by the occurrence of two basic types, π3gn and ô3gn. Both are translated by the unary
functional symbol id and depend on the same argument-place x corresponding to πr

3gn.
Recall that id(x) = x holds in the logic.
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In simple tenses, clitics do not require agreement with the following verb. Their
preverbal position makes it necessary to assign a new type to the verb, added to the
entries given in the former section and recalled here in parentheses.

(examiner : πrio` examiner(x1, x2))
examiner : ôrπri examiner(y1, y2)

(examine : πr
3sso` examiner(x1, x2))

examine : ôrπr
3ss examiner(y1, y2)

.

In the new entries, the first variable y1 corresponds to πr respectively πr
3s and the

second argument place y2 to ôr.
The gender of the pronoun les can be masculine or feminine in the sentence Marie

les examine (Mary examines them). The two possible type assignments with a
reduction to the sentence type reflect this fact. In opposition, only one of the four
possible type assignments for the reflexive pronoun s’ will do in the sentence Marie
s’examine (Mary examines herself). Hence, we find the following reductions

Marie les examine Marie s’ examine
(π3fs) (o3gp) (ôr πr

3s s) , g = m, f (π3fs) (πr
3fs π3fs ô3fs) (ôr πr

3s s).

As g can take two values, the left hand display corresponds to two different type
assignments, differing by o3mp and o3fp for the clitic les. The reduction itself remains
unchanged, the set of links is the same for both type assignments. This observation
is important when type assignments have to be chosen and tested for existence of
reductions. The value of g is irrelevant and we can find both reductions by computing
just one. Note that the semantic difference between the left and right hand sentences
above is correctly captured by the reductions

Marie les examine : examiner(marie, C)
Marie s’examine : examiner(id(marie), id(marie))

As id(x) = x, the latter translation is equivalent to
Marie s’examine : examiner(marie, marie).

The type of the reflexive pronoun depends on the person to avoid non-sentences like
*Tu s’examine(you examine himself). Indeed, tu : π2gs, g = m, f and π2gsπ

r
3gs 6→ 1.

In the compound past, the clitic is separated from its verb by the auxiliary. The
auxiliary does not show the relevant features by its form, but it carries them to the
following word(s). The lexical entries below model this behavior by ’remembering’
types.

avoir : opgn
rπrip`πôgn avoir(y) id(x1) id(x2)

a : o3gn
rπr

3ssp`πôgn avoir(y) id(x1) id(x2)

être : ôr
pgnπrip`πôgn être(y) id(x1) id(x2)

est : ôr
3gsπ

r
3ssp`πôgs être(y) id(x1) id(x2)

examiné : ôr
msπ

rp examiner(x1, x2)
examinée : ôr

fsπ
rp examiner(x1, x2)

examinés : ôr
mpπ

rp examiner(x1, x2)
examinées : ôr

fpπ
rp examiner(x1, x2)

.

The basic type π in the first four entries above is translated by id(x1), where in all
entries the variable x1 corresponds to the right adjoint πr , with indices or without
indices. Similarly, the basic types ôgn are translated by id(x2), where x2 corresponds to
or, with the appropriate indices, with hat or without. The left adjoint p` corresponds
to the variable y.

Recall that the plural clitic les has two types, namely o3mp and o3fp. If we choose
the former, the past participle must be masculine plural. If we choose the latter, it
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must be feminine plural. However, both sentences have the same under-links, i.e. the
same reduction. Though we do not know the correct choice of the value for g until we
see the last word, it does not matter when searching for a reduction.

Marie les a examinés
(π3fs) (o3mp) (or

3mp πr
3s s p` π ômp) (ôr

mp πr p)

Marie les a examinées
(π3fs) (o3fp) (or

3fp πr
3s s p` π ôfp) (ôr

fp πr p)

If the clitic is a reflexive pronoun, the auxiliary in the compound tense is être. The
past participle agrees in gender and number with the clitic if the latter is the direct
object. Hence the type of être is similar to that of avoir, except that it is tailored to
the reflexive pronoun, and therefore starts with ôr

pgn instead of or
pgn .

