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Abstract

Querying semantically related data sources depends
on the ability to map between their schemas. Unfor-
tunately, in most cases matching between schema is
still largely performed manually or semi-automatically.
Consequently, the issue of finding semantic mappings
became the principal bottleneck in the deployment of the
mediation systems in large scale where the number of
ontologies and or schemata to be put in correspondence
is very large. Currently the mapping tools employ tech-
niques for mapping two schemas at a time with human
intervention for ensuring a good quality of mappings.
In the large-scale scenario such techniques are not suit-
able. Indeed, in such a scenario one requires an auto-
mated performance oriented solution. Moreover, the
automated method should also provide acceptable qual-
ity of mappings. In this paper, we present an automatic
schema matching approach dealing with two aspects:
performance and quality of mappings. However, we will
focus on the performance aspect. For this, our method
uses a B-tree index structure. Furthermore, our ap-
proach has been implemented and the experiments with
real sets of schema show that it is scalable and provides
very good performance.

1. Introduction

Interoperability among applications in distributed
environments, including today’s World-Wide Web and
the emerging Semantic Web, depends critically on the
ability to map between them. Unfortunately, auto-
mated data integration, and more precisely matching
between schema, is still largely done by hand, in a
labor-intensive and error-prone process. As a con-
sequence, semantic integration issues have become a
key bottleneck in the deployment of a wide variety of
information management applications. The high cost
of this bottleneck has motivated numerous research
activities on methods for describing, manipulating
and (semi-automatically) generating schema mappings.

The schema matching problem consists in iden-
tifying one or more terms in a schema that match
terms in a target schema. The current semi-automatic
matchers [7, 1, 9, 12, 5, 10, 14] calculate various
similarities between elements and they keep the
couples with a similarity above a certain threshold.
The main drawback of such matching tools deals
with the performances: although the matching quality
provided at the end of the process is acceptable, the
elapsed time to match implies a static and limited
number of schema. Yet in many domain areas, a
dynamic environment involving large sets of schema
is required. Nowadays’ matching tools must combine
both acceptable quality and good performances.



In a previous work [4], we presented the Ap-
proxivect method to calculate a semantic similarity
between two elements from different XML schema.
Contrary to similar works, this approach is automatic,
it does not use any dictionary or ontology and is
both language and domain independent. It consists in
using both terminological algorithms and structural
rules. Indeed the terminological approaches enable to
discover similarity of elements represented by close
character strings. On the other hand, the structural
rules are used to define the notion of context of a
node. This context includes some of its neighbors,
each of them is associated a weight representing the
importance it has when evaluating the contextual
node. Vectors composed of neighbor nodes are com-
pared with the cosine measure to detect any similarity.
Finally the different measures are aggregated for
all couples of nodes. We have shown in [4] that
Approxivect provides a good quality of mappings
regarding the existing tool [1].

Unfortunately our Approxivect approach, like most
of the matchers, lacks to provide good performances in
terms of time. The motivation of our work is to improve
this aspect of our method by using an indexing struc-
ture to accelerate the schema matching process, while
still ensuring an acceptable quality by using Approx-
ivect. The B-tree structure has been chosen to reach
this goal, as it aims at searching and finding efficiently
an index among a large quantity of data. Indeed, we
assume that two similar labels share at least a com-
mon token, so instead of parsing the whole schema, we
just search for the tokens indexed in the B-tree. A
prototype, BtreeMatch, has been designed. Further-
more, we performed some experiments based on large
sets of schema and the results show that our approach
is scalable. Our main contributions are:

• Indexing structure for matching, which provides
good performance.

• Use of tokenisation, terminological measures and
context matching of label tokens; thus clustering
similar label.

• Experiments with large number of real XML
schemas (OAGIS, XCBL) showing good perfor-
mance applicable for a large scale scenario.

The rest of the paper is structured as follows: first
we briefly explain some general concepts in Section 2;
in Section 3, an outline of our method is described; in
Section 4, we present the results of our experiments;
an overview of related work is given in Section 5 and

in Section 6, we conclude and outline some future work.

2 Preliminaries

We consider schemas as rooted, labeled trees. This
provides us the benefit for computing contextual
semantics of nodes in the schema hierarchy.

Definition 1: A schema is a labeled unordered tree
S = (VS, ES, rS, label) where:

• VS is a set of nodes;

• rS is the root node;

• ES ⊆ VS × VS is a set of edges;

• label VS → Λ where Λ is a countable set of labels.

