
HAL Id: lirmm-00138105
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00138105

Submitted on 1 Dec 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Context-based Measure for Discovering Approximate
Semantic Matching between Schema

Fabien Duchateau, Zohra Bellahsene, Mathieu Roche

To cite this version:
Fabien Duchateau, Zohra Bellahsene, Mathieu Roche. A Context-based Measure for Discovering
Approximate Semantic Matching between Schema. RCIS’07: Research Challenges in Information
Science, Apr 2007, Ouarzazate, Maroc, pp.11. �lirmm-00138105�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00138105
https://hal.archives-ouvertes.fr

A Context-based Measure for Discovering

Approximate Semantic Matching between Schema

Elements

Fabien Duchateau

LIRMM - UMR 5506,

Université Montpellier 2,

34392 Montpellier Cedex 5 - France

Email: duchatea@lirmm.fr

Zohra Bellahsène

LIRMM - UMR 5506,

Université Montpellier 2,

34392 Montpellier Cedex 5 - France

Email: bella@lirmm.fr

Mathieu Roche

LIRMM - UMR 5506,

Université Montpellier 2,

34392 Montpellier Cedex 5 - France

Email: mroche@lirmm.fr

Abstract— The possibility to query heterogeneous and se-
mantically linked data sources depends on the ability to find
correspondences between their structure and/or their content.
Unfortunately, most of the tools used nowadays to discover
those mappings are either manual or semi-automatic. In this
article we present an automatic method to calculate the similarity
measure between two schema elements. Furthermore, a tool has
been implemented, Approxivect, based on the approximation
of terminological methods and on the cosine measure between
context vectors. Another important feature of our tool is that
our method does not use any dictionary or language-based
knowledge and works in specialized domain areas. Finally, we
have performed experiments showing that our tool provides
good results regarding those provided by the most referenced
matching tools. More precisely, it appears that Approxivect, when
its parameters are tuned in optimum configurations, discovers
most of the relevant couples in the top ranking.

Keywords: semantic similarity, semantic schema matching,

node context, terminological algorithms

I. INTRODUCTION

Interoperability among applications in distributed

environments, including today’s World-Wide Web and

the emerging Semantic Web, depends critically on the ability

to map between them. Unfortunately, matching between

schemas is still largely done by hand, in a labor-intensive and

error-prone process. As a consequence, semantic integration

issues have become a key bottleneck in the deployment

of a wide variety of information management applications.

The high cost of this bottleneck has motivated numerous

research activities on methods for describing, manipulating

and (semi-automatically) generating schema mappings.

The schema matching problem consists in identifying one

or more terms in a schema that match terms in a target

schema. The current semi-automatic matchers calculate

various similarities between elements and they keep the

couples with a similarity above a certain threshold. They

also display all discovered mappings so that the user might

select the relevant ones. There exists many techniques to

evaluate the similarity between two terms, and it should be

possible to find a combination that satisfies a good ranking of

the plausible couples, with if possible many of the relevant

couples.

There are many terminological approaches for calculating

the similarity measures: the Levenhstein distance, the Jaro

Winkler distance, the n-grams, the Jaccard distance, etc.

Some of them are character-based, others use the tokenization

process. However they are not sufficient to obtain all

relevant similarities between two schemas. For example some

irrelevant similarities may be discovered with polysemic

terms. On the other hand, the cosine measure is widely

spread in the natural language processing domain. It enables

to calculate the similarity between two vectors, each of them

composed of character strings. Thus our idea is to combine

some terminological measures with the cosine measure.

In this paper we present a method to calculate a similarity

measure between two elements, based on the work of [1].

Contrary to similar works, this approach does not use any

dictionnary or ontology and is both language and domain

independent. Our approach is specifically designed for

schemas and consists in using both terminological algorithms

and structural rules. Indeed the terminological approaches

enable to discover elements represented by close character

strings. On the other hand, the structural rules are used to

define the notion of context of a node. This context includes

some of its neighbours, each of them is associated a weight

representing the importance it has when evaluating the

contextual node. Vectors composed of neighbour nodes are

compared with the cosine measure to detect any similarity.

Finally the different measures are aggregated for all couples of

nodes. A tool has also been implemented, Approxivect, based

on the approximation of terminological methods and on the

cosine measure between context vectors. It has been designed

to focus on a basic function of the schema matching, the

similarity measure between a couple of elements. Approxivect

can either rank in descending similarity all possible couples

or display the ones whose similarity is above a certain

threshold. Because of this ranking feature, Approxivect

cannot be really considered as a matching tool, because we

mainly concentrated on the similarity measure. However, it

can be enhanced later on for the schema matching scenario

or ontology alignment.

Here we outline the main contributions of our work:

• We designed the Approxivect approach to evaluate the

similarity between two terms from different schemas.

This method is both automatic and not language-

dependent. It does not rely on dictionaries or ontologies.

It is also quite flexible with different parameters.

• We described the notion of context for a schema node.

And a formula enables to extract this context from the

schema for a given node.

• An experiment section allows to judge on the results pro-

vided by Approxivect. It also enables to fix the values of

some parameters. COMA++ discovers half of the relevant

similar elements while Approxivect, tuned in optimum

configuration, enables to discover all the relevant couples

of elements.

The rest of the paper is structured as follows: first we

give some definitions and preliminaries in Section II; Section

III contains the related work; in Section IV, an outline

of our Approxivect method is described and illustrated by

an example; in Section V, we present the results of our

experiments; and in Section VI, we conclude and outline

some future work.

II. PRELIMINARIES

In this section we give some general definitions and intro-

duce the similarity measure used later on in this paper.

