
HAL Id: lirmm-00138527
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00138527v1

Submitted on 26 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing a Benchmark for the Assessment of XML
Schema Matching Tools

Fabien Duchateau, Zohra Bellahsene

To cite this version:
Fabien Duchateau, Zohra Bellahsene. Designing a Benchmark for the Assessment of XML Schema
Matching Tools. 2007. �lirmm-00138527�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00138527v1
https://hal.archives-ouvertes.fr

Designing a Benchmark for the Assessment of XML
Schema Matching Tools∗

Fabien Duchateau
LIRMM - UMR 5506

Université Montpellier 2
34392 Montpellier Cedex 5 - France

duchatea@lirmm.fr

Zohra Bellahsène
LIRMM - UMR 5506

Université Montpellier 2
34392 Montpellier Cedex 5 - France

bella@lirmm.fr

ABSTRACT

Over the years, many XML schema matching systems have
been developed. A benchmark for assessing the capabilities
of schema matching systems and providing uniform condi-
tions and the same testbed for all schema matching proto-
types, has become indispensable as the matching systems
grow in complexity. However, developing a benchmark for
the schema matching problem is very challenging, given the
wide range of techniques that can be applied to assist in
schema matching. In this paper, we present the foundations
and desiderata of a benchmark for XML schema match-
ing. Moreover, we have extended the notion of quality of
an integrated schema by proposing new scoring functions.
Finally, we have designed and implemented XBenchMatch,
an application which takes as input: an ideal schema and
the result of a matching from a schema matching prototype
(i.e. a set of mappings and/or an integrated schema) and
generates as output: statistics on the quality of this input.
Our proposal is aimed to provide two kinds of evaluations:
(i) quality matching evaluation, which is based on the use
of the quality measures and (ii) performance of matching
schema. The first criteria is very important in automatic
schema matching and the second is crucial in large scale
when the schema to be matched are very large. In this pa-
per, we present XBenchMatch, a benchmark for testing and
assessing schema matching tools and report the experiments
results of some matching tools over a large corpus of schemas
using our benchmark.

1. INTRODUCTION
Over the years, several approaches of schema matching

[6, 9, 14, 18, 22, 25, 28] have been proposed, demonstrat-
ing their benefit in different scenarios and many matching
systems have been designed. Most of the papers describ-
ing a schema matching tool provide an experiment section.
However, these experiments reflect a particular scenario, us-

∗Supported by ANR Research Grant ANR-05-MMSA-0007

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

ing real-world schemas. For example, a matching tool can
provide an acceptable matching quality with good perfor-
mance in a specific scenario, but it can be unreliable and
slow in another case. Thus, it seems difficult to compare
two schema matching tools, and to evaluate the one which
performs best. And end-users might not know which one is
the most appropriate for their task.
To the best of our knowledge, there is no complete bench-
mark for schema matching tools. In [8], the authors present
an evaluation of schema matching tools. This evaluation
suffers from two drawbacks. First, by evaluating the match-
ing tools with the scenarios provided in their respective pa-
pers, one cannot objectively judge the capabilities of each
matching tool. Secondly, some matching tools generate an
integrated schema instead of a set of mappings, and the
measures provided to evaluate a set of mappings appear not
sufficient to evaluate the quality of an integrated schema.
Another proposal for evaluating schema matching tools has
been done in [28]. It extends [8] by adding time measures
and relies on real-world schemas to evaluate the matching
tools. However, the evaluation system has not been imple-
mented. Our work extends the criteria provided in [8], by
adding scoring functions to evaluate the quality of integrated
schemas. It goes further on the evaluation aspect. Indeed all
the matching tools are evaluated against the same scenarii.
In this paper, we present the foundation of a benchmark
for XML schema matching tools. Our evaluation system
involves a set of criteria for testing and evaluating schema
matching tools. It is aimed to provide uniform conditions
and the same testbed for all schema matching prototypes,
Our approach focuses on the evaluation of the matching
tools in terms of matching quality and performance. Next,
we also aim at giving an overview of a matching tool by
analysing its features and deducing some tasks it might ful-
fill. This should help an end-user to choose among the avail-
able matching tools depending on the criteria required to
perform his task. Finally, we provide a testbed involving
a large schema corpus described in 7 that can be used by
everyone to quickly benchmark matching algorithms.
Here we outline the main contributions of our work:

• We describe the notion of benchmark for the schema
matching application. More precisely we list the dif-
ferent features involved in this process, and we give a
methodology on how to evaluate them and to choose
the most appropriate for a defined task.