Definition 2: Let V be the domain of schema
nodes, the similarity measure, is a concept whereby
two or more terms are assigned a metric value based
on the likeness of their meaning / semantic content
[6]. In the case of two schema nodes, this is a value
V × V → ℜ, noted sim(n, n’), defined for two nodes
n and n’. Note that the semantic similarity depends
on the method used to calculate it. In general, a zero
value means a total dissimilarity whereas the 1 value
stands for totally similar concepts.

Definition 3: A mapping is a non-defined relation-
ship rel between nodes of two schemas VS and V ′

S
:

VS × V ′

S
→ rel

The relationship between nodes can include synonyms,
equality, hyperonyms, hyponyms, etc. The similarity
measure between the two nodes may be compared
with a certain threshold, defined by an expert, to
determine if two elements should be mapped.

Example of schema matching: Consider the
two following schemas used in [3]. They represent
organization in universities from different country and
have been widely used in the literature.

With those schemas, the ideal set of mappings given
by an expert is {(CS Dept Australia, CS Dept U.S.),
(courses, undergrad courses), (courses, grad courses),
(staff, people), (academic staff, faculty), (technical
staff, staff), (lecturer, assistant professor), (senior
lecturer, associate professor), (professor, professor)}.
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Figure 1. Schema 1: organization of an Aus-

tralian university.
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Figure 2. Schema 2: organization of a US uni-
versity.

3 Overview of our approach

In this section, at first, we introduce the basis of
our approach: Approxivect component which focuses
on the semantic aspect and the B-tree indexing struc-
ture component, which is dealing with the performance
aspect. Then, we describe our method combining these
two components.

3.1 Approxivect approach

Approxivect approach aims at discovering similar-
ities between XML elements. One of its particular
feature is that it enables to discover several relation-
ships (synonyms, hyponyms, ...) but does not rely on
any dictionary and is not domain specific. See [4] for
more details.

Approxivect (Approximation of vectors) approach
is based on two steps: first we replace labels when
they have close character strings. This step uses the
Levenhstein distance and 3-grams algorithms [6, 8].
In a second time, we calculate the cosine measure [13]
between two vectors to determine if their context is

close or not. By context we mean some important
neighbor nodes like ancestors and descendants. A
formula has been provided in [4] to calculate the
importance of those neighbors for a given node.

Let us present our Approxivect algorithm. The
two schemas are traversed in preorder traversal and
all nodes labels are compared two by two with the
Levenhstein distance and the 3-grams. Both measures
are processed and according to the adopted strategy:
in our previous experiments the maximum and aver-
age strategies reveals to be a good compromise. The
obtained value is denoted SM for String Measure.
If SM is above a certain threshold, which is defined
by an expert, then some replacements may occur. We
decided to replace the label with the larger number
of characters by the label with the smaller number of
characters. Indeed we consider that the smaller-sized
label is more general than the bigger-sized one. This
assumption can be checked easily since some labels
may be written singular or plural. So we finally obtain
after this first step the initial schema that has pos-
sibly been modified with character string replacements.

In the second part of our algorithm, we traverse
again the schemas - in which some string replacements
may have occurred due to Approxivect step 1. And
the context vector of a current element is extracted
in each schema. The neighbor elements composing
this vector may be ancestors, descendants, siblings
or further nodes of the current element. However,
each of them is assigned with a weight, illustrating
the importance of this neighbour with regards to the
current node. The two context vectors are compared
using the cosine measure, in which we include the
weight of the node. Indeed, when counting the number
of occurrences of a label, we multiply this number by
its weight. This process enables to calculate CM, the
cosine measure between two context vectors, and thus
the semantic similarity between the two nodes related
to these contexts too.

The matching quality has already been compared to
another schema matcher, COMA++ [1]. Experiments
have been done on several couples of schemas to show
that Approxivect offers an acceptable quality [4]. For
example, consider schemas 1 and 2. An expert would
find 9 relevant similarities: COMA++ finds only 5
of them while Approxivect is able to discover all the
relevant similarities. But Approxivect suffers from
the same drawback than the other matchers : slow
performances. The next section presents an indexing
structure to accelerate the matching.



3.2 An indexing structure: the B-tree

In our approach, we use the B-tree as the main
structure to locate matches and create mappings
between XML tree structures. The advantage of
searching for mappings using the B-tree approach is
that B-tree have indexes that significantly accelerate
this process. Indeed, if you consider the schemas 1 and
2, they have respectively 8 and 9 elements, implying 72
matching possibilities with an algorithm that tries all
combinations. And those schemas are small examples,
but in some domains, schemas may contain up to 6
000 elements. By indexing in a B-tree, we are able
to reduce this number of matching possibilities, thus
involving better performances.