Marie s’ est examinée
(π3fs) (πr

3fs π3fs ô3fs) (ôr
3fs πr

3s s p` π ôfs) (ôr
fs πr p) .

Whereas the auxiliaries avoir and être ’remember’ the features of the object, the
modal verbs ’remember’ the features of the subject. The clitic is positioned between
the modal verb and the verb of which it is the object complement.

devoir : πr
pgnii`πpgn devoir(y) id(x)

doit : πr
3gssi`πr

3gs devoir(y) id(x)

where p = 1, 2, 3; g = m, f; n = s, p . In these entries, the predicate symbol devoir
translates the basic type i respectively s. The unary functional symbol id translates
the basic type πpgn. The variable y corresponds to i` and x to πr

pgn. Then we have
the two reductions to the sentence type

Marie doit les examiner
(π3fs) (πr

3fs s i` π3fs) (o3gp) (ôr πr i) , where g = m, f.

Marie doit s’ examiner
(π3fs) (πr

3fs s i` π3fs) (πr
3fs π3fs ô3fs) (ôr πr i) .

The translations of the two sentences are after replacement of id(marie) by marie

devoir(examiner(marie,C))

devoir(examiner(marie,marie)).

The reason why the type of the modal verbs depends on the gender becomes evident
when they are used in combination with the compound past. For example

Marie doit les avoir examinés
(π3fs) (πr

3fs s i` π3fs) (o3mp) (or
3mp πr i p` π ômp) (ôr

mp πr p)

and
Marie doit s’ être examinée
(π3fs)(π

r
3fs s i` π3fs)(π

r
3fs π3fs ô3fs)(ô

r
3fs πr i p` π ôfs)(ô

r
fs πr p ) .

Note that the non-sentence *Marie doit s’être examiné has no reduction to the sentence
type as ôfs 6→ ôms.

If we want to extend our language fragment to cover intransitive verbs forming the
compound past with être, we add to the dictionary
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être : πr
gnip`πgn être(y) id(x)

est : πr
3gssp`πgs être(y) id(x)

partir : πr i partir(x)
part : πr

3s s partir(x)
parti : πr

msp partir(x)
partie : πr

fsp partir(x)
partis : πr

mpp partir(x)
parties : πr

fpp partir(x)

,

where g = m, f; n = s, p .

Then we find the following reduction to the sentence type
Marie doit être partie
Mary must have left
(π3fs) (πr

3fs s i` π3fs) (πr
fs i p` πfs) (πr

fs p) .

For the passive form of transitive verbs yet more entries are needed. In particular,
we introduce a new basic type π̂ for the agent of the passive form, when introduced
by the preposition par(by):

être : πr
gnip`ôgn être(y) id(x)

est : πr
3gssp`ôgs être(y) id(x)

examiné : ôr
mspπ̂` examiné(x1, x2)

examinée : ôr
fspπ̂` examiné(x1, x2)

examinés : ôr
mppπ̂` examiné(x1, x2)

examinées : ôr
fppπ̂` examiné(x1, x2)

par : π̂π` id(z)

, where g = m, f, n = s, p.

In the translation examiné(x1, x2) of these entries for the past participle, x1 corre-
sponds to π̂` and x2 to ôr

gn . The relational symbol examiné is different from examiner.
The semantic connection between the passive and the infinitive of a transitive verb
can be expressed by the non-logical axiom

être(examiné(x1, x2)) ⇔ examiner(x2, x1) ,

but this would be beyond the subject of this paper.
Choosing the entries est : πr

3fssôfsp
` and examinée : pôr

fsπ̂
`, we find the following

reduction
Marie est examinée par Jean
(π3fs)(π

r
3fs s p` ôfs)(ô

r
fs p π̂`)(π̂ o`)(o)

This reduction defines the translation
être(marie, examiné(jean, marie) ⇔ examiner(jean, marie)

Finally, if the agent of the passive is absent, like in Marie est examinée, the past
participle will have yet another a type.

examiné : ôr
mspπ̂`π̂ examiné(x1, x2) C

examinée : ôr
fspπ̂`π̂ examiné(x1, x2) C

examinés : ôr
mppπ̂`π̂ examiné(x1, x2) C

examinées : ôr
fppπ̂`π̂ examiné(x1, x2) C

The constant C translates the basic type π̂ of the lexical entries above and names the
implicit agent of the passive form.