• We have extended the notion of quality for a schema,
by proposing new measures like structural overlap.

• We have designed XBenchMatch, an application which
takes as input an ideal schema the result of a matching
from a schema matching system (i.e. a set of mappings
and/or an integrated schema). It generates statistics
on the quality of this input, based on the criteria de-
fined above.

The rest of the paper is organised as follows: first we give
some definitions and preliminaries in Section 2. In Section
3, the list of criteria is explained. In Section 4, we present
the main features of schema matching tools. In Section 5 the
scoring functions of quality are described. Section 6 briefly
presents our XBenchMatch application and the results of
our experiments. Section 9 contains the related work; and
in Section 10, we conclude and outline some future work.

2. PRELIMINARIES
In this section, we define the main notions used in this

paper.

Definition 1 (Schema) : A schema is labeled unordered
tree S = (VS, ES, rS, label) where VS is a set of nodes; rS

is the root node; GS ⊆ VS × VS is a set of edges; and label
ES → Λ where Λ is a countable set of labels.

Definition 2 (Semantic Similarity Measure): Let E1

be a set of elements of schema 1, and E2 be a set of elements
of schema 2. A semantic similarity measure between two el-
ements e1 ∈ E1 and e2 ∈ E2, noted as Sm(e1, e2), is a metric
value based on the likeness of their meaning/ semantic con-
tent, given as:

Sm : E1xE2 → [0, 1]

(e1, e2) → Sm(e1, e2) where a zero means a total dis-
similarity and 1 value stands for total similarity.

Definition 3 (Automatic Schema Matching)
Given two schema elements sets E1 and E2 and a similarity
measure threshold t. We define Automatic Schema Match-
ing, between two elements e1 and e2, noted as match(e1, e2),
as follows:

For all (e1, e2) ∈ E1xE2

If Sm(e1, e2) < t then match(e1, e2)=false
Else If Sm(e1, e2) ≥ t then match(e1, e2)=true;

d = Sm(e1, e2) where d is the similarity degree
Threshold t may be adjusted by an expert, depending upon
the strategy, domain or algorithms used by the match tools.

Example 2.1: If match(addrese, address) is calculated
using edit distance algorithm1, the value of d is 0.857 and if
3-gram2 algorithm is used the result for d is 0.333. For an-
other example match(dept, department); edit distance value
of d is 0 and 3-gram result is 0.111. The examples show
that the threshold has to be adjusted by an expert depend-
ing upon the properties of strings being compared and the
match algorithms being applied.

1match(s1, s2)=max{0,
min{|s1|,|s2|}−EditDistance(s1,s2)

min{|s1|,|s2|}
}

2match(s1, s2)=
1

1+|ngram(s1)|+|ngram(s2)|−2×|ngram(s1)∩ngram(s2)|

Definition 4 (Best Match selection): There can be
the possibility of more than one match for an element e1 ∈
E1 in E2. In such situation the match with maximum sim-
ilarity degree has to be selected. This case can be formally
defined as:

Given Ei2 ⊆ E2 of size n, such that ∀ eij corresponding
to element ei, match(ei,eij) is true; where 1 ≤ j ≤ n. Best
match for element ei of E1 noted as matchib is given as fol-
lowing:

matchib =
n

max
j=1

Sm(ei, eij)

Definition 5 (Schema Mapping): Given E1 a set of
elements of schema 1, E2 a set of elements of schema 2 and I
a set of mappings identifiers. We define a mapping between
two elements e1 ∈ E1 and e2 ∈ E2 by the following function
noted as Map:

Map: IxE1xE2xFs → IxE1xE2x[0, 1]xK

(id, e1, e2, Sm) → (id, e1, e2, d, k)

where Fs is a set of functions performing similarity mea-
sure, d is the similarity degree returned by match(e1, e2) and
K is the set of mapping expressions e.g. equivalence, syn-
onym, inclusion etc., depending upon the data model being
represented by schemas 1 and 2.

