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Pregroup grammars with linear parsing of the

French verb phrase

Anne Preller
Violaine Prince

Abstract

The parsing algorithm for pregroup grammars presented here exploits
regularities of types of a pregroup grammar. Sufficient conditions are given
for the algorithm to be linear and complete. Its working is illustrated by
a grammar which handles unbounded dependencies and agreement with
clitics in French. The grammar includes control of the complement of the
infinitive by modal and causal verbs.

keywords: Categorial grammars, pregroup grammars, linear parsing algorithm, dis-
tant dependencies, complement control, agreement of reflexive pronouns and clitics in
French.

1 Introduction

Pregroup grammars belong to the family of categorial grammars and were introduced
by [Lambek 1999]. A pregroup grammar consists of a dictionary and only one rule:
generalized contraction. A dictionary is a list of ordered pairs v : X, called lexical
entries, where v is a word of the language and X an element of the pregroup, called
type. The same word may be listed several times, but with different types. To analyze
a string of words v1 . . . vn one chooses types Xi such that vi : Xi belongs to the
dictionary for 1 ≤ i ≤ n and checks if successive applications of the generalized
contraction rule reduce the concatenated type X1 . . . Xn to the sentence type s. Each
such choice of contractions is a reduction from X1 . . . Xn to s . A string of words
v1 . . . vn is recognized as a sentence, if the type X1 . . . Xn reduces to s for some type
assignment for v1 . . . vn. Each such reduction constitutes a parsing of v1 . . . vn.

Pregroup grammars have parsing algorithms which run in cubic time, i.e. in time
proportional to n3, where n is the length of the string of words. Hence any endeavor
to improve complexity will aim at linear run-time algorithms.

Ambiguity enters pregroup grammars in two ways: I) A string of words may have
multiple type assignments. II) Sentences may have up to 2n parsings for one and
the same type assignment. As an example, consider the rigid dictionary listing three
words, each with a single type, namely u : sa`, v : aa` and w : aara respectively.
Then sentences of he form uvnw have at least 2n different reductions to the sentence
type. Hence an efficient parsing algorithm cannot construct all parsings of a sentence
during its run-time. What we require of such an algorithm is to decide whether or not
a string of words is a sentence and, if it is one, to produce one of the possible parsings.

1



Ambiguity of the second kind typically arises with relative clauses or coordination.
It alone can be responsible for the cubic time bound. However, ambiguity of the second
kind need not be an obstacle to linear parsing. Indeed, these linguistic phenomena can
be handled by a class of pregroup grammars with complete linear parsing algorithms
for every given type assignment, see [Preller3]. Here, we show that the same holds for
ambiguity of the first kind. We define criteria that make it possible to recognize type
assignments with no reduction to the sentence type at an early stage during processing.
Hence, the algorithms of [loc.cit.] can be adapted to recognize and avoid the ‘losing’
type assignments, processing thus only a constant number of type assignments.

Here we address ambiguity of the first kind. The abundance of multiple type as-
signments in our grammar is partly due to clitics depending on features like person,
gender and number without expressing them morphologically. Another reason are de-
pendencies involving auxiliaries and the past participle as well as modal and causal
verbs and the infinitive. The multiple entries in the dictionary are the price to pay to
make the pregroup grammar handle such dependencies both syntactically and seman-
tically without additional structure. The semantic interpretation in predicate logic of
the grammar is out of the scope of this paper. Examples from the grammar presented
here are used in [Preller2] for a study of such an interpretation. In this paper, we limit
ourselves to a less formal description of dependency.

The next section recalls some basic properties and results concerning pregroup
grammars. The following Section 3 presents a mini-dictionary for the French verb
phrase. Reflexive pronouns, combinations of the direct and indirect object clitics and
their agreement with the past participle are included . Such a dictionary is necessarily
incomplete. It would have to be completed in many aspects for an application, but we
think that this can be done on the foundations given here. In the final Section (4), we
study the algorithm and the criteria which make it recognize ‘losers’ and skip them
early on. A ‘loser’ is a partial type assignment which cannot be extended to one with
a reduction to the sentence type. Hence the algorithm parses only non-losing type
assignments, and each in linear time. Finally, we mention sufficient conditions for the
existence on a bound on the number of non-losing type assignments. In this case the
algorithm produces a parsing for each of the type assignments with a reduction to the
sentence type.

2 Fundamental properties

We recall the definition of pregroups, the construction of a freely generated pregroup by
[Lambek 1999] and the geometrical characterization of derivations in pregroup gram-
mars as graphs of underlinks.

A preordered monoid < P, 1, ·,→> is a set P with a distinguished element 1, a
binary operation · and a binary relation → satisfying for all a, b, c, u, v ∈ P

1 · a = a = a · 1
(a · b) · c = a · (b · c)
a → a
a → b and b → c implies a → c
a → b implies u · a · v → u · b · v.

The dot denoting multiplication is generally omitted. As usual, we say that two
elements a and b are non-comparable if a 6→ b and b 6→ a .

A pregroup is a preordered monoid in which each element a has both a left adjoint
a` and a right adjoint ar satisfying
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(Contraction) a`a → 1, aar → 1

(Expansion) 1 → ara, 1 → aa`.

One derives

1. a → b if and only if b` → a` if and only if br → ar,

2. a → b if and only if abr → 1 if and only if b`a → 1.

The free pregroup P (B) generated by a partially ordered set of basic types B is char-
acterized in [Lambek 1999] as the free monoid generated from the set of simple types
Σ consisting of the iterated adjoints of basic types

Σ =
n

a(z) : a ∈ B, z ∈ Z
o

.

We call a the base and z the iterator of the simple type t = a(z) . The basic types
a ∈ B are identified with a(0) ∈ Σ and therefore included in the simple types. Elements
of P (B) are called types, they are of the form

a
(z1)
1 . . . a

(zk)
k ,

where a1, . . . , ak are basic types and z1, ..., zk are integers. The unit 1 denotes the
empty string and multiplication is the same as concatenation.

The left and right adjoints of a type are defined by

(a
(z1)
1 . . . a

(zk)
k )` = a

(zk−1)
k . . . a

(z1−1)
1

(a
(z1)
1 . . . a

(zk)
k )r = a

(zk+1)
k . . . a

(z1+1)
1 .

Hence, for a basic type a we have

a`` = a(−2), a` = a(−1), a = a(0), ar = a(1), arr = a(2) etc.

Finally, the preorder on types is defined as the transitive closure of the union of the
following three relations

(Induced step) Xa(z)Y → Xb(z)Y

(Generalized contraction) Xa(z)b(z+1)Y → XY

(Generalized expansion) Y → Xa(z+1)b(z)Y
where X and Y are arbitrary types, a and b are basic and either z is even and a → b
or z is odd and b → a.

In linguistic applications, the relevant inequalities have the form

t1 . . . tm → s ,

where the ti’s are simple and s is a basic type. A derivation of such an inequality can
be obtained by generalized contractions and induced steps only, see Proposition 2 of
[Lambek 1999]. For example, consider the dictionary

Marie : νfs
Jean : νms
examine : πr

3sso`
.

