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Abstract

In this paper, we define the two dimensional topological map, a model which rep-
resents both topological and geometrical information of a two dimensional labeled
image. Since this model is minimal, complete and unique, we can use it to define
efficient image processing algorithms. The topological map is the last level of a map
hierarchy. Each level represents the region boundaries of the image and is defined
from the previous one in the hierarchy, thus giving a simple constructive definition.
This model is similar to two existing structures but the main innovation of our
approach is the progressive definition based on the successive map levels. These
different maps can easily be extended in order to define the topological map in any
dimension. Furthermore we provide an optimal extraction algorithm which extracts
the different maps of the hierarchy in a single image scan. This algorithm is based
on local configurations called precodes. Due to our constructive definition, different
configurations are factorized which simplifies the implementation.

Key words: topological model, image representation, interpixel boundaries,
combinatorial map, segmentation

1 Introduction

In this paper we present a combinatorial structure which represents interpixel
boundaries of a two dimensional labeled image: the topological map. First we
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give a formal definition of the topological map, then we propose an optimal
algorithm which builds this structure from a labeled image by a single image
scan and a minimal number of operations. The problem of the definition of such
a structure has been widely studied [36,29,22,12,35,7,9,5]. Indeed, it allows an
efficient implementation of the main geometrical and topological operations
used in principal image processing algorithms and more particularly in image
segmentation.

There are many different data structures which represent the region bound-
aries of a labeled image. These structures are all more or less derived from
the Region Adjacency Graph (RAG) [36]. This graph is composed of a set of
vertices, one by region of the image, and there is an edge between two vertices
if and only if the two corresponding regions are adjacent. However, the RAG
has several drawbacks: it does not represent multiple adjacencies, does not
make the difference between adjacency and inclusion, does not keep the order
of the edges around a vertex, does not represent the faces but only vertices and
edges and last it is not unique, i.e. two different images could be represented
by the same RAG [28]. To solve these problems, the RAG model has been
extended.

For example [29,31] define dual graphs structure, which are two multi-graphs
representing inclusion relations. The first graph is equivalent to the RAG, but
with multi-edges in order to represent multi-adjacency. The second graph is
the dual of the first one. In order to avoid disconnection, edges are added
between distinct boundaries of the same region in the primal graph. These
special edges become loops in the dual graph. This allows the differentiation
of the inclusion relation and the adjacency relation. But dual graphs are not
topological representatives of the images: we can have two topological different
images having the same dual graphs. Another drawback of this structure is
that each operation has to be applied twice (once to the primal graph and
another to the dual one) in order to maintain the correspondence between the
two graphs. At last, this structure is difficult to extend in higher dimension.

Two similar approaches have been proposed in order to give a solution to the
problem of defining a structure representing all information resulting from
a region segmentation. These two approaches are defined in the works of
J.P. Domenger et Al. [19,11,12,7,10] and C. Fiorio et Al. [21,22,1]. The basic
idea is to use combinatorial maps as a basis to represent the topology of the
image. Indeed, combinatorial maps are a good model of space subdivision rep-
resentation. They are defined in any dimension and represent all the cells of
the subdivision and all the adjacency relations. Moreover, they can easily be
linked to a geometrical model in order to represent the object geometry. Last,
they are an efficient model to retrieve and to update information contained in
the image [33].
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The main difference between the two approaches is the algorithm which builds
the topological map for J.P. Domenger and the topological graph of frontiers
for C. Fiorio. The first one uses a contour tracking algorithm, the second one
uses the notion of precodes (Sec. 7, see also [13,21]) allowing to compute the
structure in a single image scan. We can also quote the Frontier Graph defined
by J.M. Jolion and J.G. Palloncy [35] which is very similar to the two previous
structures. These structures have been defined in 2D. The need to work with
images of higher dimension and specially in 3D has led to study how to extend
previous works to higher dimension. But we rapidly reach the conclusion that
structures are strongly related to the dimension two and so prevent their direct
extension to the nD case.

To solve this problem, [5] proposes the definition of a new structure in nD: the
border map. This structure, also derived from combinatorial maps, represents
the interpixel boundaries of a labeled image. But its major drawback is that
this structure is not stable according to geometric transformations (transla-
tion, rotation, homothety, local modifications): border maps of two isomorphic
partitions for these transformations can be completely different. This is a ma-
jor drawback since the structure does not characterize images. This implies
problems for matching algorithms and shows that the border map model does
not provide a minimal encoding.

More recent works [9,8] extend the topological map in 3D. But the contour
tracking algorithm which allows to construct the topological map in 2D is diffi-
cult to extend in 3D. They need to avoid particular configurations of voxels in
the image: when two voxels with same label are adjacent by an edge. So before
extracting the topological map, they first modify the image in order to remove
all these configurations. This is an heavy time-consuming pre-processing which
is not satisfying since it modifies the initial image.

To propose a solution, we reexamine the 2D topological map in order to give
a formal definition which easily allows to extend it to higher dimension. This
model has to be:

• minimal in the number of cells, to optimize memory occupation but also
complexity of algorithms that have a direct access to the adjacency infor-
mation;
• complete: it must represent both topology and geometry of images;
• unique: it must be invariant for geometric transformations: two topological

equivalent images must have the same representation in order to facilitate
matching algorithms.

To propose a new definition, we introduce the new notion of simplification
levels which allows us to give a simple and constructive definition of the 2D
topological map based on the removal operations. Moreover, due to the gener-
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icity of the constructive definition and the removal operations, the extension
to the 3D case is facilitated [2,3].

First we give in Sec. 2 a brief recall on combinatorial maps which are the
basic model used in this work. Then we give in Sec. 3 some notations and
some recalls on the interpixel notion. We introduce in Sec. 4 our new notion
of simplification level, and we define the topological map by using several
intermediary levels. This section presents only the topological part of our
model in order to simplify the understanding. The geometrical part and the
link between the two models is the object of Sec. 5. Then we present a first
extraction algorithm in Sec. 6 which comes directly from the constructive
definition. In Sec. 7 we give the optimal extraction which uses the precode
notion. Precodes were already used in previous works [13,21] (only in 2D),
but we show here a parallel between precodes to consider and the level we
want to extract. We study all the different cases to process in order to extract
any map level in a single image scan, and we show that some configurations
can be factorized. In Sec. 8 we give our algorithm that computes the inclusion
tree. In Sec. 9, we present more precisely the two similar existing approaches
in order to understand the main differences and to see why our solution can be
easier be extended in higher dimension. We present some experimental results
in Sec. 10. Finally we conclude this paper in Sec. 11 and give some perspectives
for future works.

2 Combinatorial Maps

The combinatorial map is a mathematical model of space subdivision repre-
sentation based on planar map [20,37,24,14,15]. The subdivision of a 2D topo-
logical space is a partition of the space into 3 subsets whose elements are cells
of 0, 1 and 2 dimension (respectively called vertices, edges and faces, and noted
i -cell for a i -dimensional cell). Border relations are defined between these cells,
where the border of a i -cell is a set of (j<i)-cells. We say that two cells are
incident when one belongs to the border of the second, and that two i -cells
are adjacent if they are both incident to the same (j<i)-cell. Combinatorial
maps encode all the subdivisions and the incidence relations between all the
different cells of the space, and so represent the topology of this space. They
are defined formally for any dimension, and we call n-map an n-dimensional
combinatorial map. The n-maps can encode all orientable manifold subdivi-
sions of an n-dimensional space without boundary. They were generalized in
[32,34] in order to encode all n-dimensional, orientable or not and with or
without boundary subdivisions (see [33] to find a connection between maps
and several other models).

A combinatorial map can be obtained intuitively by successive decompositions
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(a) (b) (c)

Fig. 1. The successive decompositions of an object to obtain the corresponding
2-map. (a) A 2D object. (b) Disjoined faces. (c) Disjoined edges.

as we can see in Fig. 1. To represent the 2D object shown in Fig. 1(a), we
first distinguish the faces of this object (Fig. 1(b)) then the edges of these
faces (Fig. 1(c)). Adjacency relation between the two faces is represented by
the black segment and adjacency relations between each couple of edges is
represented by grey arc circles. The obtained elements after all the decompo-
sitions are called darts and are the single basic elements of the combinatorial
map definition. To obtain the map, we only report each adjacency relation
onto darts, and call βi the relation between two i -dimensional elements. Let
us see now the formal definition of 2D combinatorial maps that we can find
for example in [33]:

Definition 1 (2D combinatorial map) A 2D combinatorial map, (or 2-
map) is a triplet M = (D, β1, β2) where:

(1) D is a finite set of darts;
(2) β1 is a permutation 1 on D;
(3) β2 is an involution 2 on D.

When two darts d1 and d2 are such that βi(d1) = d2 (1 ≤ i ≤ n), we say
that d1 is i -sewn to d2. We speak about i -sewing (resp. i -unsewing) for the
operation that puts two darts in relation for βi (resp. that removes an existing
βi relation). We note β0 for β−1

1 , and βji for βi ◦ βj (βi ◦ βj(d) = βi(βj(d)), we
first apply βj then βi, the permutations are applied in the same order as they
are read in the notation βji).

We can see in Fig. 2(a) the 2-map which represents the object shown in Fig. 1.
The β1 relation connects an edge and the following edge in the same face, and
the β2 relation connects the two faces incident to the same edge. In order to
simplify the figures, we use the graphical representation presented in Fig. 2(b)
where the βi are not explicitly drawn. Each dart is represented by an arrow
that shows the face orientation. With this orientation, we can retrieve, for
each dart, the following dart in the same face and so deduce the β1 permu-
tation. Moreover, two darts 2-sewn are drawn near and parallel and the β2

1 A permutation on a set S is a one to one mapping from S onto S.
2 An involution f on a set S is a one to one mapping from S onto S such that
f = f−1.
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β1 2 3 4 5 1 7 8 9 6 11 12 10
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Fig. 2. Two different representations of the same combinatorial map. (a) Full rep-
resentation. Darts are represented by numbered black segments, β1 relations are
represented by grey arrows and β2 by thick black arrows. (b) Implicit representa-
tion where the βi are not explicitly drawn. Darts are represented by numbered black
arrows (to represent the orientation). Two darts 1-sewn are drawn consecutively,
and two darts 2-sewn are concurrently drawn and in reverse orientation.

permutation can also be deduced from the graphical representation.