Schema mapping can be uni-directional i.e., from schema
1 toward schema 2, or bidirectional i.e., the correspondence
holds in both directions e.g. if an element e1 from schema
1 is mapped to an element e2 of schema 2 then there exists
another correspondence for element e2 of schema 2 toward
element e1 of schema 1 [1].

3. DESIDERATA
The schema matching benchmark needs to have the fol-

lowing properties in order to be complete and efficient. It
needs to be:

• Extensible, the benchmark is able to evolve accord-
ing to progress. Thus, future schema matching tools
could be benchmarked, as well as new measures can be
added to evaluate the matching quality. The bench-
mark deals with well-formed XML schemas, and a set
of mappings can easily be converted into the default
set of mappings formats using a wrapper. Thus, the
outputs of future matching tools should be handled.
For the new measures, we intend to release the bench-
mark in open-source, allowing everyone to add new
measures or functionalities.

• Portable. The benchmark should be OS-independent,
since the matching tools might run on different OS.
This requirement is fulfilled by using Java.

• Simple since both end-users and schema matching ex-
perts are targeted by this benchmark.

• Scalable on two aspects: creating new benchmark sce-
narii is an easy task. And a benchmark composed of
many scenarii should be easy to construct and evalu-
ate.

• Generic, it should work with most of the matchers
available. Thus, the criteria have been restricted to

the average capabilities of the matchers. For example,
some schema matching tools are able to match a large
number of schemas at a time, but some others do not.
This involves the number of schemas to be limited to
2. Another example is: some schema matching tools
may provide as output both an integrated schema and
a set of mappings while some others only provide a
single output.

All these requirements should be met to provide an ac-
ceptable matching benchmark. Next we focus on the criteria
dedicated to the schema matching process itself.

4. MATCHING TOOLS FEATURES
Some schema tools have enhanced the match task, namely

in automatic schema matching, with pre-match and post-
match phases.
This section covers the general features which define the
characteristics and the capabilities of the matching tools.
This section is organized in four parts describing these fea-
tures as follows: (i) the pre-match phase, (ii) the matching
method,(iii) the output of the schema matching tool and
(iv)the post-match phase.

4.1 Pre-Match Phase
This phase normally includes configuration of various pa-

rameters e.g. setting weights, thresholds of the matching
algorithms etc. It can have three possibilities :

• External resources. They make use of some external
resources, like ontologies (domain specific), thesauri or
dictionaries (for example Wordnet) [13].

• Tuning. A matching tool might be flexible by allow-
ing some parameters or thresholds (example 2.1) to
be tuned by the user [12]. This step may be optional
or compulsory, but these parameters generally affect
other criteria. For instance, they can be varied to en-
able better performance by degrading the quality.

• Training Some approaches provide a new set of ma-
chine learning based matchers for specific types of com-
plex matchings. For example, LSD [10] uses machine
learning algorithms for matching as well as in sum-
ming up the match results for each pair of attribute
comparison.

This pre-matching step involves more work at the begin-
ning. However, this effort is often rewarded since it posi-
tively affects the matching quality. In our benchmark, the
pre-match appears as a list of pre-processing tasks of the
matching tool, performed at this phase. For example, use of
dictionaries, use of ontologies, use of synonyms table, etc.

4.2 Matching Method
Schema matching is a complex problem, which starts by

discovering similarities between schema elements’ names,
mainly by using basic string matching approaches adapted
from the information retrieval domain. These algorithms
have been dependent on some basic techniques of element
level string matching, linguistic similarities or constraints
likeliness at element level or higher schema structure level.
Similar graph algorithms utilized in schema matching is a
special form of constraints matching [25]. The kernel of

schema matching tool is the matcher. It correspond to the
match operator defined in [5]. Some tools use composite
approach to combine different matchers, for example, LSD
[10] and COMA++ [1]. Our benchmark, by means, of the
scoring functions described in section 5, allows to test the
quality of a matching algorithm or a combination of match-
ing algorithms for a given scenario.