The basic type νfs stands for ‘proper name feminine singular’ and similarly νms stands
for ‘proper name masculine singular’. We also have the basic type π3s for the ‘subject
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third person singular’. The feature gender has two values, namely masculine, abbre-
viated by m, and feminine, abbreviated by f. Similarly, the feature number may take
the values s (= singular) and p (= plural). The basic types o and s stand for ‘direct
object’ respectively for ‘sentence in the present’. It is assumed that νgn → π3n and
νgn → o for g = m, f and n = s, p .

To analyze a string of words, concatenate the types from the dictionary in the order
of the words. The string of words is reputed a sentence if and only if the concatenated
type has a derivation to the sentence type. For example,

Marie examine Jean

(Mary examines John)

(νfs) (πr
3s s o`) (νms ) → s

This derivation is justified by the generalized contractions νfsπ
r
3s → 1 and o`νms →

1. As customary, the types have been written under the words and the generalized
contractions are indicated by underlinks.

The underlinks uniquely determine the derivation of a string of simple types
s1 . . . sn to the substring si1 . . . sip consisting of generalized contractions only. In-
deed, such a derivation is determined by a graph R, called reduction, and a set of
algebraic conditions.
The reduction R is a set of two-element subsets {i, k} ⊆ {1, . . . , n}, called underlinks,
and satisfies

- if i 6= il for 1 ≤ l ≤ p, there is exactly one k such that {i, k} ∈ R ,

- if {i, k} ∈ R then i 6= il for all l ∈ {1, . . . , p} ,

- if {i, k} ∈ R and i < j < k then there is i < m < k such that {j, m} ∈ R .

The algebraic conditions are the generalized contractions

- if i < k and {i, k} ∈ R then sisk → 1

We say that a reduction R reduces (equivalently, is a transition from) s1 . . . sn to
si1 . . . sip , in symbols R : s1 . . . sn ⇒ si1 . . . sip , if all four conditions above hold.

The term transition has been introduced in [Preller-Lambek] for a geometric de-
scription of an arbitrary derivation. In linguistic applications, where only derivations
to substrings are considered, it is more common to use the term reduction.

Representing an underlink {i, k} ∈ R with i < k as an edge between the horizon-
tally aligned vertices

s1 . . . si . . . sk . . . sn ,

we can describe R as a planar graph. It is non-directed, has no loops, its vertices are
linearly ordered and labeled by simple types. Its edges do not cross and have their
endpoints in {1, . . . , n} − {i1, . . . , ip}. Moreover, a vertex different from i1, . . . , ip is
endpoint of exactly one edge.

If the substring si1 . . . sip cannot be contracted any further, it is called an irre-
ducible form of s1 . . . sn. The empty string 1 and every simple type is irreducible. A
string of simple types has at least one irreducible form, but their may be more than
one, for example a`aararr → 1 and a`aararr → a`arr. Even for a fixed irreducible
form, there may be different reductions bringing the type to that form, e.g. both

a` a a`a ar a and a`a a` aar a
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are reductions to the empty string. The multiple reductions are due to the presence
of critical triples like a`aar or more generally stu such that st → 1 and tu → 1. They
cause ambiguities of kind II and correspond to different semantic interpretations. In
general, they increase computational complexity.

Finally, the same reduction may reduce quite different types to a given string. For
example, the reduction {{1, 2} , {3, 6} , {4, 5}} reduces the three different types below
to the empty string

a`a a` a ar a , a`a b` c cr b and b```b`` dr c cr drr .

These geometrically identical reductions may have the same semantical interpretations.
It suffices to translate corresponding types by the same semantic type, for example
the type a in the first grammar and the type b`` of the third grammar etc. Differences
caused just by names of basic types occur in the study of syntactic agreement. They
can be used to speed up the parsing algorithm described in Section (4). Differences
between the third and the first two types show that the number of iterations of adjoints
does not really matter.

The algorithm discussed in Section 4 searches for a reduction to the empty string.
It follows immediately from the definitions that such an algorithm also solves the
problem for a reduction to the sentence type. For later reference, we formulate this as
the following fact.

Fact 1. There is a one-one correspondence between reductions R : T ⇒ s and re-
ductions R∗ : Tsr ⇒ 1 where the latter is obtained from the former by adding a link
through the only position of T not linked by R and the last position in Tsr .

The problem addressed in this paper is how to avoid processing type assignments
which have no reduction to the sentence type. Two things influence the complexity of
computation: the form of the types in the dictionary and the order on the set of the
basic types.

The sample dictionary of Section (3) uses only basic types or right or left adjoints
of basic types. Moreover, the connected components of the basic types are trees. these
simplifications do not diminish expressivity. This follows from the next two facts.

Definition 1. Two pregroup grammars (or thier dictionaries) are strongly equivalent,
if their dictionaries D and D′ list the same words and if for every string of words
v1 . . . vn and every type assignment T1, . . . , Tn for v1 . . . vn from one of the dictionaries,
say D, and every reduction R which reduces T1 . . . Tn to the sentence type there is a
type assignment T ′1, . . . , T

′
n for v1 . . . vn from D′ such that R also reduces T ′1 . . . T ′n to

the sentence type. In particular, Ti and T ′i have the same length for 1 ≤ i ≤ n .

Obviously, strongly equivalent dictionaries have the same sentences, the same pars-
ings and the same semantic interpretations.

Fact 2 ([Preller1]). Every pregroup grammar is strongly equivalent to one that uses
basic types and left and right adjoint of basic types only. Moreover, the dictionary of
the latter can be effectively computed.

The order of the set of basic types can also be simplified without changing expres-
sivity. This result has been presented by the first author at a workshop in Chieti in
May 2005. A detailed proof has circulated since, but not been published. We repro-
duce it here, because we use it ‘backward’ when designing our dictionary in the next
section.
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Fact 3. Let B = (B,→) be a partially ordered set and B′ = (B, =) the same set
ordered by equality. Then for every dictionary D over B, there is a strongly equivalent
dictionary D′ over B′ satisfying for every word v

D(v) ⊂ D′(v) .

Moreover, for every X ′ = s′1 . . . s′n ∈ D′(v) there is a type of the same length X =
s1 . . . sn in D(v) for which s′i and si have the same iterator, for 1 ≤ i ≤ n .

Proof: The idea is to replace a(2z−1) by b(2z−1) for b → a. Let X = s1 . . . sm ∈ D(v)
be given. We form the set of types

DX =
n

s′1 . . . s′m : ∀i(s′i = si ∨ ∃a∃b(a → b ∧ s′i = b(2z−1) ∧ si = a(2z−1)))
o

Note that all X ′ ∈ DX have the same length and the same sequence of iterators as X
and that si → s′i for 1 ≤ i ≤ m. Moreover, X ∈ DX . The set of types D′(v) assigned
to v by the new dictionary is

D′(v) =
S

X∈D(v) DX

Suppose that v1 . . . vn is a s-sentence of D. Consider a reduction R such that R :
X1 . . . Xnsr ⇒ 1 in P (B). We must show that there is a type assignment X ′

1 . . . X ′
n

for v1 . . . vn from D′ such that the reduction R satisfies R : X ′
1 . . . X ′

nsr ⇒ 1 in P (B′).
Express X1 . . . Xnsr as a string of simple types s1 . . . sm. Consider any underlink

. . . si . . . sk . . . where i < k.