Marie doit être examinée
(π3fs) (πr

3fs s i` π3fs) (πr
fs i p` ôfs) (ôr

fs p π̂`π̂) .
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Instead of giving the translation for the parsing structure above, we briefly describe
a method how to find it without examining to many type assignments, in spite of the
multiple entries for the same words. For easier use, the lexical entries are listed together
below:

Basic types
πpgn → πpn → π , ôpgn → ôgn → ô , opgn → ôgn → ô , o , i , p , s ,
for p = 1, 2, 3, g = m, f and n = s, p.

Noun phrases, clitics, par (by)
Marie : π3fs marie

Marie : o marie

Jean : π3ms jean

Jean : o jean

les : o3gp C

s’ : πr
3gnπ3gnô3gn id(x) id(x)

par : π̂o` id(z)

Intransitive verbs
partir : πr i partir(x)
parti : πr

msp partir(x)
partie : πr

fsp partir(x)
partis : πr

mpp partir(x)
parties : πr

fpp partir(x)

Transitive verbs
examiner : πrio` examiner(x1, x2)
examiner : ôrπri examiner(y1, y2)

examine : πr
3sso` examiner(x1, x2)

examine : ôrπr
3ss examiner(y1, y2)

examiné : πrpo` examiner(x1, x2)
examiné : ôr

msπ
rp examiner(x1, x2)

examiné : ôr
mspπ̂` examiné(x1, x2)

examiné : ôr
mspπ̂`π̂ examiné(x1, x2) C

examinée : ôr
fsπ

rp examiner(x1, x2)

examinée : ôr
fspπ̂` examiné(x1, x2)

examinée : ôr
fspπ̂`π̂ examiné(x1, x2) C

examinés : ôr
mpπ

rp examiner(x1, x2)

examinés : ôr
mppπ̂` examiné(x1, x2)

examinés : ôr
mppπ̂`π̂ examiné(x1, x2) C

examinées : ôr
fpπ

rp examiner(x1, x2)

examinées : ôr
fppπ̂` examiné(x1, x2)

examinées : ôr
fppπ̂`π̂ examiné(x1, x2) C
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Auxiliaries
avoir : πrip`π avoir(y) id(x)

avoir : opgn
rπrip`πôgn avoir(y) id(x1) id(x2)

a : πr
3ssp`π avoir(y) id(x)

a : o3gn
rπr

3ssp`πôgn avoir(y) id(x1) id(x2)

être : πr
gnip`πgn être(y) id(x)

être : πr
gnip`ôgn être(y) id(x)

être : ôr
pgnπrip`πôgn être(y) id(x1) id(x2)

est : πr
3gssp`πgs être(y) id(x)

est : πr
3gssp`ôgs être(y) id(x)

est : ôr
3gsπ

r
3ssp`πôgs être(y) id(x1) id(x2)

Modal verbs
devoir : πr

pgnii`πpgn devoir(y) id(x)

doit : πr
3gssi`πr

3gs devoir(y) id(x)
where p = 1, 2, 3, g = m, f and n = s, p.

3.2 Choosing type assignments

The various types associated to a word by the dictionary present certain regularities.
These can be exploited to avoid type assignments that cannot lead to a reduction to the
sentence type. We illustrate this on the example sentence Marie doit être examinée.
The sentence is processed as we hear it, word after word.

The first word Marie has two entries in the dictionary. After hearing Marie, we
know that every type assignment will start with

π3fs and o .
However, the dictionary has no occurrence of the simple type or, hence no matter how
we continue, a string of simple types starting with o has no reduction to the sentence
type. Hence we can ignore this loosing type assignment when processing the following
of words. The next word has two lexical entries, namely doit : πr

3gssi`π3gs, g = m, f.
The type assignments for Marie doit to be processed are

π3fs πr
3mssi`π3ms and π3fs πr

3fssi`π3ms.