4.3 The Output
There are three main issues regarding with the output:

• Type of output. Most matching tools generate ei-
ther an integrated schema or/and a set of mappings.
The interesting aspect is to study how they produce
the integrated schema. Our benchmark, by means
of dedicated scoring functions, e.g. structural overlap
would allow to test whether the method is appropri-
ate. For example, is the method for building an inte-
grated schema from scratch, or from a particular input
schema, a good method regarding the ideal schema ?

• Format of the output. This is an important fea-
ture which gathers the possibilities to use this output.
Since our benchmark is dealing with XML schema, the
output can be queryable with XQuery.

• Complexity of the mappings. Several types of
mappings need to be handled. All matching tools
supports the 1:1 mapping, i.e. one element from one
schema is mapped with one element of another schema.
Complex mappings, involving several elements consid-
ered as 1:n, n:1, and n:m [22] are not supported by
all matching tools. The possible relationship between
the mapping elements can be specified: for example,
some matching tools precise that an element price is
mapped to the element amount with the relationship
price = amount × VAT.

Our benchmark is able to deal with all kinds of mappings.

4.4 Post-Match Phase
The post-match phase uses different measures to select

the best correspondence for an element from a set of possi-
ble matches which show the semantic equivalence aspect for
that element. These techniques are termed as match quality
measures in the literature [8]. In our benchmark, the post-
match is handled by the overall and the schema proximity
measures.

5. QUALITY MEASURES
The aim of automatic schema matching process is to avoid

a manual, labour and error-prone task in large scale scenarii.
For this purpose we have designed a set of score functions
for evaluating the quality of the integrated schema. They
are complemented by the performance aspect, although it
just consists in the matching execution time. Our bench-
mark also provide some statistics like resource consumption
(maximum memory needed, disk space storage) and statis-
tics on the collection of schemata used (dimension of the
integrated schema = min/max depth and width, number of
nodes,etc.)

5.1 Mapping Quality Measures
Precision is an evaluation criterion very appropriate to

the schema matching framework. Precision calculates the
proportion of relevant mappings among the extracted map-
pings. A 100% precision means that all the mappings ex-
tracted by the system are relevant.

Another typical measurement coming from the machine
learning approach is recall which computes the proportion
of relevant mappings extracted among all the relevant map-
pings. A 100% recall means that all relevant mappings have
been found.

The main objective of schema matching is to avoid a man-
ual process, or at least save time since an expert is still
required: the output of the matcher needs to be checked
and eventually completed. Hence the overall measure [19]
has been specifically designed to evaluate the post match
effort. That is, the amount of work needed to add the rele-
vant mappings that have not been discovered and to remove
those which are not relevant but have been extracted by the
matcher. The Overall measure can have negative values. It
is often important to determine a compromise between re-
call and precision. We can use a measurement taking into
account these two evaluation criteria by calculating the F-
measure [27].
As explained in [8], the F-measure is more optimistic than
overall.

5.2 Integrated Schema Quality Measures
A matching tool may provide three types of output: a set

of mappings, or an integrated schema, or both. Our bench-
mark can evaluate the integrity of the integrated schema In
that case, our benchmark is able to evaluate the semantic
integrity of the integrated schema. The previous score func-
tions are not appropriate since they do not deal with the
structure of the schema. We have designed the following
measures to reach this goal.

The first measure takes into account the backbone of
the tree. More formally, it shows if both trees share a large
common subtree, seen as a backbone. This measure returns
a value between 0 (no common subtree) and 1 (both trees
are the same) is given by the following formula:
Given an input schema tree Si and another integrated tree
noted Sg, then

Backbone =
| LSub(Si ∩ Sg) |

| Si |
(1)

Where LSub(Si ∩ Sg) represents the largest common sub-
tree between trees Si and Sg, and |Si| is the number of el-
ements of the tree Si. This measure reflects the structural
similarity of the largest shared component of two trees. Note
that this backbone measure is mainly efficient with similar
trees.