Recall that sisk → 1 if and only if sk → sr
i if and only if si → s`

k in P (B).
Case 1: the iterator of si is odd.
Then there are b → a in B such that si = a(2z−1) and sk = b(2z). Let s′i = b(2z−1) and
s′k = sk.
Case 2: The iterator of si is even. Then the iterator of sk is odd and there are b → a
in P (B) such that sk = a(2z−1) and si = b(2z−2). Let s′i = si and s′k = b(2z−1).
In both cases s′is

′
k → 1 in P (B′). We obtain thus a new type assignment X ′

1 . . . X ′
n =

s′1 . . . s′m with X ′
j ∈ D′(vj), for 1 ≤ j ≤ n. Clearly, X ′

1 . . . X ′
n is a type assignment for

v1 . . . vn from D′ for which the reduction R satisfies R : X ′
1 . . . X ′

nsr ⇒ 1 in P (B′).
Conversely, let v1 . . . vn be a s-sentence of D′ and R′ : X ′

1 . . . X ′
nsr ⇒ 1 in P (B′)

with X ′
j ∈ D′(vj), for 1 ≤ j ≤ n. Every X ′

j = s′j1 . . . s′jmj
∈ D′(vj) is obtained from

some type Xj = sj1 . . . sjmj ∈ D(vj) such that sjp → s′jp for 1 ≤ p ≤ mj . Hence,
from s′is

′
k → 1 follows sisk → 1 and therefore R′ satisfies R′ : X1 . . . Xnsr ⇒ 1 in P (B).

If the basic types are discretely ordered a type checking algorithm will execute the
test a(z)bw) → 1 faster, because the algorithm just checks if a = b and w = z + 1
without consulting the table listing the ordered pairs of B . The main advantage of a
proper partial order is to diminish the size of the dictionary. The dictionary of the next
section uses the proof above ‘backward’. Discrete subsets of basic type are collected
into supertypes that occur only as left or right adjoints in lexical entries. There are
more type assignments in the equivalent discrete dictionary, but the number of those
with a reduction to the sentence type is the same. We show in Section 4 on parsing
that run-time does not increase for a rather expressive class of dictionaries.

3 The dictionary

The grammar for clitics in French given here differs from that in [Bargelli-Lambek]
in several aspects. One is that we included agreement of gender and number of the
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direct object clitics and also agreement of person, if the pronoun is reflexive. Another
one is that we avoid the meta-rule of [loc.cit.] and stay within an ordinary pregroup
grammar. Moreover, our grammar is conceived for computability by linear algorithms
and for easy proofs of that fact. Finally, we wanted a grammar that can be interpreted
in two-sorted predicate logic.

Recall the lexical entries given in the previous section.

Marie : νfs
Jean : νms
examine : πr

3sso`
(1)

As we want to include the personal pronouns je, tu, il, elle, nous, vous, ils elles, we
add the basic types πpgn for the subject of person p, gender g and number n. We
postulate

πpgn → πpn, for p = 1, 2, 3 , g = m, f , n = s, p .

The first and second person pronouns je, te, nous and vous can be both masculine
and feminine. Moreover, the plurals nous and vous can occur as subject, direct or
indirect object, be reflexive and non-reflexive. We introduce specific types for these
pronouns so as to diminish the number of type assignments.

nous : ν1gp for g = m, f

vous : ν2gp for g = m, f .
(2)

We express that they can be subject by postulating

νpgn → πpgn for p = 1, 2 , g = m, f and n = s, p .

Other entries in the dictionary are

je : π1gs for g = m, f
tu : π2gs for g = m, f
il : π3ms

elle : π3fs

ils : π3mp

elles : π3fp

(3)

Then we find the reduction

Nous examinons Jean

we examine Jean

(ν1gp) (πr
1p s o`) (νms ) ,

which corresponds to two distinct type assignments, namely g = m, f .

3.1 Clitics and the simple tenses

We consider preverbal direct and indirect object clitics in French. In simple tenses
there is no agreement with the object clitic except for the reflexive pronouns, which
agree with the subject. We discuss shortly the distant dependency and anaphoric
content of the reflexive pronoun including the case when it is separated from the
subject by modal verbs.
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3.1.1 Non-reflexive clitics

We add the basic types

opgn for p = 1, 2, 3 , g = m, f and n = s, p ,

for direct object clitics. We invent a ‘helper’ type ō which does not depend on person,
gender and number and postulate

opgn → ō for p ∈ {1, 2, 3} , g ∈ {m, f} , n ∈ {s, p} .

We express that nous and vous can be a direct object by postulating

ν1gp → o1gp and ν2gp → o2gp for g = m, f .

The lexical entries for preverbal direct object clitics and transitive verbs are1

examine : ōrπr
3ss

m ′ : o1gs for g = m, f
t ′ : o2gs for g = m, f
l ′ : o3gs for g = m, f
les : o3gp for g = m, f .

(4)

Then reductions to the sentence type below provide the expected analysis, namely

Marie les examine elle nous examine

(mary them examines) (she us examines)

(νfs) (o3gp) (ōr πr
3s s) (πfs) (ν1gp) (ōr πr

3s s) , for g = m, f .

Note that the links of the reduction correctly capture the dependencies in predicate
logic. Indeed, an underlink, when oriented from a left or right adjoint to a basic
type, expresses dependency. In the left-hand graph, the binary predicate examiner

corresponding to the transitive verb examiner depends on two distinct entities Marie
and les.

MarieOO examinelesOO

The indirect object clitics do not depend on the gender and do not require agree-
ment with the past participle. Hence we introduce

ωpn with p = 1, 2, 3 and n = s, p .

Again, we may lower the number of entries for the bi-transitive verbs by inventing
‘helpers’ ōp , ω̄p and ω̄ , for which we postulate

opgn → ōp , ωpn → ω̄ , ωpn → ω̄p , for p = 1, 2, 3 , g = m, f and n = s, p .

1We consider only the short forms m’, t’ l’ which are used if the following word starts with
a vowel. The full forms me, te, le and la are required if the next word starts with a consonant.
The grammar can distinguish between the two if the type of clitics depends on the feature
‘vowel’ with two values, yes, no, but we will ignore this here.
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The possibility for nous and vous to occur as indirect objects is guaranteed by

ν1gp → ω1p and ν2gp → ω2p for g = m, f .

For the other clitics and verbs with an indirect object, we add the entries

parles : ω̄rπr
2ss

donne : ω̄r
3 ōr

3π
r
3ss

donne : ōr
3ω̄

r
pπr

3ss for p = 1, 2
me : ω1s

te : ω2s

lui : ω3s

leurs : ω3p .

(5)

The helper types depend on the person, because in grammatical combinations of the
direct and indirect object clitics one of them must be third person. The order also
depends on the persons, for example les leurs, me les and le lui, but not *leurs les,
*me lui, *lui la etc. .

A few examples of reductions to the sentence type are

tu nous parles Jean les leurs donne

(π2gs) (ν1g′p) (ω̄r πr
2s s) (νms) (o3gp) (ω3p) (ω̄r

3 ōr
3 πr

3s s) , g = m, f, g′ = m, f .

Note that on the whole there are six type assignments with a reduction to the sentence
type above. As they only differ by the gender value for the personal pronouns, but
not by the underlinks, we can compute them just once. The expedient is not to assign
values to g and g′, as they are irrelevant for the reduction itself.