Within the combinatorial map framework, all space cells are represented im-
plicitly using the notion of orbit :

Definition 2 (orbit) Let Φ = {f1, . . . , fk} some permutations on D. We
note < Φ > the permutation group generated by Φ. This is the set of permuta-
tions obtained by any composition and inversion of permutations contained in
Φ. The orbit of a dart d relatively to Φ is defined by < Φ > (d) = {φ(d)|φ ∈
Φ}.

Intuitively, an orbit < f1, . . . , fk > (d) is the set of darts that we can reach
with a traversal starting with d and using all combinations of all the fi or
f−1

i permutations. Given a 2-map and a dart d, we can retrieve all the cells
incident to d by using particular orbits. The vertex incident to d is defined
by < β21 > (d), the edge by < β2 > (d) and the face by < β1 > (d). A dart
is said to be incident to a cell if it belongs to the set of darts that represents
the cell. Moreover, two cells are incident if the two corresponding sets have a
non-empty intersection. In the 2-map shown in Fig. 2, the vertex incident to
the dart 8 is the orbit < β21 > (8) = {5, 8, 11}, the edge incident to the same
dart is < β2 > (8) = {8, 10} and the face is < β1 > (8) = {6, 7, 8, 9}.

Combinatorial maps only represent object topology, and not their geometry.
But it is easy to add some geometric elements to some (even all) orbits of
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the combinatorial map: this operation is called embedding 3 . The separation
of topological and geometrical models is one of the main advantages of combi-
natorial maps. Indeed, such a separation allows us to classify each operation
in three different categories:

• Topological operations, which exclusively modify the topological model so
the combinatorial map;
• Geometrical operations, which exclusively modify the geometrical model,

the combinatorial map remaining unchanged;
• Mixed operations, which modify both models. But even in this case, we can

usually decompose this operation in two distinct steps: first the topological
modifications then the geometrical ones.

The separation of these two models allows us to modify either the embedding
only or the topological model only. Moreover, operations become easier to
define when the modifications of the topological and the geometrical model
are separated.

3 Using Combinatorial Maps for Image Representation

Let us here recall some usual notations. A pixel is a point of discrete plan
Z

2 associated with a value which could be a color, a grey level. . . . A two
dimensional image is a finite set of pixels. We use the classical notion of 4-
connectivity because combinatorial maps can not represent non-manifold and
so the 8-connectivity can not be considered without some tricks. In this work,
we use combinatorial maps to represent pixel sets of labeled images having
same values and which are 4-connected.

Definition 3 (labeled image) A labeled image is a set of labeled pixels such
as two pixels with the same label belong to the same 4-connected component.

Note that we can represent any type of image simply by labeling all the 4-
connected pixel sets that have the same value, for example with a growing
algorithm. Considering only labeled images is an optimization that allows us
to immediately retrieve, given the label of a pixel, the connected component
its belongs to. But this work can be extended in order to consider any types
of images. We speak about region for a set of same labeled pixels. Two pixels
with same label belong to the same region, and two different regions have two
different labels. We use this property only for the inclusion tree (cf. Sec. 8) in
order to use the label of regions as a unique identifier, and so it is possible to

3 One embedding example of a combinatorial map consists in linking to each topo-
logical vertex of the map the coordinates of an Euclidean space point.
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linel

pixel pointel

Fig. 3. All the cells of the interpixel 2-dimensional space.

extend this work to consider regions made of several 4-connected components.
To avoid particular processes of the image border pixels, we consider an infinite
region R0 that contains all the pixels that do not belong to the image. With
this region, each pixel has exactly 4 neighbors (for the 4-adjacency). Moreover
this infinite region allows us to process any type of image, not only the ones
rectangular and without holes.

We say that a region Ri is included into a region Rj if and only if any 4-
connected path going from a pixel of Ri to a pixel of R0 (the infinite region)
has at least one pixel belonging to region Rj . Intuitively, this inclusion notion
corresponds to the fact that a region is around another one without any con-
straint on the way this surrounding is done. We can notice that each region
is at least included into the infinite region, and that this relation is a partial
order relation.

Combinatorial maps represent the borders of the regions contained in the
image. Several works have been done on the notion of boundary in a discrete
image and have shown that using a topology based on the interpixel notion
[28,25,26,23,21] enables to define these borders so that they verify classical
topological properties, as in the Jordan theorem [27].

In the interpixel framework, an image is not considered only as a matrix of
pixels, but as a subdivision of a 2-dimensional space in a set of cells: pixels (the
2-cells called sometimes faces), linels, the 1-cells in between two 2-cells (also
called cracks), and pointels, the 0-cells in between 1-cells (or points). These
different types of cells can be seen in Fig. 3. With these cells, the notion of
curve is topologically correctly defined: a curve is a list of alternated pointels
and linels (with a pointel on each end) such as two consecutive cells in the list
are incident. A curve is said simple when all the cells of the curve are distinct
(a curve is simple if it is not self-intersected), and closed if the first cell is the
same as the last one.

The interpixel boundary between two regions Ri and Rj is the set of simple
curves two by two disjoined, such as each linel of these curves is incident
to exactly one pixel of Ri and one pixel of Rj . We call boundary curve a
curve belonging to one of the image boundaries. These boundary curves are
maximal: each linel of the image incident to one pixel of Ri and one pixel of
Rj belongs to one boundary curve, and two adjacent linels belonging to the
same boundary belongs to the same boundary curve (they are separated in
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Fig. 4. Interpixel and Boundaries of a Labeled Image. (a) An image with all the
interpixel elements. (b) Interpixel boundaries of the image regions.

this curve by the pointel incident to these two linels).

Figure 4 represents a labeled image and its interpixel boundaries. The bound-
ary between regions R1 and R3 is composed of two distinct curves, the one
between R3 and R4 is composed of one closed curve, and the boundary between
R1 and R4 is empty since these two regions are not adjacent. Note that this
definition of interpixel boundary is valid for any region, due to the existence
of the infinite region.

4 Topological Map: Last level of Several Maps Definition

Combinatorial maps are well suited to represent interpixel boundaries since
they represent space subdivisions and all the incidence relations between
the different cells. For this reason they were used in several previous works
[22,12,35,7,9,5]. But different combinatorial maps can represent the same im-
age, and these works have used different map variants according to their needs.

In this paper we introduce the notion of simplification levels which allows us
to give a simple and constructive definition of the 2D topological map. These
levels can be formally defined with simple constructive definitions, and can be
extended in higher dimension. The topological map is the last simplification
level since it is minimal; other levels are only intermediate concepts. But it is
possible to use an intermediate level in a particular application where we have
no memory constraint (for example [4] uses a map equivalent to our level 2 in a
3D-modeler). First, we only present the topological part of this work without
looking at the link with a geometrical model. It allows us to help with the
understanding of our model and not to mix the two parts up. The link with a
geometrical model is the purpose of Sec. 5.

The main idea of our approach is first to build a complete combinatorial map,
that represents all the interpixel cells of the image, and then to progressively
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Fig. 5. 1-removal of the edge incident to the dart d. (a) Initial configuration. (b) 0 and
1-unsewing of d and d’. (c) 1-sewing of t1 with t′

2
and t′

1
with t2.

simplify it as long as no topological information is lost. This construction
scheme allows us, in the end, to define the minimal map that represents the
interpixel boundaries. At every step of the process, we only need to verify
that there is no topological information loss in order to ensure the validity of
the new map. To perform the successive simplifications, we use the removal
operations.

4.1 Removal Operations in Map

The i -dimensional removal operation (noted i -removal) consists in removing
a i -cell. This leads to the merging of the (i+1)-cells incident to the removed
cell. In 2D, we can remove an edge or 1-cell (1-removal, see an example in
Fig. 5) or remove a vertex or 0-cell (0-removal, see an example in Fig. 6).
We only present here the main notions of these operations. A more complete
description can be found in [17] where we give general definitions of removal
and contraction 4 operations.

We can remove any edge in a 2-map without constraint (see example in Fig. 5
where we remove the edge incident to dart d). In order to perform this op-
eration, we first 0 and 1-unsew the edge incident to the dart d (d and d’ in
Fig. 5(b)). Then we sew again ”correctly” the darts which were previously
sewn to this edge (t1 with t′

2
and t′

1
with t2, see Fig. 5(c)) and remove the

free darts d and d’. We can prove this operation is correct whatever the ini-
tial configuration and the edge to remove (even in degenerated cases, as for
example the removal of an isthmus, see [17]).

The 0-unsewing operation of a dart d consists only in removing the exist-
ing relation between d and β0(d). For that, we can use a particular dart
(called for example NIL 5 ) and define the 0−unsew(d) by the two affectations:

4 Contraction is the dual operation of the removal. It consists in contracting a i -cell
into a (i-1)-cell.
5 If we want to formally define this particular value, we can modify the combi-
natorial map definition (Def. 1) by adding a particular dart called NIL such as
∀i, βi(NIL) = NIL. This modified definition can also be used to represent objects
with boundaries.
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Fig. 6. 0-removal of the vertex incident to the dart d. (a) Initial configuration. (b) 0,
1 and 2-unsewing of d and d’. (c) 1-sewing of t1 with t2 and t′

1
with t′

2
. 2-sewing of

t1 with t′
1
.

β1(β0(d)) = NIL and β0(d) = NIL, the 1−unsew(d) by β0(β1(d)) = NIL and
β1(d) = NIL and the 2 − unsew(d) by β2(β2(d)) = NIL and β2(d) = NIL.
We need to modify two values in order to preserve the properties of combina-
torial maps (β0 = β−1

1 and β2 is an involution). Using the 0-unsewing to define
the 0-removal allows us to be sure that we always preserve these properties.
Indeed, without unsewing, we can for example 1-sew a dart d, already 1-sewn
to d2, to another dart d3 and thus obtain an object which is no longer a com-
binatorial map since β0(d2) is equal to d and β0(d3) too. Moreover, 0-unsewing
is also useful to update eventual embeddings (see Sec. 5).