In the following, a subtree is defined as ’an extract’ of a
tree which is composed of at least two nodes and has its own
root. All the nodes in this subtree must be descendants of
this and only this subtree root.

Considering an ideal (model or expert) schema tree Si and
another tree noted Sg which is evaluated against the ideal
tree, we define Sub as the set of all disjoint subtrees which
are common to Si and Sg. |Si| stands for the number of
elements in tree Si, and k for the total number of elements
of all subtrees in Sub.

Based on these assumptions, the structural overlap is
a measure representing the number of elements which are
shared by both trees and are included in a common subtree.
A 0 value represents a lack of common subtrees while a value
closer to 1 shows that most of the elements are included in
a common subtree. The following formula processes this
structural overlap measure.

StructuralOverlap =
k

|Si|
(2)

Another interesting measure we have designed is the struc-
tural proximity. This measure extends the structural
overlap by adding several metrics seen as differences. In-
deed, the structural overlap only measures the percentage
of elements in the common subtrees, and this needs to be
enhanced to evaluate a structural proximity between the two
trees. Thus, we have added the number of common subtrees.
If Si and Sg are similar, they have only one common subtree,
which is the whole tree. And the more common subtrees,
the less similar the trees are. Another difference is the num-
ber of missing elements, i.e the elements in Si that are not in
one of the common subtrees. As Si is the ideal schema, all
its nodes which are missing in the common subtrees affect
the structural proximity between the two trees. First we
define o the number of elements in Si that are not included
in any common subtree. Thus, o = | Si | - k. And the tree
proximity is obtained by the following formula:

StructuralProximity =
k

|Si| ×
p

|Sub| + o
(3)

This formula generates a value between 0 and 1, 0 meaning
the trees are totally different and 1 ensuring the trees are
identical.

Finally, the last measure, denoted schema proximity,
computes the similarity between two trees. It takes into
account both the structural aspect and the dissimilarity be-
tween the tree elements. This dissimilarity gathers the extra
elements, namely those that appear in Sg but not in Si, and
the missing elements, which are in Si but not in Sg. We
define this dissimilarity d = (|Si| - |Com|) + (|Sg| - |Com|)
where Com stands for the set of common elements between
Si and Sg trees. The schema proximity formula is then given
by:

SchemaProximity =
1

|Sub|
×

k − d

|Si|
(4)

The value computed by the schema proximity measure
stands between 1 for a complete similarity and -∞ for a to-
tal dissimilarity between the two trees.

6. XBENCHMATCH: XML SCHEMA MAT-

CHING BENCHMARK
To evaluate and compare XML schema matching tools,

we have implemented XBenchMatch. The main goal of this
application is to provide two kinds of evaluations: (i) quality
maching evaluation, which is based on the use of the mea-
sures described in section 5 and (ii) performance of matching
schema. The first criteria is very important in automatic
schema matching and the second is crucial in large scale
and when the schema to be matched are very large. Fi-
nally, our tool should also help an end-user to choose the

Output

Input

Ideal File Matcher File

XbenchMatch

XML Parser Wrapper

Schema Benchmark

 Engine

Mapping Benchmark

 Engine

Schema Quality

Measures

Mapping Quality

Measures

Ideal tree

internal

structure

Matcher tree

 internal

Structure

Ideal list

internal

structure

Ideal

schema

Matcher

schema

Matcher

set of

mappings

Ideal

set of

mappings

OR OR

Matcher list

internal

structure

Statistics

Figure 1: Architecture of XBenchMatch Prototype

more appropriate among schema matching tools according
to his requirements. This section gives an overview of our
benchmark.