3.1.2 Reflexive clitics

The reflexive pronouns agree in person, gender and number with the subject. They
also have an anaphoric content by identifying the object with the subject. We therefore
add the dummy types for direct and indirect objects

ôpgn and ω̂p, p = 1, 2, 3 , g = m, f and n = s, p .

As for the non-reflexive clitics, we require ‘helpers’ ôgn, ôp and ô for which we postulate

ôpgn → ôgn , ôpgn → ôp , ôpgn → ô , ω̂p → ω̂ for p = 1, 2, 3 , g = m, f and n = s, p .

Besides the lexical entries for the reflexive pronouns, we also need new types for the
verbs. In the bi-transitive case the reflexive clitic is always the indirect object and
precedes the direct object clitic. For example

s’ : πr
3gnπ3gnôgn for g ∈ {m, f} , n ∈ {s, p}

s’ : πr
3gnπ3gnω̂3 for g ∈ {m, f} , n ∈ {s, p}

nous : πr
1gpπ1gpôgp for g ∈ {m, f}

nous : πr
1gpπ1gpω̂1 for g ∈ {m, f}

examine : ôrπr
3ss

examinons : ôrπr
1ps

donnons : ōr
3ω̂

r
1πr

1ps
donne : ōr

3ω̂
r
3πr

3ss

. (6)
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The type of the reflexive pronoun expresses the anaphoric content by first capturing
the subject type with the right adjoint and then reproducing it twice, once in the
form of the subject type itself and once in the form of the dummy-object type. The
syntactic agreement is guaranteed by the fact that the indices for person, gender and
number are identical in the three simple types. We find reductions for

Marie s’ examine Nous nous examinons

(mary herself examines) (We ourselves examine)

(νfs) (πr
3fs π3fs ôfs) (ôr πr

3s s) (ν1fp) (πr
1fp π1fp ôfp) (ôr πr

1p s) ,

but not for *Nous s’examinons.
In the graph below, the two argument places are filled by the same entity to which

the reflexive pronoun refers, namely Marie.

s′OO examineMarie
²²

OO

Here, the underlink under the subject type of Marie and its right adjoint in s’ is
represented by an arrow drawn above the words. The two under-arrows say that s’ is
both subject (=agent ) and object (=patient) for examiner.

In fact, the translation algorithm into predicate logic identifies the subject with
the dummy subject and the object. The translation of Marie s’examine is the atomic
formula examiner(marie,marie).

3.2 Modal verbs

The dependency is still captured, if the clitic is separated from the subject by modal
verbs, like in Marie doit vouloir s’examiner (Mary must want to examine her-
self). To make the modal verb ‘remember’ the features of the subject, we add new
basic types, the so-called dummy subjects

π̂pgn , p = 1, 2, 3 , g = m, f and n = s, p

as well as a type π̂ when the features do not matter. We postulate

π̂pgn → π̂ for p = 1, 2, 3 , g = m, f and n = s, p .

Besides the types for the modal verbs, we need two types for the infinitive, one for
the reflexive and one for the non-reflexive case. We must also add a new type for the
reflexive pronoun, when it is separated from the subject by a modal verb

doit : πr
3gssi`π̂3gs for g = m, f

vouloir : π̂r
pgnii`π̂pgn for p = 1, 2, 3, g = m, f, n = s, p

examiner : ōrπ̂ri
examiner : ôrπ̂ri
s’ : π̂r

3gnπ̂3gnôgn for g = m, f, n = s, p
s’ : π̂r

3gnπ̂3gnω̂3 .

(7)
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We find the reductions to the sentence type

Jean doit les examiner

(νms) (πr
3ms s i` π̂3ms) (o3gp) (ōr π̂r i) , where g = m, f .

Note that the dummy-subject type in the infinitive of the transitive verb examiner
expresses the dependency of the corresponding relation examiner on the agent jean

Jean
²²

lesOOdoitOO examiner .

The long under-arrow corresponds to the underlink from the right-adjoint of the
dummy subject in examiner to the dummy subject in doit. If we continue this arrow
by the over-arrow from doit to Jean, we get the dependency arrow.

The dummy-subject also serves a syntactical purpose in modal verbs. It precludes
*Tu dois s’examiner, but accepts

Marie doit s’ examiner

(mary must herself examine)

(νfs) (πr
3fs s i` π̂3fs) (π̂r

3fs π̂3fs ôfs) (ôr π̂r i) .

and

Marie doit vouloir s’ examiner

(mary must want herself examine)

(νfs) (πr
3fs s i` π̂3fs) (π̂r

3fs i i` π̂3fs) (π̂r
3fs π̂3fs ôfs) (ôr π̂r i) .

3.3 Agreement with the past participle

In the compound past of the active form, the past participle agrees in gender and
number with the direct object clitic. This is the reason why the basic types ôgn

depend on these features. The clitics precede the auxiliary, which in its turn precedes
the past participle. Transitive verbs form the compound past with the auxiliary avoir
unless a reflexive clitic precedes the auxiliary. In the latter case the auxiliary is être.
Some intransitive verbs form the compound past with être, others with avoir. The
passive is always formed with être. If the verb is in passive mode or forms its compound
past with the auxiliary être, the past participle agrees in gender and number with the
subject.

We add the following types to the dictionary, covering both the postverbal object
and the preverbal direct object clitic. We consider both non-reflexive and reflexive
clitics.

examiné : π̂rpo`

avoir : π̂r
pgnip`π̂pgn

a : πr
3gssp`π̂3gs

dû : π̂r
pgnpi`π̂pgn

examiné : ôr
msπ̂

rp
examinée : ôr

fsπ̂
rp

examinés : ôr
mpπ̂

rp
examinées : ôr

fpπ̂
rp

avoir : or
pgnπ̂rip`π̂ôgn

a : or
pgnπr

3ssp`π̂ôgn

est : ôr
3gsπ

r
3ssp`π̂ôgs

être : ôr
pgnπ̂rip`π̂ôgn

(8)
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for p = 1, 2, 3 , g = m, f , n = s, p .
The types of avoir and être differ only by their first simple type. It is or

pgn for the
former and ôr

pgn for the latter. This precludes *Marie les est examinés.

Jean a examiné Marie

( john has examined mary)

( νms ) (πr
3ms s p` π̂3ms) (π̂r p o`) (νfs )

Marie les a examinés

(νfs) (o3mp) (or
3mp πr

3s s p` π̂ ômp) (ôr
mp π̂r p)

Marie s’ est examinée

(νfs) (πr
3fs π3fs ô3fs) (ôr

3fs πr
3s s p` π̂ ô3fs) (ôr

fs π̂r p) .

Similarly we cannot derive the non-grammatical *Nous leurs sommes parlé nor *Nous
nous avons parlé, but we find

Nous nous sommes parlé

(ν1fp) (πr
1fp π1fp ω̂1) (ω̂r

1 πr
1fp s p` π̂ ω̂) (ω̂r π̂r p) .

We may also combine modal verbs with the past participle

Marie doit les avoir examinés

(νfs) (πr
3fs s i` π̂3fs) (o3mp) (or

3mp π̂r i p` π̂ ômp) (ôr
mp π̂r p) .

The dummy subject type in the auxiliary a , avoir in the sentences above can only
be justified semantically at this stage. It means that the transitive verb is viewed as
a binary relation in all its tenses and modalities.