The first is a loser, because it contains an irreducible substring ending in a right
adjoint, namely π3fs πr

3ms . Indeed, there are no double right adjoints in the dictionary,
the simple type πr

3ms can only be contracted with a basic type to its left. Hence,
which ever words we hear after doit, none of them will have a type assignment which
eliminates πr

3ms. Therefore, after hearing Marie doit, we know that the only type
assignment which might produce a reduction to the sentence type is π3fs πr

3fssi`π3fs .
As we do not want to overburden the memory, we make the contraction π3fsπ

r
3fs → 1

and store the result
si`π3fs

There are twenty possible entries for the next word, namely

être : ôr
pgnπrip`πôgn,

être : πr
gnip`πgn,

être : πr
gnip`ôgn,

p = 1, 2, 3; g = m, f; n = s, p.

The last simple type of the stored string is π3fs. Comparing it with the first simple type
of the entries for être, we find that π3fsô

r
pgn forms an irreducible string for all values of

p, g and n . Hence we can eliminate the twelve entries starting with ôr
pgn . Again, out

of the eight remaining entries, only two will not create an irreducible substring, namely
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those for which g = f and n = s . Hence we compute the two possibly non-loosing
assignments for Marie doit être

si`π3fsπ
r
fsip

`πfs → sp`πfs and si`π3fsπ
r
fsip

`ôfs → sp`ôfs and store the results,
namely

sp`πfs and sp`ôfs .
The last word examinée has three entries in the dictionary, namely
examinée : ôr

fsπ
rp

examinée : ôr
fspπ̂`

examinée : ôr
fspπ̂`π̂

.

The first of the stored strings ends with πfs , hence would create the irreducible string
πfsô

r
fs with all three entries. So we may erase it from the memory. Remains the string
sp`ôfs

in the memory. Choosing the first entry for examinée, we contract
sp`ôfsô

r
fsπ

rp → sp`πrp ,
we find the irreducible substring p`πr and therefore eliminate the first entry as a
possible type assignment. Next, we compare the stored string with the the second
entry ôr

fspπ̂` and find
sp`ôfsô

r
fspπ̂` → sπ` .

As we are at the end of the processed string of word nothing else can be done.
Finally, concatenating the stored type sp`ôfs with the last choice for examinée,

namely ôr
fspπ̂`π̂, we find that it has a reduction to the sentence type. In fact, we can

find this result reading the type from the dictionary from left to right, simple type by
simple type, adding each simple type read to the memorized type. If the read type
contracts with the last simple type in the memory we eliminate both and proceed.
Else, we just proceed.

sp`ôfsô
r
fs → sp`

sp`p → s
sπ̂`

sπ̂`π̂ → s .

We describe this linear algorithm in the next section more formally and give suf-
ficient conditions on the dictionaries for which it is complete.

4 Linear assignment

Certain properties of the sample grammar in the preceding section are sufficient con-
ditions for a linear parsing algorithm. They are of two different kinds. One is an
assumption about the form of the types in the dictionary. The other one assumes that
the temporary memory does not get overcharged during processing. The idea that
the temporary memory is limited to about seven bits is based on a study of [Miller]
and illustrated convincingly with a linguistic example by [Lambek 2006]. We limit
processing by assuming that dictionaries are concise (see below).

In the following, the partially ordered set B and the free pregroup P (B) generated
by B are fixed. As usual, a dictionary D over B for a set of words V is a map from
V to the set of subsets of P (B). Instead of Tl ∈ D(vl) we may write vl : Tl . We
distinguish a basic type s called sentence type. A string of types T1 . . . Tn is called
a type assignment for v1 . . . vn if vl : Tl is an entry of the dictionary for 1 ≤ l ≤ n.
Searching for a reduction of T1 . . . Tn to s is called type checking. A parsing of a string
v1...vn consists of a type assignment Tl ∈ D(vl) and a reduction of T1...Tn to s.
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We begin by describing an algorithm which combines search for reduction with
type assignment. This algorithm is extracted from [Preller07] and reproduced here for
completeness sake. It processes by stages reading the string of words v1 . . . vn from
left to right. At each stage, it either chooses a type for the word under examination or
processes the assigned type by reading its simple types from left to right. The result
is a reduction of the type processed so far to an irreducible type.