A. Definitions

Definition 1: A schema is a labeled unordered tree S = (VS ,

ES , rS , label) with:

• VS is a set of nodes;

• rS is the root node;

• ES ⊆ VS × VS is a set of edges;

• label VS → Λ where Λ is a countable set of labels.

Definition 2: Let V be the domain of schema nodes, the

similarity measure, is a concept whereby two or more terms

are assigned a metric value based on the likeness of their

meaning / semantic content [2]. In the case of two schema

nodes, this is a value V × V → ℜ, noted sim(n, n’), defined

for two nodes n and n’. Note that the semantic similarity

depends on to the method used to calculate it. In general, a

zero value means a total dissimilarity whereas the 1 value

stands for totally similar concepts.

Definition 3: A mapping is a non-defined relationship rel

between nodes of different schemas VS and V ′

S :

VS × V ′

S → rel

The relationship between nodes can include synonyms,

equality, hyperonyms, hyponyms, etc.

Example of schema matching: Consider the two

following schemas used in [3]. They represent organization

in universities from different country and have been widely

used in the literature.

Fig. 1. Schema 1: organization of an Australian university.

Fig. 2. Schema 2: organization of a US university.

With those schemas, the ideal set of mappings given by

an expert is {(CS Dept Australia, CS Dept U.S.), (courses,

undergrad courses), (courses, grad courses), (staff, people),

(academic staff, faculty), (technical staff, staff), (lecturer,

assistant professor), (senior lecturer, associate professor),

(professor, professor)}.

III. RELATED WORK

In this section, we describe some related work on schema

matching [4], [5], [6] and terminological approaches for

computing similarity measures [7].

A. Schema matching tools

As Approxivect has been designed to rank couples of

similar schema elements by similarity value order, it enables

to calculate similarities between schema elements. So we

decided to compare it with two matching tools: COMA++

and Similarity Flooding. We limited the related work to those

matchers because COMA++ is well-known to provide good

matching results and Similarity Flooding uses structural rules

like Approxivect.

COMA++

As described in [8], COMA++ is a hybrid matching tool

that can incorporate many independent matching algorithms.

Different strategies, for example the reuse-oriented matching

or the fragment-based matching, can be included, offering dif-

ferent results. When loading a schema, COMA++ transforms

it into a rooted directed acyclic graph. Specifically, the two

schemas are loaded from the repository and the user selects

from the matcher library, the required match algorithms. For

each algorithm, each element from the source schema is at-

tributed a threshold value between 0 (no similarity) and 1 (total

similarity) with each element of the target schema, resulting in

a cube of similarity values. The final step involves combining

the similarity values given by each matcher algorithm by

means of aggregation operators like max, min, average, etc.

Finally, COMA++ displays all mapping possibilities and the

user checks and validates their accuracy.

The advantage of COMA++ is the good matching quality

and the ability to re-use mappings, while supporting many

formats and ontologies. During the match process or at the

end of the process, the user has the final decision to choose

the appropriate mappings since COMA++ has done most of

the work in selecting the potential matches. New matching

algorithms can be added and the list of synonyms can be

completed, thus offering advantages for specific field areas. It

is also a good platform to evaluate and compare new matching

algorithms.

However the weak point of COMA++ is the time required,

both for adding the files into the repository and to match

schemas. In a large scale context, spending several minutes

with those operations can entail performance degradation and

the other drawback is that it does not support the matching of

many schemas directly.

COMA++ is more complete than Approxivect, it uses

many algorithms and selects the most appropriate function

to aggregate them. A comparison between COMA++ and

Approxivect is shown in the experiments section.

Similarity Flooding

Similarity Flooding is an algorithm described in [9] and is

based on structural techniques. Input schemas are converted

into directed labeled graphs and the aim is to find relation-

ships between those graphs. The structural rule used is the

following : two nodes from different schemas are considered

similar if their adjacent neighbours are similar. When similar

nodes are discovered, this similarity is then propagated to the

adjacent nodes until there is no changes anymore. As in most

of matchers, Similarity Flooding generates mappings for the

nodes having a similarity value above a certain threshold.

This algorithm mainly exploits the labels with some

semantic-based algorithms, like String Matching, to determine

the nodes to which it should propagate. Rondo, a tool that im-

plements Similarity Flooding, has been implemented. Finally,

it supports different formats like XML Schema and relational

database schemas.

Similarity Flooding does not give good results when labels

are often identical, especially for polysemic terms. Thus

involving wrong mappings to be discovered by propagating.

Although it uses the neighbour nodes, it should be extended

to work in a large scale context.

Approxivect uses the same structural rule stating that two

nodes from different schemas are similar if most of their

neighbour are similar. However, it is not possible to test

Rondo with our own set of schemas.

B. Approaches based on the similarity measures of nodes

There are many terminological measures which are often

cited in the literature [10], [11]. Here we describe the Jaro

Winkler distance.

The Jaro-Winkler distance [12] is a measure of similarity

between two strings. It is a variant of the Jaro distance metric.

The Jaro distance metric states that given two strings s1 and

s2, their distance dj is :

dj(s1, s2) =
m

3a
+

m

3b
+

m − t

3m
(1)

where m is the number of matching characters, a and b are

the lengths of s1 and s2, respectively and t is the number of

transpositions.

Two characters from s1 and s2 respectively, are considered

matching only if they are not farther than δ:

δ =
max(a, b)

2
− 1 (2)

Each character of s1 is compared with all its matching

characters in s2. The number of matching (but different)

characters divided by two defines the number of

transpositions.