However, the role of the dummy subject in the past participle of modal verbs be-
comes obvious in sentences like Marie a dû s’être examinée in opposition to *Marie
a dû t’être examinée, *Marie a dû s’être examinés. The dummy subject-type in the
auxiliary transmits the features of person, gender and number of the subject through-
out the sentence. In Subsection 3.6, we show how French syntax uses the dummy
subject in the infinitive for distinguishing between the agent (intended subject) and
the patient (intended object). Hence dummy types serve a semantical and syntactical
purpose similar to that of an index in HPSG’s: it is used to express unbounded de-
pendencies. The increase of the length of some types seems not a heavy price to pay.
The pregroup grammar proposed here is still an ordinary pregroup grammar with its
efficient computability properties.

The dummy subject type in the auxiliary a and in the past participle dû of the
modal verb devoir guarantees correct syntax in sentences like Marie a dû s’être ex-
aminée, Marie a dû vouloir s’être examinée etc.

Marie a dû s’ être examinée

(νfs) (πr
3fs s p` π̂3fs) (π̂r

3fs p i` π̂3fs)(π̂
r
3fs π̂3fs ô3fs)(ô

r
3fs π̂r i p` π̂ ôfs) (ôr

fs π̂r p ) .
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3.4 Intransitive verbs

Intransitive verbs form the compound past either with avoir or with être. In the
former case, the past participle remains invariant. In the latter case, it agrees with
the subject in gender and number. Hence, we add a new basic type p′ to the dictionary
for verbs forming their past participle with être. For example

a : πr
3ssp`π̂

avoir : π̂rip`π̂
marche : πr

3s s
marcher : π̂r i
marché : π̂rp

est : πr
3gssp′`π̂gs for g = m, f

être : π̂r
gnip′`π̂gn for g = m, f; n = s, p

part : πr
3s s

partir : π̂r i
parti : π̂r

msp
′

partie : π̂r
fsp

′

partis : π̂r
mpp

′

parties : π̂r
fpp

′

(9)

We find the following reductions to the sentence type

Marie doit avoir marché

Mary must have walked

(νfs) (πr
3fs s i` π̂3fs) (π̂r i p` π̂) (π̂r p)

and

Marie doit être partie

Mary must have left

(νfs) (πr
3fs s i` π̂3fs) (π̂r

fs i p′` π̂fs) (π̂r
fs p′) .

Note that the new basic type p′ prevents *Marie doit avoir partie and *Marie doit
être marché.

3.5 Passive

For the passive form of transitive verbs yet more entries are needed. In particular, we
introduce a new basic type π̃ for the agent of the passive form .

être : π̂r
gnip`ôgn

est : πr
3gssp`ôgs

examiné : ôr
mspπ̃`

examinée : ôr
fspπ̃`

examinés : ôr
mppπ̃`

examinées : ôr
fppπ̃`

par : π̃o`

examiné : ôr
mspπ̃`π̃

examinée : ôr
fspπ̃`π̃

examinés : ôr
mppπ̃`π̃

examinées: ôr
fppπ̃`π̃

, for g = m, f, n = s, p .

(10)
Choosing the entries est : πr

3fssôfsp
` and examinée : pôr

fsπ̃
`, we find the following

reduction

Marie est examinée par Jean

mary is examined by john

(νfs)(π
r
3fs s p` ôfs)(ô

r
fs p π̃`)(π̃ o`)(νms) .
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Finally, if the agent of the passive is absent, like in Marie est examinée, we can
express this by choosing the right-hand type above for the past participle. We find
the following parsing

Marie est examinée

(mary is examined)

(νfs) (πr
3fs s p` ôfs) (ôr

fs p π̃`π̃) .

3.6 Causal verbs

Verbs like faire, laisser, entendre, laisser take infinitival verb phrases as complements.
The syntactical agreement of the intended subject-complement of the infinitive may be
different from that of the intended object-complement of the infinitive. As an example
we consider the verb entendre. It is transitive and as such has the same types as
estimer. It also takes an infinitival phrase as complement. The dictionary therefore
has the following additional entries

entend : πr
3ss i`

entend : πr
3ss i`π̂o`

entend : ōrπr
3ss i`ô

entend : ōrπr
3ss i`π̂

jouer : π̂ri o`

jouer : i π̂π̂r ōōr

jouer : i π̂π̂ro`

jouer : π̂ri ōōr

jouer : ôri π̂π̂r

entendu : π̂rp i`

entendu : π̂rp i`π̂o`

entendu : ôrπ̂rpi`ô

entendu : ôr
msπ̂

rpi`π̂

entendue : ôr
fsπ̂

rpi`π̂

entendus : ôr
mpπ̂

rpi`π̂

entendues : ôr
fpπ̂

rpi`π̂

The speaker can mention both the subject and the object of the infinitive, none of
them or one or the other.

Neither subject nor object of the infinitive mentioned

Marie entend jouer

(mary hears play)

(νfs) (πr
3s s i`) (i π̂ π̂r ōōr) .

Subject of infinitive mentioned

Marie entend des musiciens jouer

(mary hears some musicians play)

(νfs) (πr
3s s i` π̂ o`) (nmp c`

mp) (cmp)(π̂
r i ōōr) .

Object of infinitive mentioned

Marie entend jouer des valses

(mary hears play some waltzes)

(νfs) (πr
3s s i`) (i π̂ π̂r o`) (nfp c`

fp) (cfp) .

With the preverbal object clitic, this syntactical difference disappears in the simple
tenses, but there are still two semantical interpretations, captured by the two reduc-
tions

14



Subject of infinitive: les = the musicians

Marie les entend jouer

(mary them hears play )

(νfs) (o3gp)(ō
r πr

3s s i` π̂) ( π̂r i ōōr) .

Object of infinitive: les = the waltzes

Marie les entend jouer

(mary them hears play )

(νfs) (o3gp)(ō
r πr

3s s i` ô) ( ôr i π̂π̂r) .

In the compound tenses the semantical difference is again expressed by a different
syntax. The past participle of the causal verb agrees with the clitic if it is the intended
subject of the infinitive, but remains invariant if the clitic is the intended object.

Subject of infinitive: les = the musicians

Marie les a entendus jouer

(mary them has heard play )

(νfs) (o3mp)(o3mp
r πr

3s s p` π̂ ômp) (ôr
mp π̂r p i` π̂) (π̂r i ōr ō) .

Object of infinitive: les = the waltzes

Marie les a entendu jouer

(mary them has heard play )

(νfs) (o3fp)(o3fp
r πr

3s s p` π̂ ôfp) (ôr π̂r p i` ô) (ôr i π̂π̂r) .

Note that the causal verb captures the semantic and syntactic differences, by either
introducing a dummy subject or a dummy object.

4 Linear parsing

The reader who just has looked at the preceding section may wonder if the explosion
of types does not increase computational complexity. We we’ll show that this is not
the case. On the contrary, the preceding grammar and others, similar ones, can be
parsed by a linear algorithm.

First, any pregroup grammar can be recognized by an algorithm running in time
proportional to n3, where n is the length of the word, see for example [Oehrle] or
[Degeilh-Preller]. Moreover, the constant factor of n3 is a multiple of k3p3, where k
is a bound to the number of types per word and p a bound to the length of the type
in the dictionary. So, only the constant factor increases with the length of the types
or the number of types per word. This cubic algorithm interweaves type assignment
and type checking. Hence, ambiguity of kind I, due to the existence of several type
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assignments, and ambiguity of kind II, due to multiple reductions per type assignment,
are also intermingled.