The set of stages associated to v1 . . . vn consists of triples s = (l, T1 . . . Tl, p) where
l is the number of the word vl being processed
Tk = fk1 . . . fkqk in D(vk), 1 ≤ k ≤ l, a type assignment for v1 . . . vl

p a position, 0 ≤ p ≤ ql.

The stages are partially ordered as follows

(l, T1 . . . Tl, p) ≤ (l′, T ′
1 . . . T ′

l′ , p
′) ⇔ l ≤ l′, p ≤ p′, Tk = T ′

k for 1 ≤ k ≤ l .

To these we add an initial stage sin such that sin < s for all s.
We remark that all stages s except the initial have a unique immediate predecessor,

which we denote by s− 1, i.e.

(l, T1 . . . Tl, p)− 1 =

8><>:
(l, T1 . . . Tl, p− 1), if 1 ≤ p ;

(l − 1, T1 . . . Tl−1, ql−1) if p = 0 and l > 1,

sin , if p = 0 and l = 1.

The definitions imply that the set of stages smaller than or equal to a given stage s is
totally ordered.

This total order can be used to control the way how the algorithm moves through
the stages and define the actual position p(s) and the type read at this position fp(s) .
At the initial stage p(sin) = 0, fp(sin) = 1 . A stage of the form (l, T1 . . . Tl, 0) ,
1 ≤ l ≤ n, is called a downloading stage and serves to choose a type Tl ∈ D(vl) as
soon as the word vl has been given. At a downloading stage s = (l, T1 . . . Tl, 0) , the
examined position remains unchanged

p(s) = p(s− 1) = q1 + · · ·+ ql−1 + 0 .

After downloading, the string of simple types Tl is read from left to right. Each stage
which is not initial and not downloading is called a testing stage. To reach the testing
stage s = (l, T1 . . . Tl, p), p ≥ 1, the preceding position p(s− 1) is incremented by 1:

p(s) = p(s− 1) + 1 = q1 + · · ·+ ql−1 + p .

It follows that the simple type occupying this position satisfies

fp(s) = flp .

More generally, for every r such that 1 ≤ r ≤ p(s) there are a unique k and a unique
p′ such that 1 ≤ k ≤ l, 1 ≤ p′ ≤ qk and r = q1 + · · ·+ qk−1 + p′. We let

fr = fkp′ .

The simple type fp(s) is tested for generalized contraction with the last not contracted
type in the string. This test can be done in one time unit by accessing the partial
order relation on the set of basic types. If it fails, p(s) is added on the top of the stack
indicating that fp(s) is the latest not (yet) contracted type. The other data remain
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unchanged. If the test succeeds, the stack is popped and the link consisting of the
contracting positions is added to the reduction computed so far. As the test is only
performed for non-initial and non-downloading stages, all positions r stored in the
stack correspond to a unique number k and a unique p′ for which 1 ≤ p′ ≤ qk and
r = q1 + · · ·+ qk + p′.

Definition 1. Parsing Algorithm
H At the initial stage, let

S(sin) = 〈∅, 0〉 , R(sin) = ∅

H At a downloading stage s = (l, T1 . . . Tl, 0), the stack and reduction remain unchanged

S(s) = S(s− 1), R(s) = R(s− 1)

H If s(l, T1 . . . Tl, p) is not downloading and not initial, let t(s − 1) = top(S(s − 1)) .
Then

S(s) =

(
pop(S(s− 1)), if ft(s−1)fp(s) → 1

〈S(s− 1), p(s)〉 , else

R(s) =

(
R(s− 1) ∪ {{t(s− 1), p(s)}} , if ft(s−1)fp(s) → 1

R(s− 1), else
.