Jaro-Winkler distance uses a prefix scale p which gives more

favourable ratings to strings that match from the beginning for

a set prefix length l. Given two strings s1 and s2, their Jaro-

Winkler distance dw is:

dw = dj + (l ∗ p ∗ (1 − dj)) (3)

where dj is the Jaro distance for strings s1 and s2, l is the

length of common prefix at the start of the string and p is a

constant scaling factor for how much the score is adjusted

upwards for having common prefixes. This measure is very

effective, especially for misspelled terms.

As Jaro-Winkler, with its character comparison and its

transpositions, is quite close to n-grams and levenhstein

distance, thus we use n-grams and levenhstein distance in

our Approxivect approach. These measures are described in

the next section.

IV. APPROXIVECT

In this section we firstly introduce the terminological

measures. Then we describe our Approxivect approach to

discover similarities between schema elements.

A. Overview of terminological techniques

1) n-grams: An n-gram is a sub-sequence of n items

from a given sequence. n-grams are used in various areas of

statistical natural language processing to calculate the number

of n consecutive characters in different strings. In general,

the n value vary between 1 and 5 and is often set to 3 [2], [13].

To measure the similarity of two elements, the following

formula 4 issued from [2] gives a value in]0,1]:

Tri(c1, c2) =
1

1 + |tr(c1)| + |tr(c2)| − 2 × |tr(c1) ∩ tr(c2)|
(4)

For example, consider the two character strings dept

and department. Using tri-grams, we build the two sets

{dep, ept} and {dep, epa, par, art, rtm, tme, men, ent}.

The number of common occurrences in these sets is 1. By

applying the formula 4 on those sets, we obtain a similarity

between dept and department:

Tri(dept, department) =
1

1 + 2 + 8 − (2 × 1)
=

1

9
(5)

2) Levenhstein distance: The Levenhstein distance between

two strings is given by the minimum number of operations

needed to transform one source string into the target other,

where an operation is an insertion, deletion, or substitution of

a single character. The Levenhstein distance is the measure

where all operation costs are set to 1. The Levenhstein

similarity, noted LevSim, is a formula using the Levenhstein

distance, noted L, and which processes a similarity measure

between two strings:

LevSim(c1, c2) = max{0,
min{|c1|, |c2|} − L(c1, c2)

min{|c1|, |c2|}
} (6)

where ch1 and ch2 are two strings. The value given by the

Levenhstein similarity formula is in [0,1], with the zero value

denoting a dissimilarity and 1 a total similarity. Note that

in the rest of the paper, we use either the term Levenhstein

similarity or Levenhstein distance.

Following is a simple example for illustrating the formula

6 to obtain the Levenhstein similarity between dept and

department:

LevSim(dept, department) = max{0,
min{4, 10} − 6

min{4, 10}
} = 0 (7)

However, as shown in the examples, those terminological

techniques are not sufficient to discover similarities between

two terms since they may produce wrong results due to

homonyms, etc. They are often combined with other tech-

niques. Thus we added some structural rules described in [14]:

• a leaf node is only similar to another leaf node

• a non-leaf node is only similar to another non-leaf node

• a node is similar to another one if their neighbour

nodes are similar. The next part introduces this notion

of neighbour nodes.

B. Weight of context nodes

A specific feature of our approach is to consider the

neighbour nodes. We called this notion the context, which

represents, given a current node nc, the nodes denoted ni in

its neighbourhood. In fact, all nodes in the schema may be

considered in the neighbourhood of nc. But it is quite obvious

that the closest nodes ni are semantically closer to the node nc.

From this assumption, we calculate the weight of each node

ni according to the node nc, which evaluates how important

the context node ni is for the node ni. First we calculate ∆ d

which represents the difference between the level of nc and

the level of ni:

∆d = |lev(nc) − lev(ni)| (8)

where lev(n) is the depth of the node n from the root. Then

we can calculate the weight noted ω(nc, ni) between the nodes

nc and ni:

ω(nc, ni) =

{

ω1(nc, ni), ifAnc(nc, ni) or Desc(nc, ni)

ω2(nc, ni), otherwise
(9)

where Anc(n, m) (resp. Desc(n, m)) is a boolean function

indicating if node n is an ancestor (resp. descendant) of node

m. This weight formula is divided into two cases, according to

the relationship between the two concerned nodes. If n is an

ancestor or a descendant of m, the formula 10 is applied. Else

we apply formula 11. The idea behind this weight formula is

based on the fact that the closer in the tree two nodes are, the

most similar their meaning is.

ω1(nc, ni) = 1 +
K

∆d + |lev(nc) − lev(na)| + |lev(ni) − lev(na)|
(10)

ω2(nc, ni) = 1 +
K

2 × (|lev(nc) − lev(na)| + |lev(ni) − lev(na)|)
(11)

where na represents the lowest common ancestor to nc and

ni, and K is a parameter to allow some flexibility with the

context. It is described with more details in section IV-E. The

value of this weight is in the interval]1,2] for K = 1. Note

that this formula, for a given node n, gives the same weight

to all descendants and ancestors of this node n which are at

the same level.

Example: Let consider the node Academic Staff from

schema 1. We look for the importance of Staff for the node

Academic Staff. As Staff is an ancestor of Academic Staff, we

apply formula 10. ∆d, the difference between their levels in

the tree hierarchy, is equal to 1. Their lowest common ancestor

is Staff, and the difference of level between this common

ancestor with itself is 0, while it is equal to 1 with the node

Academic Staff, thus giving us the following result:

ω(AcademicStaff, Staff) = 1 +
1

1 + 1 + 0
=

3

2
= 1.5 (12)

Now we look for the importance of the node Courses

with regards to Academic Staff. They have no ancestor or

descendant relationship, so the formula 11 is applied. Their

lowest common ancestor is the root node, namely CS Dept

Australia. Academic Staff is 2 levels far from the common

ancestor, and Courses is 1 level far from it. The importance

of Courses for the node Academic Staff gives:

ω(AcademicStaff, Courses) = 1 +
1

2 × (2 + 1)
=

7

6
= 1.17 (13)

We can then generalize to obtain the following set of

couples (neighbour, associated weight) which represents the

context of the node Academic Staff. {(CS Dept Australia,

1.25), (Courses, 1.17), (Staff, 1.5), (Technical Staff, 1.25),

(Lecturer, 1.5), (Senior Lecturer, 1.5), (Professor, 1.5) }
Note that some parameters have influence on the context, as

described in the experiments section.