To show that the complexity can actually be lowered to linear time, we separate
the two ambiguity factors. Our first step is to construct an algorithm, which for every
type assignment T1, . . . , Tn constructs a reduction of the concatenated type T1 . . . Tn

to an irreducible form. If this irreducible form is the sentence type, the algorithm has
constructed a parsing of the sentence. The reduction of T1 . . . Tn is constructed in time
proportional to the length of T1 . . . Tn. The algorithm is complete if the dictionary
has no critical triples like the dictionary of the preceding section.

The second step is to define conditions on the dictionary so that the number of
non-losing type assignments is bounded by a constant. The structure of the types in
the dictionary gives us a criterion to recognize type assignments without a reduction
to the sentence type, and this after only an initial segment of the type assignment
has been processed. Hence the algorithm does not process any extension of such an
initial segment. Moreover, if the different types of a word are similar, we compute a
reduction only once.

4.1 Choosing type assignments

We start with an example how the algorithm defined in the next subsection finds a
type assignment and a corresponding reduction.

Marie doit être examinée

(νfs) (πr
3fs s i` π̂3fs) (π̂r

fs i p` ôfs) (ôr
fs p π̃`π̃) .

The algorithm processes the string of words as ‘we hear them’, i.e. from left to right. It
keeps two memories, the S-memory stack where the irreducible form of the processed
string is stored, and theR-memory for the reduction computed so far. For each word,
it considers all its types in the dictionary. Each type is read from left to right. The
simple type being read is compared with the last type of the irreducible form in the
memory. If the two contract, the link is added to the reduction memory and the last
type is popped. If not, the simple type being read is added on top of the stack. If
no extension of the updated irreducible form can be reduced to the sentence type, the
algorithm declares the type assignment processed so far a a ‘loser’. No extension of a
‘loser’ will be processed by the algorithm.

The criterion used here for recognizing losers is that the type az being read does
not contract with the last type in the memory and that for no basic type b in the same
component as a, the dictionary has an occurrence of az+1 .

1) Marie:
Store T1 = νfs in the ST1 -memory

Marie

(νfs)

2) doit : πr
3gssi`π̂3gs for g = m, f

The type assignment (νfs)(π
r
3mssi`π̂3ms) is a loser, because νfsπ̂

r
3ms 6→ 1. The type π̂r

3ms

cannot be canceled from the right, because there are no double right adjoints in the
dictionary. Hence the irreducible string νfsπ̂

r
3ms will remain in S for all extensions. Here

losers are identified when the first type of a possible type assignment for the processed
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word is read. Though this happens quite frequently, in general the considered type
has to processed till the end before it is eliminated or accepted as a reasonable type
assignment for the word.

Choose T2 = πr
3fssi`π̂3fs .

Store the link {1, 2} under νfsπ
r
3fs in the RT1T2 -memory. Pop νfs from the ST1T2 -

memory.
Store successively s , i` and π̂3fs on top of the S-memory stack.

Marie doit

(νfs) (πr
3fs si`π̂3fs)

3)

ôr
gnπrip`π̂ôgn

être : π̂r
gnip′`π̂gn

π̂r
gnip`ôgn

for g = m, f ; n = s, p.

The types starting with ôr
gn are losers

The types starting with π̂r
gn are a losers if g = m or n = p .

Choose T3 = π̂r
fsip

`ôfs
Store the link under π̂fsπ̂

r
fs in the R-memory. Pop π̂fs from the S-memory.

Store the link under i`i in the R-memory. Pop i` from the S-memory.
Store successively p` and ôfs .

The irreducible form in ST1T2T3 is sp`ôfs .

Marie doit être

(νfs) (πr
3fs s i` π̂fs) (π̂r

fs i p`ôfs)

Choose T ′3 = π̂r
fsip

′`π̂fs

The irreducible form in ST1T2T ′3 now is sp′`π̂fs .

Marie doit être

(νfs) (πr
3fs s i` π̂3fs) (π̂r

fs i p′`π̂fs)

4)
ôr
fsπ̂

rp

examinée : ôr
fspπ̃`

ôr
fspπ̃`π̃

.

The three types are losers when chosen after ST1T2T ′3 . Extend T1T2T3 . Starting with
ST1T2T3 and RT1T2T3 , only the three types

T4 = ôr
fsπ̂

rp
T ′4 = ôr

fspπ̃`

T ′′4 = ôr
fspπ̃`π̃

are processed beyond the first simple type. The first, T4 is recognized as a loser when
its second simple type is read, T ′4 is processed at to the end and recognized as loser at
this step. Finally for T1T2T3T

′′
4 the following reduction is computed.

Marie doit être examinée

(νfs) (πr
3fs s i` π̂3fs) (π̂r

fs i p` ôfs) (ôr
fs p π̃`π̃) .
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The algorithm not only finds a reduction to the sentence type but also that it is the
only one.

4.2 Parsing Algorithm

We define the algorithm above formally and prove the relevant properties. It is an
adaptation of the linear processing algorithm in [Preller2]. By Fact 1 of Section 2, it
suffices that the algorithm searches for and produces reductions to the empty string.

A string of words v1 . . . vn defines a set of stages consisting of triples
s = (l, T1 . . . Tl, p) where

l is the number of the word vl being processed
Tk = tk1 . . . tkqk ∈ D(vk), 1 ≤ k ≤ l,
p is a position in Tl, 0 ≤ p ≤ ql.

The stages are partially ordered as follows

(l, T1 . . . Tl, p) ≤ (l′, T ′1 . . . T ′l′ , p
′) ⇔ l ≤ l′, p ≤ p′, Tk = T ′k for 1 ≤ k ≤ l .

To these we add an initial stage sin such that sin < s for all s.
We remark that every stage s except the initial one has a unique immediate pre-

decessor, which we denote by s− 1, i.e.

(l, T1 . . . Tl, p)− 1 =

8
><
>:

(l, T1 . . . Tl, p− 1), if 1 ≤ p ;

(l − 1, T1 . . . Tl−1, ql−1) if p = 0 and l > 1,

sin , if p = 0 and l = 1.

The definitions imply that the set of stages smaller than or equal to a given stage s is
totally ordered.

This total order can be used to control the way how the algorithm moves through
the stages and to define the actual position p(s) and the type read at this position
tp(s) . At the initial stage p(sin) = 0, tp(sin) = 1 . A stage of the form (l, T1 . . . Tl, 0) ,
1 ≤ l ≤ n, is called a downloading stage and serves to choose a type Tl ∈ D(vl) for the
word vl . At a downloading stage s = (l, T1 . . . Tl, 0) , the examined position remains
unchanged

p(s) = p(s− 1) = q1 + · · ·+ ql−1 + 0 .

After downloading, the string of simple types Tl is read from left to right. Each stage
which is not initial and not downloading is called a testing stage. To reach the testing
stage s = (l, T1 . . . Tl, p), p ≥ 1, the preceding position p(s− 1) is incremented by 1:

p(s) = p(s− 1) + 1 = q1 + · · ·+ ql−1 + p .