Figure 1 describes the architecture of our prototype. The
input files may be of two types, either a well-formed inte-
grated schema or a set of mappings. Two modules are in
charge of converting them into an internal structure, the
XML parser and the wrapper respectively. However, the file
generated by the matching tool must be of the same type
as that of the expert one. Creating new wrappers will en-
sure the extensibility by supporting new sets of mappings
format. Next, the benchmark engines are able to compute
different measures between the ideal file and the matcher’s
file. XBenchMatch finally outputs various statistics (perfor-
mance, size and depth of input schemas, ...) and the quality
measures explained in 5. Schema matching systems can also
be compared on one or more scenarii, especially by compar-
ing their f-measure and structural proximity measures. Note
that the user may also choose the schema corpus that has
been matched by the matcher. This only enables to generate
statistics on the corpus, for example the average number of
nodes, the maximum depth, etc. The static information, i.e
the features of the matching tool, is displayed to help the
user to understand the results of the matching. The analy-
sis of these results is given by the dynamic criteria, or the
measures. Out tool also generate plots for precision, recall,
F-measure and overall. If the type of the input files are in-
tegrated schemas, then some more measures like structural
overlap and structural proximity are also computed.

7. EXPERIMENTS PROTOCOL
All experiments were run on a 3.0 Ghz laptop with 2G

RAM under Windows XP. A demo version of the prototype
is available at www.lirmm.fr/∼duchatea/XBenchMatch. To
obtain comparable results, our benchmark provides uniform
conditions and use the same test schemas for all matching
prototypes. In this section, we present the capabilities of
XBenchMatch using four real-world scenarii: the first one
describes a person, the second is related to a business order,
the third one on university courses and the last one comes
from the biology domain. All the ideal integrated schemas
have been done manually by an expert and are provided with
our benchmark application. Before using XBenchMatch, the
user has to generate an integrated schema for each scenario
with the matching tools he would like to evaluate.

Each of these scenarii is described with more details:

• Scenario 1. General schemas are small-sized sche-
mas describing a person. The ideal set of mappings
and the ideal integrated schema have also been exper-
tized manually.

• Scenario 2. Business schemas dealing with an or-
der. The first schema is drawn from the XCBL collec-
tion3, and has about 160 elements. The second schema
also describes an order but it is smaller with only 12 el-
ements. This scenario reflects the possibility to match-
ing a large schema with a smaller one. A human expert
has manually generated the set of mappings between
these schemas.

• Scenario 3. University schemas have been taken
from Thalia collection presented in [15]. Each schema
has about 20 nodes and the set of mappings contains
15 mappings. An expert has manually mapped the
two schemas produced both output matching files, the
set of mappings and the integrated schema.

• Scenario 4. Biology schemas. The two schemas
come from different collections which are protein do-
main oriented, namely Uniprot4 and GeneCards 5. Both
are quite large, with GeneCards around 400 XML paths,
and 57 paths in UniProt. A domain expert has man-
ually mapped both schemas, and produced 57 map-
pings.

Person University Order Biology
NB nodes (S1 / S2) 11 / 10 18 / 18 20 / 844 719 / 80
Avg NB of nodes 11 18 432 400
Max depth (S1 / S2) 4 / 4 5 / 3 3 / 3 7 / 3
NB of Mappings 5 15 10 57

Table 1: Details about the evaluation scenarii.

Table 1 summarizes the characteristics of the scenarii which
are used in the benchmark.

The user can run the default benchmark, which involves
four scenarii described above against the matcher’s inte-
grated schema for all the schema (person, order, university

3www.xcbl.org
4http://www.ebi.uniprot.org/support/docs/uniprot.xsd
5http://www.geneontology.org/GO.downloads.ontology.shtml

Figure 2: Example of evaluation tools

and biology). XBenchMatch is able to calculate the match-
ing quality of these matchers’ integrated schema against
the ideal integrated schemas. It outputs the following mea-
sures: precision, recall, f-measure, overall, structural over-
lap, structural proximity. A plot is automatically drawn to
show the quality according to the number of common ele-
ments between the two trees. Another plot focuses on the
schema structure by comparing the structural overlap and
proximity to the number of elements in the common sub-
trees.

As XBenchMatch is meant to be generic and extensible, it
is also possible to run the benchmark using other scenarii. It
provides the GUI for this option. The process is identical to
the default benchmark, except that the user needs to choose,
for a specific scenario, both the ideal integrated schema and
the matcher’s generated integrated schema. Then the mea-
sures showing the quality of the matcher’s integrated schema
are displayed in the main window.

Finally, XBenchMatch enables one to compare the quality
of different matching tools on one or several scenarii. For
example, figure 2 shows the comparison of three Matchers:
COMA++, PORSCHE [24] and Similarity Flooding [19].