C. Overview of Approxivect

One of the contributions in our approach consists in taking

into account the context of the nodes. By context of a node

n, we mean the keywords, the description in natural language

and the neighbouring nodes of n. As the keywords and/or

description of the elements are not always available, we

mainly concentrate our work on the neighbouring nodes.

Indeed those lasts correspond to specific information thus

such knowledge is crucial to understand the meaning of the

elements. However our method works with keywords and

description as well.

To compare the context from one element, we first build

a vector composed of its neighbour elements. This vector is

then called context vector. The aim is finally to compare two

context vectors of elements from different schemas in order

to evaluate their semantic similarity. This similarity may

be determined by using the cosine measure which enables

to compare two vectors [15]. The cosine measure is higher

(close to 1) if the terms in the two vectors tend to have a

close meaning. A such measure is already used in Information

Retrieval and is explained later on. In the rest of this paper,

we call CosineMeasure CM, the cosine measure between

two relative context vectors.

As explained before, two context vectors tend to be close if

the terms they gather tend to be close. Yet, in the real world,

those terms may be different while having character string

quite close. So the idea to solve this problem is to use some

terminological algorithms presented in section II to replace

character strings that have high lexical measures.

D. Detailed approach of Approxivect

Our Approxivect (Approximation of vectors) approach is

based on two steps: first we replace terms in the context

vectors when they have close character strings. This step uses

the Levenhstein distance and 3-grams algorithms (see Section

IV-A). In a second time, we calculate the cosine measure

between two vectors to determine if their context is close or

not.

1) Part one: replacing terms: The following describes in

details the first part of Approxivect. The two schemas are

traversed in preorder traversal and all nodes are compared

two by two with the Levenhstein distance and the 3-grams.

Both measures are processed and according to the adopted

strategy1, the higher one or the average is kept. The obtained

value is denoted SM for String Measure. If SM is above a

certain threshold, which is defined by an expert, then some

replacements may occur. The threshold will be discussed in

section V. We decided to replace the term with the bigger

number of characters by the term with the smaller number of

characters. Indeed we consider that the smaller-sized term is

more general than the bigger-sized one. This assumption can

be checked easily since some terms may be written singular

or plural. So we finally obtain after this first step the initial

schemas that have possibly been modified with character

string replacements.

1The maximum and average strategies reveals to be a good compromise in
the literature

We have also noticed the polysemia problem, where a word

may have different meanings. The typical example is mouse,

which can represent both an animal and a computer device.

In those cases, the string replacement obviously occurs -

but has no effect since the terms are similar. The similarity

between the polysemic terms is not necessary high since

in the next step, we use the context, namely the neighbour

nodes, to calculate it.

2) Part two: measuring cosine with context vectors:

In the second part of our algorithm, we traverse again the

schemas - in which some string replacements may have

occurred by means of Approxivect step 1. And the context

vector of a current element is extracted in each schema. The

neighbour elements composing this vector may be ancestors,

descendants, siblings or further nodes of the current element,

but each of them has a weight, illustrating the importance

of this neighbour with regards to the current node. The

two context vectors are compared using the cosine measure,

in which we include the weight of the node. Indeed when

counting the number of occurrences of a term, we multiply this

number by its weight. This process enables to calculate CM,

the cosine measure between two context vectors, and thus the

similarity between the two nodes related to these contexts too.

The cosine measure [15] is widely used in Information Re-

trieval. The cosine measure between the two context vectors,

noted CM, is given by the following formula:

CM(v1, v2) =
v1 · v2

√

(v1 · v1)(v2 · v2)
(14)

CM is in the interval [0,1]. A result close to 1 indicates

that the vectors tend in the same direction, and a value close

to 0 denotes a total dissimilarity between the two vectors.

Example: During Approxivect step 2, the following

replacement occurred: Faculty ↔ Academic Staff. Now

consider the two current nodes Staff and People respectively

from schemas 1 and 2. Their respective and limited2 context

vectors, composed of couples of a neighbour node and its

associated weight, are {(CS Dept Australia, 1.5), (Faculty,

1.5), (Technical Staff, 1.5) } and {(CS Dept U.S., 1.5),

(Faculty, 1.5), (Staff, 1.5) }. As the only common term

between the two vectors is Faculty with a weight of 1.5, the

cosine measure between those context vectors is 0.44.

Finally we obtain two similarity measures, SM and CM,

the first one based on terminological algorithms while the

second takes into account the neighbour nodes. Here again,

a strategy must be adopted to decide how to aggregate those

similarity measures. The maximum and the average have

been chosen because they generally give better results in the

2To clarify the example, the context has been voluntary limited thanks to
the parameters

experiments than other formulas where one of the measure is

privileged3. In the end of the process, Approxivect ranks all

element couples with their corresponding similarity.

As the aim of Approxivect does not concern performances,

we did not bother to optimize the algorithm. Thus the

schemas are traversed twice but it is possible to do it only

once if some structures are used to store processed measures.