The vertex removal is possible only for degree two vertices (the degree of a
i -cell c is the number of distinct (i+1)-cells incident to c). Otherwise, it is not
possible to automatically decide how to connect the different edges around the
removed vertex. We can see an example in Fig. 6 where we remove the vertex
incident to dart d. The operation is performed with a similar algorithm to the
edge removal. First we unsew the darts incident to the vertex (d and d’ in
Fig. 6(b)) then we sew the free darts (t1 with t2 and t′

1
with t′

2
, see Fig. 6(c))

and remove free darts d and d’ 6 .

4.2 Level 0: Complete Map

Level 0 map is the starting point of our process and represents all the interpixel
cells of a labeled image.

Definition 4 (level 0 map) Level 0 map corresponding to an n1×n2 pixels
labeled image, is the map having n1 × n2 square faces 2-sewn between them,

6 Vertex removal can be achieved with edge contraction. Indeed, in the example
shown in Fig. 6, removing the vertex incident to d is equivalent to contracting the
edge incident to d (and also equivalent to contracting the edge incident to d’ ). The
difference between vertex removal and edge contraction is the precondition of the
operation: edge contraction can be achieved without constraint, and vertex removal
can be done only for degree two vertices.
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Fig. 7. (a) An image and its interpixel elements. (b) The corresponding level 0 map.

each face corresponding to a pixel, plus an enclosing face which represents the
infinite region.

Figure 7(b) shows the level 0 map of the image shown in Fig. 7(a). For an
n1×n2 image, this map is composed of (n1×n2)+1 faces. n1×n2 square faces,
each one representing a pixel of the image, made of 4 darts, and an additional
face that represents the infinite region, made of 2× (n1 +n2) darts. Two darts
are 1-sewn when they represent two consecutive linels of the same face, and
are 2-sewn when they represent the same linel.

4.3 Level 1: Linel Map

Level 0 map represents all the interpixel cells of an image. In order to obtain a
combinatorial map which represents only the interpixel boundaries, it is nec-
essary to remove all linels corresponding to inner boundaries. This operation
is done with the edge removal.

Definition 5 (level 1 map) Level 1 map is the map obtained from level 0
map by removing each edge between two pixels having the same label.

We can see in Fig. 8(a) the image of our example and in Fig. 8(b) the cor-
responding level 1 map that represents all the interpixel boundaries of the
image. Each edge of this map corresponds exactly to one linel of a boundary
curve.

It should be noticed that each region is represented in level 1 map by an exter-
nal border and zero or several internal borders. A region R has internal borders
when there are some regions included into R. In our example in Fig. 8(b), only
region R3 has one internal border (without considering the infinite region that
is always represented by an internal border). The map is disconnected into
several connected components (in the example, two connected components),
and we have lost the topological information necessary to place and link the
connected components. Without this information, it is not possible to dis-
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Fig. 8. (a) Interpixel boundaries. (b) The corresponding level 1 map.
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Fig. 9. Level 2 map.

tinguish two non-adjacent regions and one region included into another one.
In order to keep this information, we introduce a region inclusion tree of the
(more precisely described in Sec. 8). This tree has one node for each image
region of the. Its root is the infinite region, and the set of regions included
in a given region R defines the sons of R in the tree. This tree allows us to
retrieve the inclusion information and so to retrieve all the boundaries of a
given region.

This level 1 is the first map that represents interpixel boundaries of a labeled
image. But it is clear that this structure is not optimal, neither for space,
nor for time complexity. Indeed, due to the number of darts having to be
traverse to retrieve adjacency information, operations on this map require
heavy computations. This is why we simplify this map and define level 2.

4.4 Level 2: Border Map

Level 2 map is the most intuitive map encoding interpixel boundaries of an
image. Indeed, each edge of this map represents a straight part of a boundary
(this map is called border map in [5]). We can see level 2 map of our image in
Fig. 9.

Definition 6 (level 2 map) Level 2 map is the map obtained from level 1
map by removing each degree two vertex between two aligned edges.
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Fig. 10. Two topological equivalent partitions and their corresponding level 2 maps.

Each edge of level 2 map corresponds to a maximal series of aligned linels
of a boundary curve. But these edges are now of any length, contrarily to
level 1 map where edges are of length one. We can prove that level 2 map
is topologically equivalent to level 1 map. The only modification achieved on
the level 1 map is the removal of each degree two vertex between two aligned
edges. Each couple of aligned edges incident to a degree two vertex is necessary
between the same two regions Ri and Rj . So the two edges represent the same
topological adjacency information and deleting one of the two does not lead
to any loss of topological information. Moreover, the vertex removal can not
lead to the disconnection of the map in several connected components.

The main problem of level 2 map is its non-unicity. Indeed, the number of
darts used to represent a boundary curve depends on the geometry of this
boundary. In the worst case, when a boundary does not have any consecutive
aligned linel (cf. the stair case in Fig. 10), the number of darts of level 2 map
is exactly twice the number of linels of the boundary. This non-unicity implies
that two topologically equivalent partitions can have two completely different
level 2 maps.

4.5 Level 3: Topological Map

To solve the non-unicity problem of level 2 map, we need to perform the
same simplifications achieved to define level 2 map but for non-aligned edges.
Indeed, after these simplifications, we obtain a model which do not depend on
the geometry of the image boundaries but only on its topology. Level 3 map
of our example is shown in Fig. 11.

Definition 7 (level 3 map) Level 3 map is the map obtained from level 2
map by removing each degree two vertex.

Each edge of level 3 map corresponds exactly to a boundary curve of the
image. This gives the final model the name of ”topological map”: level 3 map
plus the inclusion tree. This map is minimal, we can not do any additional
removal without modifying the topology. To ensure that level 3 map contains
the same topological information as level 2 map (and so as level 1 map), we
use the same proof as the previous map and we show that two edges incident
to a degree two vertex represent the same adjacency information.

14



R0

R1

R2

R3

R4

R5

Fig. 11. Level 3 map.

Fig. 12. Two topologically equivalent partitions and their corresponding level 3
maps.

Level 3 map only depends on the topology of the represented image. That is
why two topologically equivalent partitions are represented by two isomorphic
maps as we can see in Fig. 12. Level 3 map represents each boundary curve on a
minimal way (one edge) and thus we can no longer simplify the map. This map
needs much less memory than the others, it is consistent with the topology
of the represented objects and it is stable for geometric transformations of
the corresponding image. Moreover, image processing algorithms need less
computational time when they are defined on level 3 map because of the
direct access of the adjacency information.

5 What Geometrical Model for Each Map Level

Combinatorial maps only represent the topological part of images. But in most
applications, it is necessary to represent also geometry. There are several ways
to associate a geometrical model to a combinatorial map. We present here one
solution for each map level and show how these models have to be modified
during our main operations: sewings, unsewings and removals.

5.1 Level 1 and Level 2 Maps

For level 1 and level 2 maps, we associate a 2D geometrical point (given by its
coordinates) to each topological vertex of the map. Each topological vertex is
represented in the map by a set of darts, but only one of these darts is linked
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Fig. 13. 1-removal of the edge incident to the dart d with embedding modification.
(a) Initial configuration. (b) 0 and 1-unsewing of d and d’. The two vertices incident
to d and d’ are duplicated. (c) 1-sewing of free darts: t1 with t′

2
and t′

1
with t2.

Geometrical points linked with d and d’ are removed.

with the geometrical point. Given a dart, we have to traverse the vertex orbit
in order to find this particular dart and so the geometrical point.

We use the same geometrical model for level 1 and level 2 maps in order to
simplify algorithms. Indeed, we do not need a conversion of the geometrical
model between these two levels. But this leads to a more important complexity
in memory space for level 1 since we do not use its particular properties.

This embedding is simple since only one type of cell is embedded. Moreover,
retrieving the embedding of the edges or the faces can easily be achieved
since it is sufficient to traverse topological cells and to keep the coordinates
of each vertex. To ensure the validity of this embedding, we must verify that
each topological vertex has exactly one dart that is linked with a geometrical
point.

This property can be preserved automatically by modifying the sewing and
unsewing operations. Indeed, we test when a sewing operation groups together
two initial distinct vertex orbits and then remove one 7 of the two geometrical
points when it is the case. We also check when an unsewing operation breaks
an initial topological vertex into two distinct orbits, and then we duplicate
the geometrical point. We can see in Fig. 13 the 1-removal operation (already
presented in the previous section) with the embedding modifications. After
the 0 and 1-unsewing of d and d’, the two incident geometrical points have
been duplicated as the corresponding vertices have been broken into two orbits
(Fig. 13(b)). Then, after the 1-sewing of free darts (Fig. 13(c)), the two geo-
metrical points associated with d and d’ are removed along with the deletion
of the two darts.

Note that this is not the optimal embedding updating. Indeed, if we know
performing a 1-removal operation (as the example shown in Fig. 13), we know
that darts d and d’ are going to be deleted and thus it is not required to
duplicate the two geometrical points. We can sometimes choose to use the

7 When we i-sew(a,b), we keep the geometrical point associated with a. For this
reason, 0-sew(a,b) or 1-sew(b,a) give the same topological result but not the same
geometrical one.
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general sewing and unsewing operations that check and update the vertex
embeddings, and some other times the basic sewing and unsewing operations
(for example when we perform a set of sewing operations and know exactly
how the different orbits are going to be modified).

But this is only an optimization and in the following we do not detail when we
can use basic operations instead of general ones. Moreover, the additional cost
in complexity of general sewing and unsewing operations is not important.
Indeed in the worst case there are 4 darts incident to the same geometrical
point (one dart by linel incidents to the corresponding pointel) and thus the
test on the vertex orbit can be performed in 4 elementary operations that is
to say in constant time.