Lemma 1. For every stage s = (l, T1 . . . Tl, p) , let the types T (s) and S(s) be defined
as follows:

T (sin) = S(sin) = 1 = f0

T (s) = T (s− 1)fp(s)

S(s) =

8><>:
S(s− 1), if s is downloading

pop(S(s− 1)), else if ft(s−1)fp(s) → 1

S(s− 1)fp(s), else .

Then T (s) = T1 . . . Tl−1fl1 . . . flp , for 1 ≤ l ≤ n and 1 ≤ p ≤ ql . Moreover, the string
S(s) is an irreducible substring of T (s) and R(s) is a reduction from T (s) to S(s) .

Proof : The restriction of R and S to the set of stages less or equal to s = (l, T1 . . . Tl, p)
is a particular case of the type checking algorithm in [Preller07], applied to the type
assignment T1 . . . Tl . The property follows now from Theorem 6.5 in [loc. cit.].

Let T1 . . . Tn be a type assignment of v1 . . . vn and consider a final stage s = (n, T1 . . . Tn, qn) .
According to the lemma above, R(s) is a reduction to an irreducible form of T1 . . . Tn.
If this irreducible form happens to be the sentence type, the algorithm gives a parsing
of this sentence. If this irreducible form is not the sentence type, however, we cannot
conclude in general that T1 . . . Tn has no reductions to the sentence type. Hence, the
algorithm is not complete unless we impose sufficient conditions on the dictionary.
One of them is linearity :

Definition 2. Linearity
A critical triple of a string of simple types t1 . . . tq is a substring ti . . . tj . . . tk such that
i < j < k and

titj → 1, tjtk → 1,
ti+1 . . . tj−1 → 1, tj+1 . . . tk−1 → 1

.

A string of simple types without critical triples is called linear. A dictionary is linear,
if all type assignments with some reduction to the sentence type are linear.
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For example, the dictionary of the preceding section is linear. Indeed, the basic
types of a fixed connected component appear either with with right adjoints or with
left adjoints in the dictionary, but never with both a right and left adjoint. Hence no
string of words has a type assignment containing a critical triple.

Theorem 1 (Completeness). A string of words from a linear dictionary v1 . . . vn is
a sentence if and only if at some final stage s = (n, T1 . . . Tn, qn), the reduction R(s)
reduces (T1 . . . Tn) to the sentence type.

Proof : By Lemmas 5.3 and 5.4 in [Preller07], every linear string has a unique irre-
ducible form and a unique reduction to this irreducible form.

The algorithm is complete under the assumption that it computes all final stages.
However, many stages cannot be extended to one with a reduction to the sentence
type and therefore the Parsing Algorithm need not go through them. Hence we for-
mulate a criterion which makes it possible to recognize such stages while running the
Parsing Algorithm.

Definition 3. (Loosing stages)
A simple type f is right cancellable in D , if it is the sentence type s or if there is a sim-
ple type f ′ such that f → f ′ and f ′r occurs in D . A stage s = (l + 1, T1 . . . Tl+1, ql+1)
associated to a string of words v1 . . . vl+1 , 1 ≤ l < n , is loosing if for some position i
stored in S(s), the simple type fi is not right cancellable.

Corollary 2. Assume that the dictionary is linear and let t(s) denote the top of the
stack S(s). If at stage s the simple type ft(s) is not right cancellable, then no final
stage extending s produces a reduction to the sentence type s .

Proof : Recall that t(s) is the last element in the stack S(s) and that the irreducible
type defined by the stack ends with ft(s) . The assumption then implies that t(s) will
never be popped from the stack. Therefore, for every extension s′ of s, the irreducible
form S(s′) has an occurrence of ft(s) 6= s. As the dictionary is linear, the type
assignment defined by s′ has no other irreducible forms.

Note that the existence of a unique reduction per type assignment does not preclude
ambiguity, because several type assignments may have a reduction to the sentence
type. As there are as many final stages as there are different type assignments it is
quite unlikely that a human will consider them all. The choice of the type for the
next word depends on the meanings of the previous words, i.e. the already chosen
types. We may assume that the selection criterion is good enough to keep the number
of possible meanings manageable. For pregroup dictionaries, we can formulate such a
criterion with the help of the Parsing Algorithm.