8. EXPERIMENT RESULTS
In this section, we present the evaluation results of the fol-

lowing matching tools: COMA++, PORSCHE, Similarity
Flooding and BTreeMatch. However, our benchmark appli-
cation is easily extended to other matchers. We notice, it
is hard to find available matchers to test. COMA++ and
Similarity Flooding matchers are considered by the schema
matching community to provide good matching quality.
PORSCHE [23] is a recent tool developed in our team, and
it is performance-oriented. BTreeMatch [11] is another re-
cent prototype from our team, which is aimed to provide
good performance and quality as well.

8.1 Quality of COMA++
COMA++ generates an integrated schema in ASCII tree

format. Thus we developed a wrapper to convert it into
an XML schema, which is the normal format of our bench-
mark. The quality of the integrated schema are given in

Figure 3: COMA++ quality of the integrated
schema

figure 3 and figure 4. The first remark is that COMA++ is
able to keep most of the relevant elements, since the recall
is equal to 1 on each scenario. However the precision shows
that COMA++ becomes less accurate when the size of the
schema increases, namely most of the discovered elements
should not be in the integrated schema. Except on the first
scenario dealing with person description, COMA++ needs
much post-match effort to add non-discovered elements and
to remove the non-relevant ones. This is illustrated by a neg-
ative overall value in three scenarii. However, this matching
tool uses a list of synonyms, and none has been provided
in these experiments. And the domain-specific scenario on
biology is particularly difficult for such matching tool which
mainly uses a combination of terminological measures. As
for the quality of structure, the results follow the same di-
rection: the two small scenarii provide an acceptable quality
in terms of schema structure, but this quality decreases with
bigger schemas.

To improve the understanding of the graph, the overall
value has been limited to -1 instead of -∞. One should
consider a negative overall value as not significant as it was
explained in [19].

COMA++ also produces a set of mappings. The quality
on the set of mappings generated by COMA++ is shown in
figure 5. COMA++ results are difficult to interpret. Indeed,
it discovers most of the relevant mappings in two scenarii
(f-measure is above 0.6) but it does not perform as well in
two other scenarii (f-measure is less than 0.1). Although
the set of mappings does not enable to discover most of the
information compared to the integrated schema, the quality
is better with the set of mappings than with the integrated
schema. Therefore, the post-match effort is reduced.

8.2 Quality of PORSCHE
PORSCHE produces an integrated schema. The produced

set of mappings includes those between the input schema
and the integrated schema. While in the other tested schema
matching the mappings are those between the input schema.

Figure 4: COMA++ quality of the integrated
schema

Figure 5: COMA++ quality of the mappings

Figure 6: PORSCHE quality of the integrated
schema

Therefore, we decide to measure only the quality of the inte-
grated schema. The results of experiments over PORSCHE
are depicted in figure 6 and figure 7 on the four scenarii.
Both the structure and quality measures on the first small
scenarii are acceptable, with a F-score around 0.8 and a
structural proximity above 0.4. Note that the post-match
effort is minimized in these cases. However, when the num-
ber of elements increases, the quality tends to decrease:
PORSCHE either discovers many elements with only a few
relevant, or it discovers a few common elements among which
most of them are relevant. The structural quality values are
quite low. Thus, with large schemas, the integrated schemas
are not similar with the ones provided by the experts. Like
COMA++, PORSCHE normally uses a list of synonyms,
and this can explain the average results on the order sce-
nario. Besides, one can notice the importance of the pre-
cision for the overall measure: a good precision enables to
avoid a negative overall value, even with a low recall, as is
shown in figure 6.

8.3 Quality of Similarity Flooding
Next experiments carries on Similarity Flooding (SF), im-

plemented in Rondo matching tool. The quality of the in-
tegrated schema is given in the two graphs of figure 3 and
figure 9. In contrast to the previous matching tools, SF has
a better quality with large schemas. Although the preci-
sion value stands around 0.5, the structural proximity and
the recall are equal to 1 when the number of elements is
higher than 75. As this matching tool propagates the ben-
efit of discovering a match to the neighbour nodes, it seems
normal that it provides better results with large schemas.
The quality on smaller schemas is also acceptable, with val-
ues above 0.4. However, the structural quality on the small
schemas is low. We can also notice that even in a specific
scenario like biology, where other matchers may require aux-
iliary information (e.g. list of synonyms), in SF the quality
of integrated schema does not decrease.