5.2 Level 3 Map

For level 3 map it is not possible to use the same embedding as for the two
other levels. Indeed, we can not retrieve the embedding of an edge with only
the embedding of its end vertices because edges can now have any geometrical
shape.

In order to embed this map, we associate a 2D geometrical point to each topo-
logical vertex (as for the previous levels), and we associate to each topological
edge the 1D curve corresponding to the interpixel boundary without its two
extremities (we call these curves open curves). These curves are represented by
1-dimensional combinatorial maps 8 . These 1-maps represent maximal straight
line segments in order to minimize the number of elements. Only one dart of
the two that compose an edge is linked to the 1-map, and the orientation of
the 1-map is the same as the one of this dart.

The main advantage of this embedding is to not encode twice the coordi-
nates of the vertices. The main drawback is that we do not have immediately
the embedding of a boundary curve but we need to reconstruct it from one
open curve and two geometrical points. But this can be performed in linear
complexity for the number of points of the boundary curve.

We can see in Fig. 14 the embedding of level 3 map of our example image
used in this paper. This map has seven topological vertices (embedded by
geometrical points a, d, e, h, k, m and o) and ten topological edges. Among
them, three do not have an edge embedding (edges {2, 8}, {4, 12} and {9, 18}).
Indeed, when a topological edge corresponds to a straight line segment, the

8 A 1-map is equivalent to a double-linked list but this allows us to consider the
extension in higher dimension where each i -dimensional topological cell could be
embedded with a i -dimensional combinatorial map.
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Fig. 14. Topological map with open curves and vertices embedding.

1D open curve is empty and the two geometrical end points are enough to
reconstruct the edge geometry.

The method to reconstruct the embedding of an edge incident to a dart, for
example dart numbered 19 in the figure, consists in retrieving in a first time the
embedding of the vertex incident to 19 (geometrical point a), then in retrieving
the embedding of the edge (geometrical points b,c), and at last in retrieving
the embedding of the dart β2(19) (geometrical point d). The 1D curve made
from the concatenation of these three embeddings is the embedding of the
edge (list of geometrical points a,b,c,d).

During modification operations, we need to update both embeddings (vertex
and edge embeddings). For the vertex embedding, we can exactly perform the
same modifications of the sewing and unsewing operations as for level 1 and
level 2 maps. The edge embedding has to be updated only for the 0-removal
operation. Indeed, when we remove an edge, the corresponding open curve is
simply destroyed. But when we remove a vertex, we need to keep the geometry
of the two merged edges in the unique embedding of the resulting new edge.

In order to do that, we process in two steps (shown in Fig. 15). So as to
remove the vertex incident to dart d, we first add at the beginning of the 1-
map associated to d the geometrical point of the removed vertex (depending
on the dart that is linked with the 1-map, this is equivalent to adding the
geometrical point at the end of the 1-map associated to β2(d)). Note that this
creates such a map if the edge incidents to d does not already have an edge
embedding (case of straight line segments).

In a second step we merge the edge embedding of β0(d) and the edge embed-
ding of d (with a particular case to take into account when one edge does not
have an edge embedding). When the two 1-maps do not have the same ori-
entation, we need to reverse one of the two before merging them in a unique
1-map. Moreover, in order to represent maximal straight line segments, we
check during this merging if the three geometrical points around the removed
vertex are aligned, and when it is the case we remove the geometrical point
inserted in the previous step.
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Fig. 15. 0-removal of the vertex incident to the dart d with embedding modification.
(a) Initial configuration. (b) 0 and 1-unsewing of d and d’. The geometrical point
incident to d is added in the beginning of the 1-map associated to the edge incident
to d. (c) 1-sewing of free darts and merging of the two 1-maps associated with the
edges incident to d and d’.

As for the embedding of level 1 and level 2 maps, the updating of the embed-
ding can automatically be achieved by the sewing and unsewing operations
and the 0-removal operation, but it can also be achieved manually for partic-
ular operations in order for example to optimize and avoid several tests of the
same orbit. But in this last case, we must make sure that the embedding is
correctly updated in order to avoid a loss of geometrical information.

6 Basic Generic Extraction Algorithm of Any Map Level

The successive definitions of each map level seen in Sec. 4 immediately give
a first extraction algorithm presented in Algo. 1. The main advantage of this
algorithm is its simplicity. Indeed, it follows the definitions of the different map
levels. Moreover, it is generic: the same algorithm can extract any map level.
First, this algorithm builds level 0 map of the labeled image (line 0). Then,
depending on l, the level we want to extract, we progressively simplify the
map by following the level definitions. Each line numbered i of the algorithm
constructs level i map of the image. At last (line 4) we compute the inclusion
tree with the algorithm presented in Sec. 8.

The embedding modifications are achieved during the removal operations by
the way we have explained in the previous section. For level 1 and level 2 maps
only for the vertex embedding, and for level 3 by adding edge embeddings
(when we remove a vertex between two non-aligned edges).

This algorithm is linear in number of image pixels (both in time and memory).
Indeed, level 0 map has a dart number which is linear in pixel number (see
Sec. 4.2) and other levels have less (or equal) darts. In order to construct each
level, we only test each cell exactly once. But in order to construct level 3
map, we traverse each dart three times, and even if the complexity is linear
it is not optimal. Moreover, we begin for level 0 map by creating many darts
that are going to be eventually destroyed during the simplifications. This leads
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Algorithm 1: Basic extraction of level l map.

Input: A labeled image I of n1 × n2 pixels.
l the level of the map we want to extract (l ∈ {1, 2, 3}).

Output: The level l map corresponding to I.

0 Build a 2-map M of n1 × n2 squares sewn between them
1 Remove each edge between two same labeled regions

if l > 1 then
2 Remove each degree two vertex between two aligned edges

if l> 2 then
3 Remove each degree two vertex

4 Compute the region inclusion tree

to an important and useless time consumption due to memory allocation and
de-allocation. Moreover, memory space required for the construction of level 0
map can be too important, and can prevent the construction of other map
levels. To solve these drawbacks, we now propose an improvement of this
basic algorithm.

7 Precodes to Define an Optimal Extraction Algorithm

The basic principle of precodes [13,21,22] consists in scanning the image from
top to bottom and from left to right, with a 2×2 pixels window, and in exe-
cuting an algorithm which depends on the local configuration of pixels in this
window. We have used this principle, adapted it to our different map levels,
and precisely studied what configurations have to be treated for each level.
The main idea of our approach is to compute the map by an incremental and
direct way, with only one image scan. Furthermore, precode algorithms depend
only on the local pixel configuration, and create only the necessary darts.

7.1 Precodes

We scan the image from top to bottom and from left to right by using a 2×2
pixels window. During this scan, the current pixel is the bottom right pixel of
the 2×2 window. A precode is a local configuration of pixels.

Definition 8 (precode) A precode is a partition of the set of the four pixels
of the 2×2 window.

A precode fixes the pixels that have the same label and those that have dif-
ferent labels. Given a partition {p1, . . . , pk} of the 2×2 window, two pixels
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Fig. 17. Two partial precodes (a and b) and a counter example (c).

belonging to the same pi have the same label, and reciprocally two pixels
belonging to distinct pi and pj have different labels. There exist 15 different
precodes in 2D shown in Fig. 16. We draw a precode by affecting a different
color to each partition element. Precodes number 13, 14 and 15 in Fig. 16 are
non-manifold precodes.

Definition 9 (non-manifold precode) A precode is called non-manifold if
and only if it exists an element of the partition which is not 4-connected. A
precode which is not a non-manifold precode is called manifold.

The precode notion allows to define the operations to perform for each config-
uration met during the image scan. But we need another notion, which allows
us to group several precodes in order to factorize similar processings: this is
the partial precode notion.

Definition 10 (partial precode) A partial precode is a partition of any
subset of the four pixels of the 2×2 window, where each element of the partition
is a 4-connected set of pixels.

We can see in Fig. 17(a) and Fig. 17(b) two examples of partial precodes and
a counter example in Fig. 17(c). This last partition is not a partial precode,
since one element of this partition (white pixels) is not a 4-connected set of
pixels.

Precodes and partial precodes do not have exactly the same interpretation.
Given a partition {p1, . . . , pk} representing a partial precode, pixels not present
in the partition can belong to any region. Two pixels belonging to the same
pi have the same label (as for a precode). But two pixels belonging to distinct
pi and pj can have the same label or not, depending if pi ∪ pj is a 4-connected
set or not:
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• pi ∪ pj is 4-connected: the two pixels have the same label;
• pi ∪ pj is not 4-connected: the two pixels can have the same label or not.

Intuitively, a partial precode fixes the pixels that have the same label or those
that have different labels, but only for 4-neighbor pixels. This is why a partial
precode regroups several precodes (and also because pixels not present in the
partition can belong to any region).

The partial precode shown in Fig. 17(b) only fixes that the bottom right pixel
has a different label from its left pixel neighbor, and a different label from its
top pixel neighbor. But it fixes no constraint between the top right pixel and
the bottom left pixel, because the union of the two partition elements is not
a 4-connected set. On the contrary, the two pixel sets of the partial precode
shown in Fig. 17(a) can not belong to the same region, because their union is
a 4-connected set.

A partial precode regroups the precodes possible to be obtained by labeling
pixels not present in the partial precode, and by possibly grouping non 4-
connected element partitions in a same element. For example, partial precode
shown in Fig. 17(a) regroups precodes 3, 7 and 9, and partial precode Fig. 17(b)
regroups precodes 2, 8, 11, 12, 13, 14 and 15.

7.2 Optimal and Generic Extraction Algorithm

The extraction algorithm based on the precode notion is presented in Algo. 2.
It is generic since it can extract any map level, only by considering different
precodes, and it is optimal since the map is extracted in a single image scan
(we process each pixel exactly once) and the processings performed for each
precode is done in a minimal number of operations. Moreover, this algorithm
is simple because it can be summarized by an image scan where we execute
the code corresponding to the current precode.

Algorithm 2: Optimal extraction of the level l map.