Definition 4. (Concise Dictionaries)
A dictionary is concise, if for every sentence v1 . . . vn and for every Tl+1 ∈ D(vl+1) ,
1 ≤ l < n , there is at most one stage (l, T1 . . . Tl, ql) for which (l+1, T1 . . . TlTl+1, ql+1)
is not loosing.

The sample dictionary of the previous section is concise. Conciseness makes the
number of stages which have to be examined by the Parsing Algorithm proportional
to the number of words. The following is a simplification of Lemma 6.6. of [Preller07]
to the linear case:
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Lemma 2 (Constant number of basic steps per word). Let D be a concise
dictionary and k0 bound the number of types per word and the length of all types in the
dictionary. Then for every string of words v1 . . . vn and all l, 1 ≤ l ≤ n , the number
of non-loosing stages (l, T1 . . . Tl, ql) is bounded by k0 . Moreover, the number of basic
steps performed while processing word vl is constant.

Proof : By induction on l . The property is obvious for l = 1 , because there are at most
k0 lexical entries vl : T1 and the number of computation steps for every simple type of
T1 is bounded by a constant, say c . When processing word vl+1 , only the non-loosing
stages (l, T1 . . . Tl, ql) are extended by a lexical entry Tl+1 ∈ D(vl) . By induction
hypothesis, there are at most k0 of the former and, by assumption, there are at most
k0 of the latter. Hence at most k2

0 stages (l + 1, T1 . . . TlTl+1, 0) are to be considered.
As the length of Tl+1 is bounded by k0 , the stage (l + 1, T1 . . . TlTl+1, ql+1) is reached
computing most ck0 basic steps . The test performed at stage s = (l+1, T1 . . . TlTl+1, p)
permits to recognize it as loosing if fp(s) is not right cancellable and ft(s)fp(s) 6→ 1 . For
a given Tl+1 ∈ D(vl) , at most one of the non-loosing stages (l, T1 . . . Tl, ql) will yield a
non-loosing stage (l + 1, T1 . . . TlTl+1, ql+1) . Hence after performing at most ck3

0 basic
steps for word vl+1 , at most k0 stages (l + 1, T1 . . . TlTl+1, ql+1) will be recognized as
non-loosing.

Theorem 3 (Linearity). For linear and concise pregroup grammars there is a com-
plete linear algorithm which decides if v1 . . . vn is a sentence and, if this is true, finds
the reductions to the sentence type.

Proof : By the Completeness Theorem, the Parsing Algorithm finds all reductions to
the sentence type of a given string of words. Every regroup grammar has a finite dic-
tionary and therefore a bound for the number of types per word and the length of all
types in the dictionary. By the Failure Detection Lemma, the number of basic steps
performed for each word is bound by a constant. A control can be prevent the Parsing
Algorithm to continue computation for loosing stages. The modified algorithm is still
complete.

5 Conclusion

Our aim here was to illustrate that concepts from other grammars, for example HPSG’s
of [Pollard-Sag], can and should be used in pregroup grammars, but only to increase
efficiency. The fact to use features in pregroup grammars does not imply that the
grammar has a structure beyond the original concept. All we have done is to single
out properties of the types in the dictionary which make parsing linear. If the prop-
erties were to be ignored, the grammar would not change, it would generate the same
sentences with the same parsings and same semantical interpretation. The examples
show that linear parsing may come at the cost of adding basic types or increasing the
number of types per word in the dictionary. The contribution of this paper is to show
that an explosion of basic types does not increase runtime but may rather diminish it.
Similarly, increasing the number of types per word does not increase the complexity
of the algorithm, but only the constant factor to which runtime is proportional. This
constant can be lowered by exploiting certain regularities of features which make it
possible to construct several distinct reductions with one and the same computation.
Future work will go in this direction. Larger and more expressive language fragments
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are handled by non-linear dictionaries that also can be parsed in linear time as shown
in [Preller07]. Our belief is that clitics in general, see [Cardinaletti], can be handled
by pregroup grammars in a very efficient way.
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