The obtained results depends on the tuning of the parameters,

so in the next part we firstly give more details about them.

E. Parameters in Approxivect

Like most of the matchers, our approach include many

parameters. Although this may be seen as a drawback, since

a domain expert is often required to tune them, this is com-

pensated by the fact that our application is generic and works

with no dictionnary and whatever the domain or language is.

• NB LEVELS: this parameter is used to know the number

of levels, both up and down in the hierarchy, to search in

to find the context nodes. It is used in combination with

MIN WEIGHT. Note that we could have divided it into

two parameters, one for the number of levels up in the

tree, and the second one for the number of levels down

in the hierarchy.

• MIN WEIGHT: combined with NB LEVELS, it represents

the minimum weight to be accepted as a context node.

This is quite useful to avoid to have many cousin nodes

- that does not have a significant importance - included

in the context.

• REPLACE THRESHOLD: this threshold is the minimum

value to be reached to do any replacement between two

terms.

• SIM THRESHOLD: this threshold is the minimal value to

be reached to accept a similarity between two schema

nodes based on terminological measures.

• K: this coefficient used in the weight formula 9 allows

more flexibility. Indeed it represents the importance we

give to the context when measuring similarities. Thus a

high value for K implies that the context is very important

where a value close to 1 indicates that the context should

not be too much taken into consideration.

Given that the number of parameters is important, a such

application need to be tuned correctly to give acceptable results

[16]. In the next section, we describe some configurations

that give good results and we provide some experimental data.

V. EXPERIMENTS

For these experiments, we have used typical evaluation

measures to analyse the results of Approxivect. They are

presented in the next subsection.

3Those experiments are not shown in the section V to avoid overloading it

A. Precision, recall, and F-measure

Precision is an evaluation criterion very appropriate to the

framework of an unsupervised approach. Precision calculates

the proportion of relevant couples extracted among extracted

couples. Using the notations of table I, the precision is given

by the formula 15.

Precision =
TP

TP + FP
(15)

A 100% precision means that all the couples extracted by

the system are relevant.

Another typical measurement of the machine learning ap-

proach is recall which computes the proportion of relevant

couples extracted among relevant couples. The recall is given

by the formula 16.

Recall =
TP

TP + FN
(16)

A 100% recall means that all relevant couples of elements

have been found. This measurement is adapted to the

supervised machine learning methods where all positive

examples (relevant couples of elements) are known.

Relevant Irrelevant

couples couples

Couples

evaluated as TP (True Positive) FP (False Positive)

relevant by the system

Couples

evaluated as FN (False Negative) TN (True Negative)

irrelevant by the system

TABLE I

CONTINGENCY TABLE AT THE BASE OF EVALUATION MEASUREMENTS.

It is often important to determine a compromise between

recall and precision. We can use a measurement taking into

account these two evaluation criteria by calculating the F-

measure [17] :

F − measure(β) =
(β2 + 1) × Precision × Recall

(β2 × Precision) + Recall
(17)

The parameter β of the formula 17 regulates the respective

influence of precision and recall. It is often fixed at 1 to give

the same weight to these two evaluation measurements.

B. Evaluation protocol

To evaluate the results of our work, we need an oracle

that we can trust. We choose the domain expert as an oracle.

Although it may be considered as a tiresome task because of

the manual checking, dictionaries like Wordnet [18] would

not have been efficient. Indeed the schemas contains some

acronyms or terms that need to be tokenized.

The aim of this evaluation is to show that Approxivect finds

higher similarity measures for similar elements. So the idea is

to sort all discovered similarities and to check if the similar

elements are in the top of this ranking. We then calculate the

precision, recall and F-measure on the top-third of the ranking.

The schemas used in the following experiments are Figure

1 and Figure 2. When matching the two schemas, an expert

should discover 9 relevant possibilities. Approxivect returns

a ranking of 39 similarities, sorted by descending similarity

measure. An extract of this ranking4 is shown in table II.

In the relevance column, a + denotes a true positive (TP)

whereas an empty cell stands for a false positive (FP).

Note that when two couples with the same similarity are

discovered, Approxivect ranks them in a random order.

Rank Element from Element from Similarity Relevance

schema 1 schema 2 Measure

1 Professor Professor 1.0 +

2 CS Dept Australia People 0.46

3 Courses Grad Courses 0.41 +

4 CS Dept Australia CS Dept U.S. 0.36 +

5 Courses Undergrad Courses 0.28 +

6 Academic Staff Faculty 0.25 +

7 Staff People 0.23 +

8 Technical Staff Staff 0.21 +

9 Senior Lecturer Assistant Professor 0.16

10 Professor Assistant Professor 0.16

11 Senior Lecturer Associate Professor 0.16 +

12 Professor Associate Professor 0.16

13 Senior Lecturer Professor 0.16

...

TABLE II

AN EXAMPLE OF APPROXIVECT RANKING

Example: With the table II, we can calculate the measures

explained in V-A. The precision is the number of discovered

true positives on the number of both TP and FP. Actually the

sum of TP and FP represents the number of extracted couples

by Approxivect.

Precision =
8

8 + 5
= 0.62 (18)

Then we can calculate the recall, which is the number of

true positives on the number of both TP and FN. The sum

of TP and FN can also be seen as the number of all relevant

couples.

Recall =
8

8 + 1
= 0.89 (19)

4The parameters used for this example are: NB LEVELS = 1, RE-
PLACE THRESHOLD = 0.2, MIN WEIGHT = 1, K = 1

Finally, we can obtain the F-measure which represents

the compromise between precision and recall. We set the β

parameter to 1.