Input: A labeled image I of n1 × n2 pixels.
l the level of the map we want to extract.

Output: The level l map corresponding to I.

1 last← Build the upper left border of the image
2 for j=1 to n2+1 do

for i=1 to n1+1 do
last← Process the code corresponding to precode (i,j)

3 Compute the inclusion tree

The image contains pixels having coordinates between 1 . . . n1 in x and 1 . . . n2
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in y (other pixels are in the infinite region). Precode (i,j) is the precode having
as current pixel (the bottom right pixel of the 2×2 window) pixel (i,j). During
the image scan, we overflow the image by one pixel in any direction. Indeed,
when we process precodes (1,j) (resp. (n1+1,j), (i,1), (i,n2+1)), that processes
the pixels on the left (resp. right, up and bottom) of the image.

The first step of the optimal algorithm consists in building the upper left
border of the image. Indeed, we have this invariant: the map corresponding
to the pixels already scanned, is already built. This invariant allows us to be
sure, at any time, that it exists a dart on the left and at the top of the current
pixel. To satisfy this invariant for the first pixel of the image (pixel (1,1)), we
begin by building the upper left border of the image, as we can see in Fig. 18.
With this initial map, each pixel in the first line of the image has an upper
dart, and the first pixel of this first line has also a left dart.

During the image scan, we need to know the darts on the left and at the top
of the current pixel, in order to locally modify the map already built. We
respectively call these darts last and up (or l and u in figures), as we can see
in Fig. 19. In this figure, we don’t know if the darts last and up are sewn or if
another darts between these two darts exist (this is represented by the dash
lines and the question mark in the figure). But this has no influence on our
algorithms since the map is only locally modified. We only keep the last dart
since the up dart can be computed from this dart, starting from the last dart,
and turning over the vertex until we find a dart not 2-sewn (note that during
the extraction, the map is not closed, the darts in the border of the map are
not 2-sewn, but after the extraction we have a correct map where all darts are
sewn).

The last dart is initialized with the unique vertical dart of the initial border.
Then, during the extraction, we execute the algorithm corresponding to the
current precode. Each precode algorithm locally modifies the map, and return
the vertical dart, to the bottom right of the current precode, which is the last
dart for the next precode. Note that we do not need particular processings for

23



l1 l2 l3 l4

Precode

Before
l

u?

After l
u

u

l a
bc

l u
a

b l

u

b c

da

Fig. 20. The four precodes to extract level 1 map.

the border of the image since it is plated on a cylinder (the last pixel of each
line is the same as the first pixel of the next line). At the end of the algorithm,
we have to compute the inclusion tree, as for the basic algorithm, by using
the algorithm given in Sec. 8.

7.3 Precodes for Level 1 Map

The optimal extraction is generic. Indeed, to extract a particular map level, we
only need to define what precodes we have to consider, and give the operations
to perform for each of them. To find the precodes to consider for a particular
level, we have to look at the operations to be achieved to obtain this level
and see the consequences of these operations on the local precodes. To extract
level 1 map, we need to remove each edge of the complete map between two
pixels having the same label.

Considering the current pixel and the map already built, we need to remove
the left edge when the left pixel has the same label as the current pixel and we
also need to remove the upper edge when the upper pixel has the same label
as the current one. So there are four precodes to consider: they are all the
ways of removing zero, one or two of these edges. These precodes are shown
in Fig. 20.

In this figure, the first line gives the precode name, the second the precode
itself, the third shows the current configuration of the map before executing
the current precode algorithm, and the last line shows for each precode, the
map we want to obtain after this execution. This map corresponds to the
map obtained locally by the basic algorithm when we create the complete
map and then we perform 1-removals. Maps represented in the figures are
partial representation of the local configuration. For example, for the map
after precode l2 in Fig. 20, there are necessarily a dart 0-sewn to l, another
0-sewn and 1-sewn to u, but since this precode is local, we do not know where
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these darts are and we can not draw them.

In order to write the algorithm corresponding to each precode, we only have to
look at the map before, compare it with the map we want to obtain, and write
the sequence of operations which transform the first map into the second. We
can see in Algo. 3, which gives the algorithm of precode l2, that this code is
easy to write. Indeed it is mainly composed of successive unsewn and sewn
operations. We can verify in Fig. 20, that this algorithm actually transforms
the current map into the map we want to obtain for the corresponding precode.

Algorithm 3: Code corresponding to precode l2.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← a new dart; b← a new dart
c← β1(last); 1-unsew(last)
1-sew(last,a); 1-sew(a,b)
1-sew(b,c); 2-sew(up,last)
Embedding of the vertex incident to b← (x,y)
return a

The initial map is modified in order to include the current pixel. For that, we
can modify all the darts of the initial map, even last and up darts. We only
need at the end of the algorithm to return the dart which will be the next
last dart for the next precode. The definition of the four precode algorithms
(given in annex) totally defines the optimal extraction of level 1 map, which
during the image scan, tests what is the current precode, and only executes
the corresponding algorithm.

7.4 Precodes for Level 2 Map

To extract level 2 map, we have to remove each degree 2 vertex between two
aligned edges. But since we construct the map in a single scan, we also need
to remove each edge between two pixels having the same label (simplification
to obtain level 1 map). It we look at the 15 different possible precodes, we
can see that there are only two cases with aligned edges that are incident to
a degree two vertex: the two precodes given in Fig. 21.

To extract level 2 map, we need to find what is the current precode between
these two precodes plus the four level 1 precodes. We can note that these two
level 2 precodes are included in precodes l2 and l3. To find what is the current
precode, we first test if it is a level 2 precode (f1 or f2), and when it is not
the case we search in the level 1 precodes. We can see in Fig. 21 these two
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Fig. 21. The two additional precodes to extract level 2 map.

precodes, the initial maps and the maps we want to obtain. As for level 1 map,
the algorithms corresponding to these two precodes are simple as we can see
for precode f1 in Algo. 4.

Algorithm 4: Code corresponding to precode f1.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← β0(last); b← β1(last)
c← β1(up); d← β1(c)
1-unsew(last); 2-unsew(a)
0-unsew(c); 1-unsew(c)
1-sew(last,c); 1-sew(c,b)
1-sew(up,d); 2-sew(up,a)
Embedding of the vertex incident to c← (x,y)
return last

7.5 Precodes for Level 3 Map

For this level, we have to remove each degree 2 vertex. By looking at the 15
precodes, we can note that there are only four cases where such a removal has
to be achieved. These precodes are given in Fig. 22. We have not represented
the edge embeddings in this figure, but they are updated during the sewing,
unsewing and 0-removal operations, by the way explained in Sec. 5. We can
see in Algo. 5 and Algo. 6 the two algorithms that correspond to precodes t1
and t3.

Algorithm 5 is similar to previous algorithms. The unique difference is the
explicit embedding modification of the edge incident to a. Indeed, since we
remove the vertex incident to dart c, we need to keep the corresponding ge-
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Fig. 22. The four additional precodes to extract level 3 map.

Algorithm 5: Code corresponding to precode t1.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← a new dart; b← a new dart
c← β1(last); 2-sew(up,a)
Add geometrical point incident to last at the end of the edge embedding of a
0-unsew(last); 1-unsew(last)
1-sew(a,last); 1-sew(last,b)
1-sew(b,a); 0-sew(c,up)
Embedding of the vertex incident to b← (x,y)
return last

ometrical point in the edge embedding. Note that the edge incident to a has
initially no embedding because only closed edges (for β2) can have such an em-
bedding. So when we add the geometrical point incident to last at the end of
the edge embedding of a, this creates an edge embedding made of this unique
geometrical point.

Algorithm 6: Code corresponding to precod t3.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← β0(last); b← β2(a); c← β0(b)
d← β2(c); t1 ← β1(b); t2 ← β1(d)
Add geometrical point incident to last at the end of the edge embedding of a
Merge edge embedding of d at the end of edge embedding of a
0-unsew(b); 1-unsew(b); 2-unsew(b); delete b
0-unsew(d); 1-unsew(d); 2-unsew(d); delete d
0-unsew(last); 1-sew(up,last)
2-sew(a,c); 1-sew(a,t2); 1-sew(c,t1)
Embedding of the vertex incident to last← (x,y)
return up
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The algorithm of precode t3 is a little more complex since this is the unique
case where the two edges along the removed vertex (edges incident to a and
b) can both have an edge embedding. In order to keep the geometry, we first
add the geometrical point incident to last at the end of the edge embedding of
a, then we merge the edge embedding of d at the end of edge embedding of a.
This merging has to consider the special case where one embedding is empty,
and also the case where the two embeddings have not the same orientation.
In this case, we need to reverse one of the two embeddings before the merging
(see Sec. 5 for more explanations).

The definition of the four algorithms, corresponding to the four level 3 pre-
codes, allows us to extract level 3 map in a single image scan, by the way
of the generic extraction algorithm. First we check if the current precode is
a level 3 precode, if not if it is a level 2 precode and otherwise we find the
current precode in the level 1 precodes. Note that we only have ten cases to
consider amongst the 15 possibles precodes. This is due to our simplification
levels that allows us to factorize immediately similar processings.

8 Inclusion Tree

The computation of the inclusion tree is the last step of our two extraction
algorithms, after the extraction of a level l map. This tree is necessary to
keep a relation between each different connected components of the map. The
inclusion relation used here is the one presented in Sec. 3, but we only represent
direct inclusions (relations we can not retrieve by transitivity). The inclusion
tree is always rooted with the infinite region. We keep relations between a
node and its sons and with its father, in order to be able to go through the
tree from root to leaves and from leaves to root.

There are many possibilities to represent inclusion relations: we can give for
each region the list of regions adjacent to an internal border; we can add fictive
edges between all the internal and external borders of each region; we can give
for each region one region per connected set of included regions (one region for
each hole). . . Our choice allows us to obtain an inclusion tree and not a forest,
where each region is present. This is interesting when we need to traverse each
region: so it is enough to traverse the inclusion tree without considering the
map. Otherwise, this solution is not a good one to easily check if two regions
can be merged or not, only by looking at the inclusion tree. But of course,
each solution has its own advantages and disadvantages, and our proposed
solution need to be reconsidered for each application.