It follows that the simple type occupying this position satisfies

tp(s) = tlp .

More generally, for every r such that 1 ≤ r ≤ p(s) there are a unique k and a unique
p′ such that 1 ≤ k ≤ l, 1 ≤ p′ ≤ qk and r = q1 + · · ·+ qk−1 + p′. We let

tr = tkp′ .

The simple type tp(s) is tested for generalized contraction with the last not contracted
type in the string. This test can be done in one time unit by accessing the partial
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order relation on the set of basic types. If it fails, p(s) is added on the top of the stack
indicating that tp(s) is the latest not (yet) contracted type. The other data remain
unchanged. If the test succeeds, the stack is popped and the link consisting of the
contracting positions is added to the reduction computed so far. As the test is only
performed for non-initial and non-downloading stages, all positions r stored in the
stack correspond to a unique number k and a unique p′ for which 1 ≤ p′ ≤ qk and
r = q1 + · · ·+ qk + p′.

Definition 2. Parsing Algorithm
H At the initial stage, let

S(sin) = 〈∅, 0〉 , R(sin) = ∅
H At a downloading stage s = (l, T1 . . . Tl, 0), the stack and reduction remain unchanged

S(s) = S(s− 1), R(s) = R(s− 1)

H If s(l, T1 . . . Tl, p) is not downloading and not initial, let top(s− 1) = top(S(s− 1)) .
Then

S(s) =

(
pop(S(s− 1)), if ttop(s−1)tp(s) → 1

〈S(s− 1), p(s)〉 , else

R(s) =

(
R(s− 1) ∪ {{top(s− 1), p(s)}} , if ttop(s−1)tp(s) → 1

R(s− 1), else
.

For every stage s , define the string of simple types T (s) inductively by

T (sin) = t0 = 1 T (s) = T (s− 1)tp(s) .

It follows immediately from the definitions that T (s) is the string of simple types
processed up to stage s , i.e.

T (s) = T1 . . . Tl−1tl1 . . . tlp, for every stage s = (l, T1 . . . Tl, p) .

Note that the algorithm only stores positions in the stack S(s), but it is straight
forward to show that these positions form a strictly increasing substring of {1, . . . , p(s)}
such that the top of the stack is the largest position in the stack. The substring S(s)
of T (s) corresponding to the positions stored in S(s) is defined by induction on the
stack

〈∅, 0〉 = t0 and 〈S′, p′〉 = S′ tp′ for S(s) =
˙
S′, p′

¸

Lemma 1. For every stage s = (l, T1 . . . Tl, p) , the string S(s) is an irreducible sub-
string of T (s) and R(s) is a reduction from T (s) to S(s) .

Proof : The restriction of R and S to the set of stages less or equal to s = (l, T1 . . . Tl, p)
is a particular case of the type checking algorithm in [Preller1], applied to the type
assignment T1 . . . Tl . The property follows now from Theorem 6.5 in [loc. cit.].

Let T1 . . . Tn be a type assignment of v1 . . . vn and s = (n, T1 . . . Tn, qn) a final stage.
According to the lemma above, R(s) is a reduction to an irreducible form of T1 . . . Tn.
If this irreducible form happens to be the sentence type, the algorithm gives a parsing
of this sentence. If this irreducible form is not the sentence type, however, we cannot
conclude in general that T1 . . . Tn has no reductions to the sentence type. Hence, the
algorithm is not complete unless we impose sufficient conditions on the dictionary.
One of them is linearity :
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Definition 3. Linearity
A critical triple of a string of simple types t1 . . . tq is a substring ti . . . tj . . . tk such that
i < j < k and

titj → 1, tjtk → 1,
ti+1 . . . tj−1 → 1, tj+1 . . . tk−1 → 1

.

A string of simple types without critical triples is called linear. A dictionary is linear,
if all type assignments with some reduction to the sentence type are linear.

Here is a condition for linearity which is easy to verify: If a(u), b(v), c(w) appear
in the dictionary and the basic types a, b, c belong to the same connected component
then u = z−1, v = z, w = z +1 is false for every integer z . The mini-dictionary of the
preceding section satisfies this condition. For example the connected component of ō
has only basic types and right adjoints in the dictionary. The connected component
of o only basic types and left adjoints.

The following two lemmas have been proved in [Preller1].

Lemma 2 ( Uniqueness of Reductions of Linear Strings). Every linear string of simple
types t1 . . . tm has a unique irreducible form ti1 . . . tip and there is a unique reduction
R such that R : t1 . . . tm ⇒ ti1 . . . tip .

From this lemma follows at once that the algorithm defined above is complete for
linear dictionaries.

Lemma 3 (Completeness). A string of words from a linear dictionary v1 . . . vn is
a sentence if and only if at some final stage s = (n, T1 . . . Tn, qn), the reduction R(s)
reduces (T1 . . . Tn) to the sentence type.

The algorithm is complete but inefficient as long as it computes all final stages.
However, many intermediary stages cannot be extended to one with a reduction to the
sentence type and therefore the Parsing Algorithm need not go through them. Hence
we formulate a criterion which makes it possible to recognize such stages while running
the Parsing Algorithm.

Definition 4. (Losing stages)
A simple type t is right cancellable in D , if it is the sentence type s or if there is a
simple type t′ such that t → t′ and t′r occurs in D . A stage s = (l+1, T1 . . . Tl+1, ql+1)
associated to a string of words v1 . . . vl+1 , 1 ≤ l < n , is losing if for some position i
stored in S(s), the simple type ti is not right cancellable.

Lemma 4 (Control). Assume that the dictionary is linear and let top(s) denote the
top of the stack S(s). If at stage s the simple type ttop(s) is not right cancellable, then
no final stage extending s produces a reduction to the sentence type.

Proof : Recall that top(s) is the last element in the stack S(s) and that the irreducible
type defined by the stack ends with ttop(s) . The assumption then implies that top(s)
will never be popped from the stack. Therefore, for every extension s′ of s, the
irreducible form S(s′) has an occurrence of ttop(s) 6= s. Hence R(s′) is not a reduction
to the sentence type. As the dictionary is linear, the type assignment defined by s′

has no other irreducible forms.

Definition 5. (Controlled Parsing)
The Controlled Parsing Algorithm is defined as the Parsing Algorithm above except
that it updates a predicate losing(s) to be true if ttop(S) is not right cancellable. It
moves to the down-loading stages s = (l, T1 . . . Tl, 0), for Tl ∈ D(vl) only if s = (l− 1,
T1 . . . Tl−1, ql−1) is not losing.

20



Note that the existence of a unique reduction per type assignment does not preclude
ambiguity, because several type assignments may have a reduction to the sentence type.
However, we can formulate a condition on pregroup dictionaries so that the Controlled
Parsing Algorithm only goes through a bounded number of stages when processing a
word.

Definition 6. (Concise Dictionaries)
A dictionary is concise, if for every sentence v1 . . . vn and for every Tl+1 ∈ D(vl+1) ,
1 ≤ l < n , there is at most one stage (l, T1 . . . Tl, ql) for which (l+1, T1 . . . TlTl+1, ql+1)
is not losing.

The sample dictionary of the previous section is concise. Conciseness makes the
number of stages which have to be examined by the Parsing Algorithm proportional
to the number of words.