F − measure =
2 × 0.62 × 0.89

0.62 + 0.89
= 0.73 (20)

Next we discuss each parameter, except for

SIM THRESHOLD, which is tuned to 0, because our aim

is to rank the similarities. So we need them all. In the

following tables, lev means Levenhstein distance and 3gram

stands for tri-grams. Their aggregation is noted SM, and

we selected two ways of aggregating those similarities: the

maximum, noted max(lev, 3gram), and the average, noted
lev+3gram

2
. CM represents the cosine measure between the

context of two elements and it is aggregated with SM either

by choosing the maximum, noted max(SM, CM), or by

calculating the average SM+CM
2

. The given results only

concerns the first third of the ranked similarities. This to

show that Approxivect ranks the relevant similarities at the

top of the ranking couples.

Discussion about NB LEVELS

Here we vary the NB LEVELS parameter to know if it is in-

teresting to include in the context far ancestors or deep descen-

dants. The other parameters are fixed: MIN WEIGHT is set to

1 so that we accept all the neighbours, REPLACE THRESHOLD

to 0.2 and K to 1.

Precision Recall F-measure

NB LEVELS = 1 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2
0.62 0.89 0.73

NB LEVELS = 2 max(lev, 3gram) 0.46 0.67 0.55
lev+3gram

2
0.54 0.78 0.64

NB LEVELS = 3 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2
0.39 0.56 0.46

TABLE III

EXPERIMENTS ON NB LEVELS WITH MAX(SM , CM)

Precision Recall F-measure

NB LEVELS = 1 max(lev, 3gram) 0.39 0.56 0.46
lev+3gram

2
0.54 0.78 0.64

NB LEVELS = 2 max(lev, 3gram) 0.54 0.78 0.64
lev+3gram

2
0.46 0.67 0.55

NB LEVELS = 3 max(lev, 3gram) 0.39 0.56 0.46
lev+3gram

2
0.31 0.45 0.37

TABLE IV

EXPERIMENTS ON NB LEVELS WITH
SM+CM

2

The tables III and IV show that the number of levels

should not be too high. Good results are obtained when it is

set to 1, but they decrease with higher values. So the context

should be limited to the first or second levels, to the nodes

that are semantically closer. Note that this parameter could

have been studied deeper: the number of levels up and down

could have been different, so that either the ancestors or the

descendants are prioritized.

Discussion about REPLACE THRESHOLD

Here we vary the REPLACE THRESHOLD parameter, which

is the minimum threshold so that two terms are replaced.

The adopted strategy between the terminological algorithms,

namely the maximum or the average, is an important criteria

since it is used to calculate the similarity that is compared

to this threshold parameter. The goal of this experiment is to

demonstrate that replacing too many strings might involve bad

results. Indeed there is no guarantee that the replacements are

done on relevant similar couples. In the tables V and VI, the

Repl column indicates the number of replacements. The other

parameters are fixed: MIN WEIGHT is set to 1, NB LEVELS to

1 and K to 1. For the same reason as before, SIM THRESHOLD

is set to 0.

Repl Precision Recall F-measure

REPLACE max(lev, 3gram) 4 0.31 0.45 0.37

THRESHOLD = 0.2
lev+3gram

2
2 0.62 0.89 0.73

REPLACE max(lev, 3gram) 1 0.54 0.78 0.64

THRESHOLD = 0.3
lev+3gram

2
1 0.54 0.78 0.64

REPLACE max(lev, 3gram) 1 0.54 0.78 0.64

THRESHOLD = 0.4
lev+3gram

2
1 0.54 0.78 0.64

TABLE V

EXPERIMENTS ON REPLACE THRESHOLD WITH MAX(SM , CM)

On the first line of table V, the following 4 replacements

occur:

• Professor ↔ Professor

• Courses ↔ Grad Courses

• Senior Lecturer ↔ Undergrad Courses

• Lecturer ↔ Courses

On these 4 replacements, 2 of them are false positives. Thus

involving bad results when the context is then used to discover

similarities. So it is better to avoid too many replacements.

Repl Precision Recall F-measure

REPLACE max(lev, 3gram) 4 0.39 0.56 0.46

THRESHOLD = 0.2
lev+3gram

2
2 0.54 0.78 0.64

REPLACE max(lev, 3gram) 1 0.54 0.78 0.64

THRESHOLD = 0.3
lev+3gram

2
1 0.46 0.67 0.55

REPLACE max(lev, 3gram) 1 0.54 0.78 0.64

THRESHOLD = 0.4
lev+3gram

2
1 0.46 0.67 0.55

TABLE VI

EXPERIMENTS ON REPLACE THRESHOLD WITH
SM+CM

2

With a threshold above 0.3, precision and recall do not

vary anymore. As the schemas used are quite small, there

are not so many replacements occurring. Thus this parameter

may need to be tested against larger schemas. Besides the

Levenhstein distance and the 3-grams are maybe not sufficient

enough to decide whether or not to replace terms. They focus

on the characters in the terms and could be completed by

another algorithm that works on the tokens of a term.

Discussion about K

The K parameter is used in the weight formula 9. Increasing

K implies to give more importance to the context. In this

experiment, the other parameters are fixed: MIN WEIGHT is

set to 1, NB LEVELS to 1, REPLACE THRESHOLD to 0.2 and

SIM THRESHOLD to 0.