As described in [2], B-trees have many features. A
B-tree is composed of nodes, each of them having a
list of indexes. A B-tree of order M means that each
node can have up to M children nodes and contains
a maximum of M-1 indexes. Another feature is that
the B-tree is balanced, meaning all the leaves are at
the same level - thus enabling fast insertion and fast
retrieval since a search algorithm in a B-tree of n
nodes visits only 1+logMn nodes to retrieve an index.
This balancing involves some extra processing when
adding new indexes into the B-tree, but its impact is
limited when the B-tree order is high.

The B-tree is a structure widely used in databases
due to its efficient capabilities of storing information.
As schema matchers need to store and retrieve quickly
a lot of data when matching, an indexing structure such
as B-tree could improve the performances. The B-tree
has been prefered to the B+tree (which is commonly
used in databases systems) since we do not need the
costly delete operation. Thus with this condition, the
B-tree seems more efficient than the B+tree because
it stores less indexes and it is able to find an index
quicker. As most databases use a B+tree structure, we
did not consider

3.3 Our BtreeMatch approach

By using both Approxivect and the B-tree struc-
ture, the objective is to combine their main advantage:
an acceptable matching quality and good perfor-
mances. Contrary to most of the other matching
tools, BtreeMatch does not use a matrix to compute
the similarity of each couple of elements. Instead, a
B-tree, whose indexes represent tokens, is built and

enriched as we parse new schemas, and the discovered
mappings are also stored in this structure. The tokens
reference all labels which contains it. For example,
after parsing schemas 1 and 2, the courses token
would hold three labels: courses from schema 1, grad
courses and undergrad courses from schema 2.
Note that the labels grad courses and undergrad
courses are also stored respectively under the grad
and the undergrad tokens.

For each input XML schema, the same algorithm
is applied: the schema is parsed element by element
by preorder traversal. This enables to compute the
context vector of each element. The label is split into
tokens. We then fetch each of those tokens in the B-
tree, resulting in two possibilities:

• no token is found, so we just add it in the B-tree
with a reference to the label.

• or the token already exists in the B-tree, in which
case we try to find semantic similarities between
the current label and the ones referenced by the
existing token. We assume that in most cases, sim-
ilar labels have a common token (and if not, they
may be discovered with the context similarity).

Let us illustrate this case. When courses is parsed
in schema 1, the label is first tokenized, resulting in
the following set of tokens: courses. We search the
B-tree for this single token, but it does not exist. Thus
we create a token structure whose index is courses
and which stores the current label courses and it
is added into the B-tree. Later on, we parse grad
courses in schema 2. After tokenization process, we
obtain this set of tokens: grad, courses. We then
search the B-tree for the first token of the set, but
grad does not exist. A token structure with this
grad token as index is inserted in the B-tree, and
it stores the grad courses label. Then the second
token, courses, is searched in the B-tree. As it
already exists, we browse all the labels it contains
(here only courses label is found) to calculate the
Approxivect String Measure denoted SM between
them and grad courses. Approxivect can replace
one of the label by the other if they are considered
similar (depending on the Approxivect parameters).
Whatever happens, grad courses is added in the
courses structure. The next parsed element is
undergrad courses, which is composed of two
tokens, undergrad and courses. The first one results
in an unsuccessful search, implying an undergrad
token structure to be created. The second token is
already in the B-tree, and it contains the two labels



previously added: courses and grad courses. The
String Measures are computed between undergrad
courses and the two labels, involving replacements
if SM reaches a certain threshold. undergrad
courses is added in the label list of the courses
token structure. So the index enables to quickly find
the common tokens between occurences, and to limit
the String Measure computation with only a few labels.

At this step, some string replacements might have
occurred. Then the parser performs recursively the
same action for the descendants nodes, thus enabling
to add the children nodes to the context. Once all
descendants have been processed, similarities might
be discovered by comparing the label with tokens’
references using the cosine and the terminological
measures. A parameter can be set to extend the search
to the whole B-tree if no mappings has been discovered.

Let us carry on our example. After processing un-
dergrad courses, we should go on with its children
elements. As it is a leaf, we then search the B-tree
again for all the tokens which compose the label un-
dergrad courses. Under the undergrad token, we
find only one label, itself so nothing happens. Under
the courses token, only one of the three existing la-
bels namely courses, is interesting (one is itself and
the other, grad courses, is in the same schema). The
String Measure is thus applied between courses and
undergrad courses. The Cosine Measure is also per-
formed between their respective context, and the ag-
gregation of these two measures results in the semantic
measure between those labels. If this semantic mea-
sure reaches a certain threshold, then a mapping may
be discovered.