Lemma 5 (Bound on type assignments). Let D be a concise dictionary and k0

bound both the number of types per word and the length of types in the dictionary.
Then for every string of words v1 . . . vn and all l, 1 ≤ l ≤ n , the number of non-losing
stages (l, T1 . . . Tl, ql) is bounded by k0 . Moreover, the number of basic steps performed
by the Ammended Parsing Algorithm while processing word vl is constant.

Proof : By induction on l . The property is obvious for l = 1 , because there are at most
k0 lexical entries vl : T1 and the number of computation steps for every simple type of
T1 is bounded by a constant. Without loss of generality we may assume this constant
is again k0 . When processing word vl+1 , only the non-losing stages (l, T1 . . . Tl, ql)
are extended by a lexical entry Tl+1 ∈ D(vl+1) . By induction hypothesis, there are at
most k0 of non-losing stages. Moreover, there are at most k0 types Tl+1 ∈ D(vl+1) .
Hence at most k2

0 stages (l + 1, T1 . . . TlTl+1, 0) are to be considered. As the length
of Tl+1 is bounded by k0 , the stage (l + 1, T1 . . . TlTl+1, ql+1) is reached computing
at most k0

2 basic steps . As the dictionary is concise, at most one of the non-losing
stages (l, T1 . . . Tl, ql) will yield a non-losing stage (l+1, T1 . . . TlTl+1, ql+1) and this for
every Tl+1 ∈ D(vl+1) . Hence after performing at most k4

0 basic steps for word vl+1 ,
the algorithm has processed all extensions of the non-losing type assignments T1 . . . Tl

to vl+1 and recognized at most k0 stages among them as non-losing.

Theorem 1 (Linearity). For linear and concise pregroup grammars there is a com-
plete linear algorithm which decides if v1 . . . vn is a sentence and, if this is true, com-
putes all parsings to the sentence type.

Proof : The Parsing Algorithm considers all type assignments of a given string of
words. As the dictionary has no critical triples, the Parsing Algorithm computes all
reductions to the sentence type. The Controlled Parsing Algorithm skips only type
assignments without a reduction to the sentence type. So it is still complete. Finally,
if the grammar is concise, the run-time for each word is bounded by a constant.

5 Conclusion

The contribution of this paper is to show that an explosion of basic types does not
necessarily increase run-time but may even diminish it. Similarly, increasing the num-
ber of types per word does not increase the complexity of the algorithm, but only the
constant factor to which run-time is proportional. This constant can be lowered by
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exploiting certain regularities of features which make it possible to construct several
distinct reductions by one and the same computation.

We have chosen the agreement with clitics in French because its syntactic structure
reflects semantical complement control in the sense of [Pollard-Sag]. The presented
grammar puts the unexpressed subject or object in the right place, without any ad-
ditional constructs like indexing. As we stay within standard pregroup grammars,
none of the computational efficiency is lost and, as we have shown, sometimes even
improved

However, the fragment presented belongs to a class of pregroup grammars which
are not expressive enough. Larger and more expressive language fragments are handled
by non-linear dictionaries that also can be parsed by a linear algorithm for a given type
assignment, see [Preller3]. Future work will (attempt to) show that the conciseness
criterion also can be used in this case and with the same results. Another line of
investigation is to design similar pregroup grammars in other languages following,
for example, the study of Germanic and Romance clitics in [Cardinaletti] or that of
English verbs exhibiting uniform control constraints in [Pollard-Sag].

22



6 Appendix

par(by) : π̃o`

Marie : νfs
Jean : νms

Clitics Intransitive verbs

les : o3gp

leurs : ω3gp

nous : ν1gp

nous : πr
1gpπ1gpô1gp

nous : π̂r
1gpπ̂1gpô1gp

nous : πr
1gpπ1gpω̂1p

nous : π̂r
1gpπ̂1gpω̂1p

s’ : πr
3gnπ3gnô3gn

s’ : π̂r
3gnπ̂3gnô3gn

s’ : πr
3gnπ3gnω̂3

s’ : π̂r
3gnπ̂3gnω̂3

marche : πr
3s s

marcher : π̂r i
marché : π̂r p
part : πr

3s s
partir : π̂r i
parti : π̂r

msp
′

partie : π̂r
fsp

′

partis : π̂r
mpp

′

parties : π̂r
fpp

′

parles : πr
2s s ωr

parles : ω̄rπr
2s s

parles : ω̂rπr
2s s

parlé : π̂r p ωr

parlé : ω̂rπ̂r p

Transitive verbs Auxiliaries and Modal verbs

examine : πr
3sso`

examine : ōrπr
3ss

examine : ôrπr
3ss

examiner : π̂rio`

examiner : ōrπ̂ri
examiner : ôrπ̂ri

examiné : π̂rpo`

examiné : ôr
msπ̂

rp

examiné : ôr
mspπ̃`

examiné : ôr
mspπ̃`π̃

examinée : ôr
fsπ̂

rp

examinée : ôr
fspπ̃`

examinée : ôr
fspπ̃`π̃

examinés : ôr
mpπ̂

rp

examinés : ôr
mppπ̃`

examinés : ôr
mppπ̃`π̃

examinées : ôr
fpπ̂

rp

examinées : ôr
fppπ̃`

examinées : ôr
fppπ̃`π̃

a : opgn
rπr

3ssp`π̂ôgn

a : πr
3gssp`π̂3gs

avoir : opgn
rπ̂rip`π̂ôgn

avoir : π̂rip`π̂

est : ôr
3gsπ

r
3ssp`π̂ôgs

est : πr
3gssp′`π̂gs

est : πr
3gssp`ôgs

est : ω̂rπr
3ssp`π̂ω̂

être : ôr
pgnπ̂rip`π̂ôgn

être : π̂r
pgnip′`π̂pgn

être : π̂r
pgnip`ôpgn

être : ω̂rπ̂rip`π̂ω̂

doit : πr
3gssi`π̂r

3gs

devoir : π̂r
pgnii`π̂pgn

dû : π̂r
pgnpi`π̂pgn

where p, g and n vary through all their possible values.
Basic types
i , p , s ,
νgn → π3gn , πpgn → πpn , π̂pgn → π̂ , π̃ , for p = 1, 2, 3, g = m, f and n = s, p
opgn → ō , o , ôpgn → ôgn → ô , for p = 1, 2, 3, g = m, f and n = s, p
ωpn → ω̄p ,ω̂p → ω̂ , for p = 1, 2, 3
ν1gp → o1gp, ν1gp → ω1p , ν2gp → o2gp, ν2gp → ω2p for g = m, f
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toré,eds.: LACL 2001, LNAI 2099, pp. 62-78, 2001

[Buszkowski] Wojciech Buszkowski, Lambek Grammars based on pregroups,
in: P. de Groote et al., editors, Logical Aspects of Computational
Linguistics, LNAI 2099, Springer, 2001

[Cardinaletti] Anna Cardinaletti, Pronouns in Germanic and Romance Lan-
guages: An overview, in Hinrichs, Kathol and Nakazowa (eds.),
Complex Predicates in Non-derivational Syntax, Syntax and Se-
mantics, Vol 30, Academic

[Casadio-Lambek] Claudia Casadio, Joachim Lambek, An algebraic analysis of clitic
pronouns in Italian, P. de Groote, G. Morrill, C. Retoré,eds.:
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