Precision Recall F-measure

K = 1 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2
0.62 0.89 0.73

K = 2 max(lev, 3gram) 0.23 0.34 0.27
lev+3gram

2
0.62 0.89 0.73

K = 4 max(lev, 3gram) 0.23 0.34 0.27
lev+3gram

2
0.62 0.89 0.73

TABLE VII

EXPERIMENTS ON K WITH MAX(SM , CM)

Precision Recall F-measure

K = 1 max(lev, 3gram) 0.39 0.56 0.46
lev+3gram

2
0.54 0.78 0.64

K = 2 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2
0.54 0.78 0.64

K = 4 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2
0.62 0.89 0.73

TABLE VIII

EXPERIMENTS ON K WITH
SM+CM

2

Varying the K parameter is interesting. When using the

maximum between the Levenhstein distance and the 3-grams,

increasing K gives worse results. On the contrary, with the

average between the two distances, increasing K enables to

rank better the relevant couples. And the more we increase K,

the higher rank the relevant couples have. But with K above

4, results seem to be constant. So K depends on the adopted

strategy. But this experiment conforts the idea that the average

between the terminological algorithms gives better results.

Discussion about MIN WEIGHT

Finally this last parameter is a constraint for the context and

aims at showing the importance of the closest elements: if the

weight of a node is not above the MIN WEIGHT threshold,

then it is not included in the context. The weight, given by

the formula 9, is in the interval [1, K+1], and as we set K

to 1 for these experiments, the weight may vary between

[1, 2]. With a MIN WEIGHT of 1, all neighbour nodes are

included in the context - if the other constraints are respected,

namely NB LEVELS. Here we set NB LEVELS to 1, so the

parent, children, siblings and cousins may be included in the

context. By changing MIN WEIGHT to 1.25, this context is then

restricted to the parent, children and siblings. And when set to

1.5, only the parent and children are included in the context.

The other parameters are fixed: K is set to 1, NB LEVELS to

1, REPLACE THRESHOLD to 0.2 and SIM THRESHOLD to 0.

Precision Recall F-measure

MIN WEIGHT = 1 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2
0.62 0.89 0.73

MIN WEIGHT = 1.25 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2
0.69 1 0.82

MIN WEIGHT = 1.5 max(lev, 3gram) 0.39 0.56 0.46
lev+3gram

2
0.39 0.56 0.46

TABLE IX

EXPERIMENTS ON MIN WEIGHT WITH MAX(SM , CM)

Precision Recall F-measure

MIN WEIGHT = 1 max(lev, 3gram) 0.39 0.56 0.46
lev+3gram

2
0.54 0.78 0.64

MIN WEIGHT = 1.25 max(lev, 3gram) 0.31 0.45 0.37
lev+3gram

2
0.54 0.78 0.64

MIN WEIGHT = 1.5 max(lev, 3gram) 0.39 0.56 0.46
lev+3gram

2
0.39 0.56 0.46

TABLE X

EXPERIMENTS ON MIN WEIGHT WITH
SM+CM

2

So including the cousins in the context is not recommended.

However we notice that those good results quickly decrease

when the context is very limited, namely to the parent and

children of a node. Indeed the similarity measure found in

those cases quickly reaches values near 0 in the ranking table.

Note that in table IX, we have a configuration that enables

to find all the relevant similarities in the first third of the

ranking.

General discussion

The main conclusion of these experiments is that the

maximum between the cosine measure (CM) and the

string measure (SM) combined with the average between

Levenhstein distance and 3-grams offer better results.

Approxivect has many parameters that need to be tuned.

Although this may be seen as a drawback, it is quite

obvious that some of them should not be too high. For

example, Approxivect should limit the context nodes to the

first or second level up and down in the hierarchy. And

the context should include the descendants, ancestors and

siblings, but should avoid the cousin nodes. According to

the adopted strategy (maximum or average), the importance

of the context may be increased a little. The threshold

to replace terms must be tested with larger schemas. The

parameter SIM THRESHOLD, which has not been tested here,

might be used to only discover the similarities above a

certain threshold. However using this parameter is probably

not sufficient enough to discover mappings, or it must be

completed by some algorithms to select the relevant couples

in the ranking. Finally a machine learning system could be an

interesting future work in order to tune automatically these

parameters.

C. Comparison with COMA++

To our knowledge, there is no tool that tries to rank the

similarities between elements of two schemas. So to compare

our work, we decided to use some matching tools. But the

matchers do not offer the possibility to rank all the similarities

they processed. Instead they display the mappings, namely

the couples of elements they consider similar. So we apply

COMA++ on the same schemas 1 and 2. All the COMA++

strategies have been tried and the best obtained results are

shown in the following table XI. All those discovered map-

pings are relevant.

Element from Element from Similarity

schema 1 schema 2 Measure

Courses Grad Courses 0.5041725

Courses Undergrad Courses 0.5041725

Professor Professor 0.53545463

Technical Staff Staff 0.5300107

CS Dept Australia CS Dept U.S. 0.52305263

TABLE XI

RESULTS OBTAINED WITH COMA++ ON SCHEMAS 1 AND 2

COMA++ found 5 mappings on the 9 relevant similarities,

implying that 4 mappings are never discovered. The recall is

0.56, the precision is obviously 1 since the extracted list gives

only the relevant similarities. We obtain a F-measure equal

to 0.72. Even if it is quite difficult to compare those figures,

Approxivect has in the optimal configurations a F-measure

equal or above to 0.73. Those configuration enables to

discover between 7 and 9 relevant similarities, compared to

the 5 given by COMA++. Besides, Approxivect is able to

have a recall equal to 1 in some configurations, which means

that all relevant mappings are discovered. This is not the

case with COMA++ which has forgotten almost half of the

mappings.

VI. CONCLUSION

In this paper we have proposed an hybrid method,

Approxivect, to measure the similarity between two elements

of different schemas. Some interesting features include the

language and domain Independence, and the fact that it does

not use any dictionnary or ontology. Indeed Approxivect is

based on the notion of context of a schema node and on

different terminological measures. The context of a given

node includes some of its neighbours according to the value

of Approxivect parameters and the weight formula. The

Levenhstein distance and 3-grams are commonly used to

compare character strings, and are well suited in our method.