To compute the inclusion tree, we traverse all the darts of the map connected
component by connected component. Indeed, a connected component is com-
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posed of regions that all have the same father. In order to retrieve the different
inclusions we need some particular information:

• Each dart is linked with its belonging region noted region(d): ∀ d and d’,
region(d)=region(d’) if and only if d and d’ belong to the same region;
• Each region R knows one dart of the map, belonging to this region. This

dart has to be the dart with the corresponding vertex in the upper left
of this region. This property ensures us we can easily retrieve the region
containing R. We call such a dart the representative of its region;
• We also have to know the list of all the image regions, without the infinite

region. This list must be sorted so that a region Ri is smaller than another
region Rj if and only if Ri is met before Rj during the image traversal from
top to bottom and from left to right.

These properties are given by our extraction algorithms. For the basic algo-
rithm, we need to perform a first image scan in order to initialize the list of
sorted regions. The dart labeling is achieved during the construction of level 0
map, since simplification operations do not lead to modification of a dart la-
bel. The representative dart of each region is fixed during the initial image
scan, and possibly modified during the simplifications. Indeed, when the rep-
resentative dart of a region is removed, we choose as new representative a
neighboring dart of the former one. All these operations can be achieved in
linear complexity, but lead nevertheless to additional time for the initial image
scan.

For optimal algorithm, the list can be computed at the same time as the
extraction since we use the same image scan. During this scan we can fix the
representative dart of each region when we meet a region for the first time.
The dart labeling is realized at the same time. When we meet a new region, we
label the new darts with this new region (this case can occur only for precodes
l4 and t1). For the other cases, we copy the label of the same region existing
darts (we can verify that for each precode except l4 and t1, the current pixel
has a neighbor with the same label).

The computation of the inclusion tree is presented in Algo. 7. This algorithm’s
input is a map, of any level, and a list of regions, sorted as explained above,
and its return is the corresponding inclusion tree. This algorithm is made of
two loops. The first loop traverses unmarked regions of list L. Indeed, when
a region is marked, this is because it was already considered and placed in
the inclusion tree. For an unmarked region, we initialize the first dart of the
traversal of the second loop with the representative of this region (called dinit).
The region which contains this region, is inevitably the region of dart β2 sewn
to dart dinit. Indeed, list L is sorted so that, when we meet the first region of a
connected component, we know that this region has no region belonging to the
same connected component at its top and on its left. So β2(dinit) is obviously
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Algorithm 7: Inclusion tree computation.

Input: The map M of a labeled image I.
The list L of regions of the image I.

Output: An inclusion tree T.

Unmark each region of L
Add a node corresponding to the infinite region as root of T

1 foreach region R of L not marked do
dinit ← representative(R)
father ← the node corresponding to region(β2(dinit))

2 foreach dart d of the connected component incident to dinit do
if region(d) not marked then

Add a node corresponding to region(d) in T
Set this node as son that father in T
Mark region(d)

return T

R0A
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B

F

A

CB D E

F

Fig. 23. A labeled image and its inclusion tree.

a dart of the region containing the current region, and each region belonging
to the same connected component is also included in this same region.

The second loop of the algorithm traverses each dart of the connected compo-
nent incident to dinit, and for each region not already met, it puts this region
as son of father. Since we traverse each dart of the connected component,
we are going to consider exactly all regions of this component, and not the
included regions which will be treated during a next round of the first loop.

We can see in Fig. 23 a labeled image and its inclusion tree. The sorted list of
regions is A, B, C, D, E, F (first sorted by y coordinate then by x ). So the
first region considered is A which has for representative the dart that contains
the point at the top left corner of this region. dinit is initialized to this dart
and so father to the infinite region. Then, the second loop of the algorithm
traverses the connected component of A but here there is no region adjacent
to A (not included) so we only put A as son of R0.

The second region considered is B, its representative dart contains the point
at the top left of this region (dinit) and so β2(dinit) belongs to region A. Region
B is put as son of A in the inclusion tree. As for region A, there is no region
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adjacent to B so the second loop marks only darts of B. The next region is
C, dinit is initialized to the dart that contains the top left point of C. Here,
the second loop traverses regions C, D and E because they are in the same
connected component. Each of these regions is put as son of A in the inclusion
tree (that corresponds to the notion of inclusion used in this work). The last
region considered is F (because others regions of the list are already marked)
which is put as son of D in the tree.

The complexity of this algorithm is linear in number of darts of the map, and
in number of regions of the image. Since the number of regions is lower that
the number of darts, the complexity is so linear in number of darts of the map.
Indeed, we traverse each dart exactly once, because we traverse the connected
components one by one, and two different connected components are inevitably
disjointed. We also traverse each region only once because we traverse the list
of regions and mark each treated region. This algorithm works for every map
level. Moreover, its execution time decreases when the level increases, even if
the global complexity doesn’t change, because the number of darts to traverse
decreases more and more for higher levels.

9 Comparison With Similar Existing Approaches

In order to compare our solution with existing approaches, we are going to
describe more precisely the two that are very near to our solution: the topolog-
ical map of J.P. Domenger et Al. [19,11] and the topological graph of frontier
(TGF) of C. Fiorio et Al. [21,22]. These two solutions are both based on com-
binatorial maps, and both define the minimal model that represents an image
partition. For these reasons, the three methods (solution of J.P. Domenger et
Al., C. Fiorio et Al. plus the new method presented in this paper) have the
same topological representation. The main differences are about the embed-
ding and about the algorithms used to extract each model from an image.

9.1 The Topological Map of J.P. Domenger et Al.

We present here the definition given in [10]. Combinatorial maps used in this
work are not exactly the same as the ones presented in this paper (cf. Sec. 2).
Differences are only about the name of the applications. They use a combi-
natorial map with σ a permutation that gives for a dart the next dart of the
same vertex, and an involution α which connects the two darts incident to the
same edge. α if equal to our β2, and σ can be defined by β2 ◦ β1. Indeed, to
represent a 2D combinatorial map, we can choose to encode the permutation
around vertices or the one around faces. Our notation can be extended more
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easily in higher dimension that their notation since we can add any βi that
puts in relation two i-cells.

In order to be addressed, each face is associated with a unique label. But con-
trary to our label, two darts have the same label if and only if they belong
to the same face orbit. So an internal contour does not have the same label
as its corresponding external contour. These labels are used to represent the
inclusion relations by using two functions called prnt for father and chld for
children. An external contour has no father (which is represented by the par-
ticular value 0 for the function prnt), and an internal contour has no child. At
last, another function called β gives a canonical dart for each label. This last
function is equivalent to our representative dart.

Comparing this solution to our inclusion tree, we can see that the two solutions
are very near. We use only a label for each region that allows us to add other
information about region (mean grey level, number of pixels. . . ). But we can
not say in constant time if there is a boundary between a region and its father
region, since we need to traverse the face orbit. This information is given
immediately by the solution of J.P. Domenger et Al. But there are some cases
where their solution need more operations than ours. For example when an
edge removal leads to the creation of an internal border, we only need to
modify the position of one region in the inclusion tree, but they need to add
a new label and to traverse the face orbit in order to put this new label onto
all the darts of the new internal contour.

They define the topological map by introducing the notion of boundary points
which are pointels with more than two incident linels that belong to a bound-
ary. The boundary points are then connected with edges when there is a
contour linking them in the image. We can see that this leads to the same
map as our solution since we remove all degree two vertices. At the end, we
thus obtain only points that have more than two incident linels (if we except
the cases of loops).

Their solution for the embedding of the topological map consists in a matrix
that represents all interpixels cells (pointels and linels) that belong to the
image boundaries, and which is called boundary image. They use an efficient
coding in order to compress the memory necessary to encode this matrix. But
they also need to keep some additional information in order to be able to
retrieve a dart that contains a given pointel, and to retrieve, given a dart,
the corresponding 1D curve in the boundary image. This is made with two
additional data structures that are correspondence tables in the both ways.
There are so many additional structures that need to be updated according
to each operation that modifies the map.

This leads to time consumption since we have more structures to update, and
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leads to more complex algorithms since we need to study how an operation
on the map possibly modifies other structures. Comparing to our solution, we
only have the map plus an inclusion tree with an unique labelling function
that gives for each dart its belonging region. Moreover, our embedding can
be updated automatically by the sewing and unsewing operations since it is
quite independent of the map, which is not the case for their solution.

The last difference is about the algorithm used to extract the topological map.
They use a contour tracking algorithm that follows the boundaries in the im-
age. They start from an initial loop that represents the boundary between the
image and the infinite region. Then, they select boundary points by looking at
the number of pixels having different labels around each pointel. These points
are inserted into the boundary images by splitting existing edges. Then, edges
are inserted between boundary points by following the outer contours. Last,
it is necessary to scan each region to look for possible new included connected
components. Compared with our approach, this algorithm is more complex
since it needs a more complex image scan and several distinct steps. Another
advantage of our solution is that we can choose to use the optimal algorithm
with precodes in order to optimize time, or to use the basic algorithm to give
a simple algorithm easy to develop. Moreover, our optimal solution with pre-
codes is more efficient as we can see in Sec. 10. At last, our model and our
extraction algorithm can be extended more easily in higher dimension since
we do not have many different structures and our algorithm is only based on
the removal operations (which are defined in any dimension), and since we
have a solution which is a lot simpler than their extraction algorithm.

9.2 The Topological Graph Of Frontier of C. Fiorio et Al.

We present here the definition that we can find for example in [22]. They
see their model as an extension of the RAG (region adjacency graph) with
multi-adjacency relations encoded by a 2D combinatorial map. This leads to
a difference for the representation of the structure, where edges are drawn
between the barycenter of regions instead of our representation where edges
are drawn on the image boundaries. But this is only a graphical representation
and not a main difference between the two approaches. They use the same
combinatorial maps notations as J.P. Domenger et Al. with α and σ.