4 Experiments

To evaluate the benefit provided by the index
structure, we made comparison between Approxivect
alone and the whole method (i.e., Approxivect +
B-tree indexing structure). In order to properly
evaluate our work, we developed a prototype system of
BtreeMatch in Java, using the SAX parser. As some
experiments about the matching quality have already
been done in previous work [4] between Approxivect
and COMA++, we do not deal with the quality
here. We only focus on performances, namely the
time spent to match a large number of schemas. For
those experiments we used a 2 Ghz Pentium 4 laptop
running Windows XP, with 2 Gb RAM. Java Virtual
Machine 1.5 is the current version. The context of a
node is limited to its parent and its children nodes.

Table 1. Characterization of the schema sets
XCBL Schemas OASIS Schemas

Average number of 21 2 065
nodes per schema
Largest / smallest 426 / 3 6 134 / 26
schema size
Maximum depth 7 21

Although this constraint could be removed, it has
been shown in the Approxivect experiments that the
context should not include too many further nodes
which could have a bad impact on the quality.

The table 1 shows the different features of the sets
of schemas we used in our experiments. Two large
scale scenarios are presented: the first one involves
a thousand of average-sized schemas about business-
to-business e-commerce, taken from the XCBL1 stan-
dards. In the second case, we deal with OASIS2

schemas which are also business domain related. We
use only several hundreds of those schemas because
they are quite large, with an average of 2000 nodes
per schema.

4.1 First scenario: XCBL

Here we compare the performances of Approxivect
and BtreeMatch on a large set of average schemas.
The results are illustrated by the graph depicted in
Figure 3. We can see that Approxivect is efficient
when the number of schemas is not very large (less
than 1600). BtreeMatch method provides good per-
formances with a larger number of schemas, since two
thousands schemas are matched in 200 seconds.

4.2 Second scenario: OASIS

In this scenario, we are interested by matching large
schemas, with an average of 2000 nodes. The graph
depicted in Figure 4 shows that Approxivect is not
suited for large schemas. On the contrary, BtreeMatch
is able to match an important number of large schemas
in less than one minute. The graph also shows that
BtreeMatch is quite linear. Indeed, for 900 schemas,
BtreeMatch needs around 130 seconds to perform the
matching.

5 Related Work

In the literature, many schema matching approaches
[7, 1, 9, 12, 5, 10, 14] have been studied at length.

1www.xcbl.org
2www.oagi.org
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Figure 3. Matching time with XCBL schemas.

Most of them have been designed to demonstrate their
benefit in different scenarios. However, the currently
mapping tools employ techniques for mapping two
schemas with human intervention. To the best of
our knowledge, this is the only one previous work
dealing with large schemas [11], using COMA++ tool
[1]. In this work, first, the user divides the schema
into fragments and then each fragment from source
schema is mapped to target schema fragments, to
find inter-fragment matching. Next, these fragment
mappings are merged to compute the schema level
mappings. Thus, the tool is not able to process
directly large schemas. Another issue of this approach
[11] is which criteria is the best for fragmenting the
large schemas.

To conclude, the existing tools are semi-automatic
and are designed for small schemas. Moreover they, did
not focus on the performance aspect, while our method
has the following properties:

• automatic

• designed for processing large schemas

• scalable

6 Concluding Remarks

In this paper, we presented our BtreeMatch
approach to improve the time elapsed on schema
matching. Our method is based on a B-tree structure
which includes an index mechanism and module for
discovering semantic similarity between elements of
schemas. To evaluate the benefit provided by the index
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Figure 4. Matching time with OASIS schemas.

structure, we made comparison between Approxivect
alone and BtreeMatch (i.e., Approxivect + B-tree
indexing structure). The experiments have shown
that BtreeMatch is faster than Approxivect in most
cases, especially when the number of information that
needs to be stored becomes important. An indexing
structure could be needed when the schemas are either
very large or numerous. Note that the B-tree can
directly store the mappings into memory, whereas
Approxivect needs another means of storage.

The result of our experiments are very interesting
and showing that our method is scalable and pro-
vide good performance and quality of mappings. We
are planning to seek for schemas involving more het-
erogeneity, thus we need to enhance Approxivect by
adding specific parsers for each format file. Currently,
the corpus of schemas available on the web are nor-
malized, i.e. there is no synonyms, tokens have the
same delimiters. For that, one of our ongoing work is
to establish a benchmark involving a large corpus of
non-normalized schemas for evaluating schema match-
ing tools.
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