They are completed by the cosine measure, which evaluates

the semantic similarity between two sets of terms. The

combination of those measures enables to find similarities

between couples of elements. The terminological measures

ensures to detect the terms whose terminologies are close

while the context allows to discover semantic similarities

between the other terms.

The experiments section showed that Approxivect gives

good results. By ranking all similarities found by our

approach, we notice that most of the relevant couples were

ranked in the beginning of the ranking. By comparing the

results with COMA++, it appears that Approxivect, when its

parameters are tuned in optimum configurations, discovers

most of the relevant couples in the top ranking while

COMA++ only finds half of the mappings. The experiments

also enabled to fix some parameters, and some of them could

be improved by deeper tests.

This work is essentially a first step, and it involves many

perspectives in different domain applications. The first one

would be to use other algorithms to compare terms, like the

one presented in the related work section. Another future

work concerns the schema matching: Approxivect could be

enhanced with more algorithms to extract mappings from the

ranking. And in a large scale schema matching scenario, with

a dynamic environment, it may be a good idea to use the

context. Instead of sending a whole schema or a random part

of it on the network, determining a subtree that includes the

important context nodes seems to be a good idea to spare

resources [19]. This approach consisting in processing the

semantic proximity between schema elements may also be an

important task when building automatically ontologies [20]

or to align them [13], [21].

ACKNOWLEDGMENT

This work was partially supported by ANR under Research

Grant ANR-05-MMSA-0007.

REFERENCES

[1] T. YiFei, “Using contextual and lexical information to map terms of
schemas,” Master’s thesis, Research Master - Université de Montpellier
2, 2006.

[2] D. Lin, “An information-theoretic definition of similarity,” in
Proc. 15th International Conf. on Machine Learning. Morgan
Kaufmann, San Francisco, CA, 1998, pp. 296–304. [Online]. Available:
citeseer.ist.psu.edu/95071.html

[3] A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “Ontology
matching: A machine learning approach,” in Handbook on Ontologies,

International Handbooks on Information Systems, 2004.
[4] E. Rahm and P. A. Bernstein, “A survey of approaches to

automatic schema matching,” VLDB Journal: Very Large Data

Bases, vol. 10, no. 4, pp. 334–350, ???? 2001. [Online]. Available:
citeseer.ist.psu.edu/rahm01survey.html

[5] M. Yatskevich, “Preliminary evaluation of schema matching systems,”
University of Trento, Tech. Rep. DIT-03-028, Informatica e Telecomu-
nicazioni, 2003.

[6] J. Tranier, R. Barar, Z. Bellahsène, and M. Teisseire, “Where’s charlie:
Family-based heuristics for peer-to-peer schema integration,” in Proc of

IDEAS, 2004, pp. 227–235.
[7] A. Maedche and S. Staab, “Measuring similarity between ontologies,”

in Proc. of the European Conference on Knowledge Acquisition

and Management - EKAW, 2002, pp. 251–263. [Online]. Available:
citeseer.ist.psu.edu/maedche02measuring.html

[8] D. Aumueller, H. Do, S. Massmann, and E. Rahm, “Schema and
ontology matching with coma++,” in SIGMOD 2005, 2005.

[9] S. Melnik, H. G. Molina, and E. Rahm, “Similarity flooding: A versatile
graph matching algorithm and its application to schema matching,” in
Proc. of the International Conference on Data Engineering (ICDE’02),
2002.

[10] J. Euzenat et al., “State of the art on ontology matching,” Knowledge
Web, Tech. Rep. KWEB/2004/D2.2.3/v1.2, 2004.

[11] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison
of string distance metrics for name-matching tasks,” in In

Proceedings of the IJCAI-2003., 2003. [Online]. Available:
citeseer.ist.psu.edu/cohen03comparison.html

[12] W. Winkler, “The state of record linkage and current research problems,”
in Statistics of Income Division, Internal Revenue Service Publication

R99/04, 1999.
[13] H. Kefi, “Ontologies et aide à l’utilisateur pour l’interrogation de sources

multiples et hétérogènes,” Ph.D. dissertation, Université de Paris 11,
2006.

[14] J. Madhavan, P. Bernstein, and E. Rahm, “Generic schema matching
with cupid,” in VLDB01, 2001.

[15] R. Wilkinson and P. Hingston, “Using the cosine measure in a neural
network for document retrieval,” in Proc of ACM SIGIR Conference,
1991, pp. 202–210.

[16] M. Sayyadian et al., “Tuning schema matching software using synthetic
scenarios,” in Proceedings of the 31th VLDB Conference, 2005.

[17] C. Van-Risbergen, Information Retrieval. 2nd edition, London, Butter-
worths, 1979.

[18] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller., “Intro-
duction to WordNet: an on-line lexical database,” International Journal

of Lexicography, vol. 3, no. 4, pp. 235–244, 1990.
[19] P. Bouquet, L. Serafini, and S. Zanobini, “Peer-to-peer semantic

coordination,” Journal of Web Semantics, vol. 2, no. 1, pp. 81–97, 2004.
[Online]. Available: http://www.websemanticsjournal.org/ps/pub/2005-6

[20] N. Aussenac-Gilles and D. Bourigault, “Construction d’ontologies à
partir de textes,” in Actes de TALN03, vol. 2, 2003, pp. 27–47.

[21] A. Doan, J. Madhavan, P. Domingos, and A. Halvey, “Learning to map
ontologies on the semantic web,” in Proc of WWW Conference, 2002.