This is the definition of the FTG that we can find in [22]:

Definition 11 A FTG is an extended combinatorial map G(V, D, α, σ) where
V is the set of vertices of the graph, D the set or darts, α a permutation on
D and σ an involution on D such that:

(1) each region is represented by one and only one vertex;
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(2) a dart e is always incident to a vertex R of V . The notation eR denotes
the incident vertex of e;

(3) an edge of the graph is a non-ordered pair (e, σ(e)) where e belongs to
D. Let E be the set of edges, (eR

1
, eR′

2
) ∈ E if and only if there exists a

frontier between R and R′. Thus an edge represents a frontier. A dart
symbolizes the frontier “as seen from” the region to which it is incident;

(4) the cycles of permutation α correspond to a contour of a given region and
respect the order induced by the sequence of frontiers making the contour;

(5) inf is a particular vertex of the graph symbolizing the exterior of the im-
age;

(6) to each vertex is associated the list of the cycles of α related to the con-
tours of the region represented by this vertex. By convention, the exterior
contour will always be the first of the list.

This definition defines directly the minimal combinatorial map that represents
an image (item 3, each edge corresponds exactly to a frontier). Moreover, it
fixes the relation between regions (the vertices V ) and the combinatorial map
(item 2). Item 4 is necessary in order to guaranty that the order of the edges
in the map is the same as the order of frontiers in the image. At last, item 6 is
equivalent to our inclusion tree. Indeed, each region has an external contour
(the first element of the list), then possibly some internal contours that are
holes in the regions. This implicit encoding is equivalent to the explicit function
that puts in relation the contours in the work of J.P. Domenger et Al. We can
note that this definition is more complex than ours, since the minimal model
is directly defined. Moreover, we can do the same criticism as for the previous
approach. The fact that the combinatorial map is linked with other additional
structures, leads to more complex algorithms when we need to update the
model, and thus leads more important complexity. Moreover, this TGF is
only a topological model and does not keep the region geometry.

To extract the TGF, they use an algorithm based on precodes (this algorithm
was our initial inspiration to our algorithm). But since TGF is a unique struc-
ture, they need to build at the same time the map and the relations between
frontiers (which are equivalent to our inclusion tree). This leads to more com-
plex algorithms since they do not only need to give operations that modify
the map, but also operations that update the inclusion tree. They keep a list
of pending contours (contours that touch the current line of the image scan)
and updating the type of contour (internal or external contour) depending of
the current precode and a test to see if darts belong to the same orbit or not.

For these reasons, the TGF is difficult to extend in higher dimension. First
the definition is complex to extend since it is based on the order of boundaries
in the image, and this order is not the same in 3D for surfaces. Moreover the
extraction algorithm needs to consider all precodes (15 in 2D and 4140 in
3D) to build the inclusion tree, contrary to our approach with simplification
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levels that allows us to factorize many cases (only 10 precodes in 2D and 129
precodes in 3D). Moreover, our computer software which extracts our model is
more efficient than their software since we made less operations (see Sec. 10).

10 Experiments and Analysis

We have implemented our optimal extraction algorithm based on precodes
for the three different map levels. We have used the embedding presented
in Sec. 5 (for level 1 and 2 a vertex embedding, and for level 3 a vertex
embedding plus an open edge embedding). Moreover, we have compared our
software with the software of L. Brun 9 which implements the method first
proposed by J.P. Domenger et Al. [19,11], and the software of C. Fiorio which
constructs the TGF [21,22]. Experiments were made on a personal computer
with a 1500MHz CPU with 256Mb of memory and a Linux system.

We choose to represent each dart by a structure where each βi relation is simply
a pointer to the dart i -sewn. There are many different ways to represent maps
in computer memory, and the choice of one of them depends on what we
would like to prioritize: memory cost or time consumption. Our choice clearly
prioritize time since we access to each βi of a given dart in direct access, and
we can also easily modify all the βi relation without constraint. But of course
this is to the detriment of memory space occupation. This choice need to be
studied more precisely for each particular need of a given application, but this
question could not be answered in a general way. Moreover, our software is
develop in C++ without particular optimization.

We have used for our experiments the six labeled images well known in image
processing shown in Fig. 24 and Fig. 25. These figures show, firstly, the labeled
image (one color by different label), then the maps obtained which represent
the interpixel boundaries. Note that the segmentation algorithm used to obtain
the label image is very simple (only based on the mean grey value of regions).
We do not try to obtain here a good segmentation but only to compare the
different map levels on the same images. We can find in the legend of the
figures the size of each image in pixels and the number of regions obtained by
the segmentation.

First we only compare the three simplification levels. We can see in Fig. 26
the evolution of memory space, number of darts and number of vertices for
level 1, 2 and 3 maps, in level 1 percentage. The memory space evolution
shows that the gain is very significant. It is about 36% between level 1 and

9 Thank you very much to Luc Brun for his help which allowed us to use his software
and to realize this comparison.
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(a) (b) (c)

Fig. 24. (a) Airplane, 512× 512 pixels, 6361 regions. (b) Baboon, 512× 512 pixels,
6705 regions. (c) Cornouaille, 256 × 256 pixels, 5410 regions.

(a) (b) (c)

Fig. 25. (a) Goldhill, 720 × 576 pixels, 8006 regions. (b) Lena, 512 × 512 pixels,
6198 regions. (c) Peppers, 512 × 512 pixels, 5765 regions.

level 2, and about 34% between level 2 and level 3 (this is a mean between
the six considered images). We thus obtain that the memory gain is about
58% between level 1 and level 3. This is not a surprise since a lot of darts are
removed during the successive simplifications.

But the memory gain in not the unique advantage of level 3 maps. Indeed,
if we look at the number of darts, we can observe that level 3 map has only
about 30% of darts of level 1 map. This significant difference leads to decrease
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Fig. 26. Characteristics evolution for the three different map levels, in level 1 per-
centage. (a) Memory space. (b) Number of darts. (c) Number of Vertices.

the computational times for algorithms define on level 3 map due to a more
direct access to the adjacency information.

We can see in Tab. 1 the extraction time in seconds, and the memory space
occupation in mega-bytes for levels 1, 2 and 3 by using our method, and for
the two other softwares of L. Brun and C. Fiorio. First, we can notice, on
these different extraction examples, that the execution time of our algorithm
is about the same to extract any simplification level. Indeed, all precode al-
gorithms are similar (mainly made of some sewing and unsewing operations)
and so take about the same time. The execution time mainly depends on the
image size and on the number of regions. Indeed, when there are less regions,
there are also less darts and the computation of the inclusion tree requires less
time. We can also see that for some images (for example airplane or goldhill)
the execution time decreases for higher levels. This is due to the less significant
number of memory allocation and disallocation for higher levels.

Note that these times are the full execution times including initialization, im-
age reading, topological and geometrical part and inclusion tree computation.
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Table 1
Comparison of extraction time (in seconds) and memory space occupation (in mega-
bytes) for each image.

Image Level 1 Level 2 Level 3 L. Brun C. Fiorio

Airplane 0.08s 0.06s 0.05s 0.71s 0.25s

3.85Mb 2.34Mb 1.6Mb 1.64Mb 1.49Mb

Baboon 0.11s 0.08s 0.09s 6.96s 0.35s

6.11Mb 3.9Mb 1.89Mb 2,75Mb 1.41Mb

Cornouaille 0.05s 0.03s 0.04s 0.27s 0.20s

2.46Mb 1.69Mb 1.3Mb 1,36Mb 1.3Mb

Goldhill 0.14s 0.11s 0.11s 2.7s 0.43s

7.97Mb 4.26Mb 2.24Mb 2,76Mb 3.62Mb

Lena 0.08s 0.08s 0.08s 0.97s 0.35s

4.36Mb 2.98Mb 1.66Mb 1,79Mb 1.4Mb

Peppers 0.09s 0.07s 0.08s 1.5s 0.31s

4.36Mb 2.94Mb 1.61Mb 1,63Mb 1.37Mb

This time is divided in about 7% for the inclusion tree computation, 26% for
the geometrical part and 37% for the topological one. The remaining 30%
are for the image scan and the current precode test. These percentages are
approximative since they depend on the images.

Now if we compare our solution with the two existing ones, we can see that
we are really more efficient in computation times, and that the three methods
are quite similar for memory space occupation (of course without considering
level 1 and level 2 maps). For memory space, this is due to the fact that the
three maps are similar, and differences only concern the embedding. The com-
putation time is larger for the method of L. Brun since its extraction algorithm
is a contour tracking which makes much more operations than our method.
The difference with the method of C. Fiorio is probably due to the inclusion
tree computation which is made in the same time as the map extraction (cf.
Sec. 9).

These results are a good surprise since our first goal was not to improve
existing methods but only to revisit these methods to propose a definition
that could be easily extended in higher dimension. Our works made in order
to simplify algorithms lead to simpler computer software and thus also more
efficient. This shows another advantage of our approach.

In order to compare more precisely our simplification levels, we have made
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(a) (b) (c)

Fig. 27. (a) Square image, 128×128 pixels with l = 32 so with 16 regions. (b) Column
image, 128×128 pixels with l = 8 so with 16 regions. (c) Stairs image, 128×128 pixels
with l = 8 so with 16 regions.

some experiments with artificial regular images. This allows to show the ex-
treme cases, for example when all regions are made of squares or otherwise
when all regions have only stair boundaries. For that, we have made four types
of images:

(1) square images where each region is a square of length l ;
(2) line images where each region is a line, indeed a rectangle with its height

equal to the height of the image and its width equal to l ;
(3) column images which are the same as line images but with a 90 degree

rotation;
(4) stair images: each region is a 45 degree oriented rectangle. So its borders

are made of successive stairs of length l.

In order to obtain regular images, we have worked with a 128 × 128 pixels
image, and only use for regions the lengths which are a power of two. For each
type of image, we generate each image starting with l equal to 1 and multiply
by two until length equal to 128. Thus we can observe the relation between
the length of regions and the memory space occupied by each level. We can
see in Fig. 27 some examples of obtained images. Since images are regular,
we can compute, given the length of each region, the number of regions. For
example, when we have a square image with 128× 128 pixels, the number of
regions is (128× 128)/l2

We give in Tab. 2 the memory space required for square images for each size
of squares between 1 and 128. We can observe that level 2 and level 3 are very
near since almost all region boundaries are straight line segments (in fact all
boundaries except for the 4 corners of the image).

In Tab. 3, we make the same experiment with column images, for each length
between 1 and 128. Again, level 2 and level 3 are very near since almost
all region boundaries are straight line segments. We obtain exactly the same
results for line images since the maps are exactly the same in both cases.
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Table 2
Comparison of memory space occupation (in kilo-bytes) for each length of squares
between 1 and 128.

Length 1 2 4 8 16 32 64 128

Nb regions 16384 4096 1024 256 64 16 4 1

Level 1 2462 1278 662 348 182 100 60.1 40.1

Level 2 2462 628 167 50.5 13.3 3.67 1.10 0.39

Level 3 2461 627 166 50.3 13.1 3.45 0.89 0.21

Table 3
Comparison of memory space occupation (in kilo-bytes) for each length of columns
between 1 and 128 (exactly the same results for line images).

Length 1 2 4 8 16 32 64 128

Nb regions 128 64 32 16 8 4 2 1

Level 1 1314 672 351 190 110 70.2 50.1 40.1

Level 2 34.1 17.1 8.62 4.37 2.25 1.18 0.65 0.39

Level 3 33.9 16.9 8.39 4.14 2.01 0.95 0.42 0.21

Table 4
Comparison of memory space occupation (in kilo-bytes) for each length of step stairs
between 1 and 128.

Length 1 2 4 8 16 32 64 128

Nb regions 128 64 32 16 8 4 2 1

Level 1 1314 672 351 190 110 70.2 50.1 40.1

Level 2 1294 327 83.7 21.9 6.07 1.89 0.73 0.39

Level 3 286 79.4 23.7 7.78 2.85 1.13 0.44 0.21

But if we look in Tab. 4 where we make the same experiment with stair
images, for each length between 1 and 128, we can see that it is the opposite.
Indeed, it is now level 1 and level 2 that are mainly near, since almost all
region boundaries are not straight line segments. These boundaries become
straighter and straighter when l becomes larger, and so level 2 becomes closer
to level 3 when l is large.

We can see in Fig. 28 three curves that show the memory space evolution for
each type of images in function of the length of regions. On each figure, there
are two curves that show the memory space occupation for level 2 and level 3
map, in percentage of the memory of level 1 map. Curves shown in Fig. 28(a)
show that level 2 and level 3 are very near for square images. It is also the
case for line images (see Fig. 28(b)), even if we can see differences between the
two curves, but this is due to the y-axis which is very precise (between 0 and
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Fig. 28. Memory space evolution for level 2 and level 3 maps, in level 1 percentage.
(a) Square images. (b) Line (resp. column) images. (c) Stair images.

3%). Indeed, even when the length of lines is equal to one, regions have very
large straight boundaries and so the memory occupied by level 2 and level 3 is
much smaller than the memory required by level 1. Otherwise, we can see in
Fig. 28(c) that memory occupation of level 3 is much smaller than the one of
level 2, even if the difference decreases when the length of the stairs increases.

These four experiments with regular images show that the difference between
level 2 and level 3 can be very significant or not, depending on the images
content. But in general, if we consider “real images”, boundaries are often not
straight and the difference between level 2 and level 3 memory occupation is
significant. This is confirmed by our experiments made with real images (see
Tab. 1).

11 Conclusion

In this paper we have presented a model for 2D image representation, and
have given an optimal extraction algorithm which computes this model from
a labeled image.
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Several works have already studied the use of combinatorial maps to represent
interpixel boundaries of 2D images. But our approach is original due to the new
notion of simplification level which allows to give a formal and constructive
definition of the topological map. Moreover, these levels can be extended easily
in higher dimension [2,16], whereas for other approaches this extension is much
more difficult, even not possible.

Of course, some problems still remain in higher dimension since we do not know
the topological classification of objects ([30] discusses about these problems
and a possible solution). Nevertheless, we can define the topological map in any
dimension and use this tool in order to try to characterize discrete objects. For
that, we are studying how to compute homology groups on topological map.
Another idea is to add fictive cells in the topological map in order to keep each
i -cell homeomorphic to an i -sphere. This can be achieved without particular
problems, thanks again to our progressive simplification levels, where we can
control if a removal operation leads to a disconnection. Then we need to study
how obtained objects can be interpreted and how modification algorithms have
to process these particular elements.

The topological map is the last simplification level. We have proved that this
map is complete by showing that no information is lost during the different
simplifications, minimal because we can not remove anything in this map
without changing the topology, and unique because this map only depends on
the topology of the image and so two topological equivalent partitions have
the same level 3 map. For these reasons, topological map is a good model for
image processings. Indeed, it allows to retrieve most of the information which
may be required by an image processing algorithm with a low computational
cost. Thus we can consider many different image processing algorithms that
only work on topological map and that use many kind of information.

We also have presented in this paper an optimal extraction algorithm which
uses the notion of precode. It can extract any map level in one image scan.
Moreover this algorithm is simple to implement since it is based on the defini-
tion of a limited number of operations to do, according to a limited number of
local configurations. We have given for each simplification level the precodes
required to extract the corresponding map and the algorithms associated to
each of them. This has allowed us to show that there is a correspondence be-
tween the levels and the number of precodes required. At last, we have shown
in different experiments that the topological map needs less memory than
other levels and we have computed the gain observed comparatively to each
level. Moreover, we have compared our solution with other existing approaches
and showed that our software is more efficient to construct the topological map
than other ones. This is due to our optimal extraction algorithm and to our
effort to simplify the definition of our model.
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We are currently working on the use of our model to propose new segmentation
algorithms or to improve existing techniques [6]. The first results are encour-
aging and let us hope to achieve interesting solutions. But our main goal is
to extend this work in 3D and so to propose new 3D segmentation algorithms
based on the 3D topological map [18]. This work is quite advanced and we
already obtained first results [2,16]. At last, we are also working on operations
allowing to modify the topological map. Indeed by mixing the segmentation
part of our work, the extraction of the map, and the different interactive or au-
tomatic operations, we could define a complete image analysis software based
on the topological map that takes into account topological information of the
analyzed objects.
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A All the precodes algorithms

Algorithm 8: Code corresponding to precode l1.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← β0(last); b← β1(up)
0-unsew(last); 1-unsew(up)
1-sew(up,last); 1-sew(a,b)
Embedding of the vertex incident to last← (x,y)
return up

Algorithm 9: Code corresponding to precode l2.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← a new dart; b← a new dart
c← β1(last); 1-unsew(last)
1-sew(last,a); 1-sew(a,b)
1-sew(b,c); 2-sew(up,last)
Embedding of the vertex incident to b← (x,y)
return a

Algorithm 10: Code corresponding to precode l3.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← a new dart; b← a new dart
c← β1(up); 1-unsew(up)
1-sew(up,a); 1-sew(a,b)
1-sew(b,c); 2-sew(last,b)
Embedding of the vertex incident to a← (x,y)
return up

Algorithm 11: Code corresponding to precode l4.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← a new dart; b← a new dart
c← a new dart; d← a new dart
1-sew(a,b); 1-sew(b,c)
1-sew(c,d); 1-sew(d,a)
2-sew(last,a); 2-sew(up,b)
Embedding of the vertex incident to d← (x,y)
return c
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Algorithm 12: Code corresponding to precode f1.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← β0(last); b← β1(last)
c← β1(up); d← β1(c)
1-unsew(last); 2-unsew(a)
0-unsew(c); 1-unsew(c)
1-sew(last,c); 1-sew(c,b)
1-sew(up,d); 2-sew(up,a)
Embedding of the vertex incident to c← (x,y)
return last

Algorithm 13: Code corresponding to precode f2.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← β0(last); b← β1(last); c← β1(up)
0-unsew(last); 1-unsew(last); 1-unsew(up)
0-sew(b,a); 1-sew(up,last); 1-sew(last,c)
Embedding of the vertex incident to last← (x,y)
return up

Algorithm 14: Code corresponding to precode t1.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← a new dart; b← a new dart
c← β1(last); 2-sew(up,a)
Add geometrical point incident to last at the end of the edge embedding of a
0-unsew(last); 1-unsew(last)
1-sew(a,last); 1-sew(last,b)
1-sew(b,a); 0-sew(c,up)
Embedding of the vertex incident to b← (x,y)
return last

Algorithm 15: Code corresponding to precod t2.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← β0(last); b← β1(last); c← β1(up)
Add geometrical point incident to last at the end of the edge embedding of a
0-unsew(last); 1-unsew(last); 1-unsew(up)
0-sew(b,a); 1-sew(up,last); 0-sew(c,last)
Embedding of the vertex incident to last← (x,y)
return up
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Algorithm 16: Code corresponding to precod t3.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← β0(last); b← β2(a); c← β0(b)
d← β2(c); t1 ← β1(b); t2 ← β1(d)
Add geometrical point incident to last at the end of the edge embedding of a
Merge edge embedding of b at the end of edge embedding of a
0-unsew(b); 1-unsew(b); 2-unsew(b); delete b
0-unsew(d); 1-unsew(d); 2-unsew(d); delete d
0-unsew(last); 1-sew(up,last)
2-sew(a,c); 1-sew(a,t2); 1-sew(c,t1)
Embedding of the vertex incident to last← (x,y)
return up

Algorithm 17: Code corresponding to precod t4.
Input: last and up, (x,y) coordinates of the new vertex.

Output: The “next” last.

a← β0(last); b← β1(up); c← β1(b)
Add geometrical point incident to last at the end of the edge embedding of a
0-unsew(last); 0-unsew(b)
1-unsew(b); 2-unsew(b)
2-sew(up,a); 1-sew(up,c)
1-sew(a,b); 1-sew(b,last)
Embedding of the vertex incident to last← (x,y)
return b
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