Figure 7: PORSCHE quality of the integrated
schema

Figure 8: SF Results Evaluation

Figure 9: SF quality of the integrated schema

8.4 Quality of BTreeMatch
Figure 10 depicts the quality of the mappings that have

been produced by BtreeMatch. We remark that with small
schemas, the quality is very low, since the F-score is less than
0.2. However, this measure reaches 0.6 on larger schemas.
This behaviour can be explained by the matching algorithms
used by BtreeMatch. Indeed, it is based on both termino-
logical and structural techniques, like Similarity Flooding.
Thus, it seems that the structural algorithms are able to
match large schemas while ensuring an acceptable quality.

8.5 Performance evaluation

Person University Order Biology
S1 S2 S1 S2 S1 S2 S1 S2
11 10 18 18 20 844 719 80

COMA++ ≤ 1 s ≤ 1 s 3 s 4 s
PORSCHE ≤ 1 s ≤ 1 s ≤ 1 s ≤ 1 s
SF ≤ 1 s ≤ 1 s 2 s 4 s
BtreeMatch ≤ 1 s ≤ 1 s ≤ 1 s 2 s

Table 2: Matching performance on the different sce-
narii.

Table 2 depicts the matching performances of each match-
ing tool on the evaluation scenarii. All matchers are able to
match the small schemas in less than one second. However,
when one schema from the scenario is large, COMA++ and
Similarity Flooding are less efficient. Similarity Flooding
propagates until it reaches a fixpoint computation, involv-
ing this process to take more time. On the other hand,
PORSCHE, which has been designed to match many large
schemas, do not have decreasing performances with schemas
up to 800 nodes.

8.6 Discussion.
These experiments show that some matchers are best suited

for some scenarii. For example, COMA++ and PORSCHE

Figure 10: BTreeMatch quality of the mappings

generate integrated schemas with an acceptable quality on
small schemas. Similarity Flooding seems to be more quality
oriented when the external similarity oracle is not available
and the match decision is more structure oriented. Based
on the versatility of the state of the art of schema matching
tools, we require more experimentations with our bench-
mark tool. This will enable us to classify the current tools
for different domains and matching activities (matching, in-
tegration, ...). Thus converting our benchmark into a handy
tool for both naive and domain expert users.

9. RELATED WORK

9.1 Tentative for Benchmarking Schema Mat-
ching Tools

To the best of our knowledge, there is no complete bench-
mark for schema matching tools. In [8], the authors present
an evaluation of schema matching tools. The main criteria
required to reach this goal are discussed. A summary of the
capabilities of each matching tool is finally provided. How-
ever, as the authors explained, it is quite difficult to evaluate
the matching tools for several reasons: they are not always
available as a demo. Therefore, it is not possible to test
them against specific sets of schemas. Some require spe-
cific resources to be efficient, like an ontology or a thesauri,
which are not always available. Finally some matching tools
take as input specific files, for example Rondo. This evalua-
tion suffers from two drawbacks, not mentioning the fact it
was published 5 years ago: by evaluating the matching tools
with the scenarios provided in their respective papers, one
cannot judge efficiently on the capabilities of each matching
tool. Secondly, some matching tools generate an integrated
schema instead of a set of mappings, and the measures pro-
vided to evaluate a set of mappings are not sufficient to
evaluate the quality of an integrated schema.

A proposal for evaluating on schema matching has been
done in [28]. It extends [8] by adding time measures and

relies on real-world schemas to evaluate the matching tools.
The input is limited to a set of mappings while some match-
ers provide a more interesting output by building an inte-
grated schema. Moreover, the evaluation system has not
been implemented. In contrast to our work, this system is
not available and is not extensible.
Our work extends the criteria list provided in [8], by adding
some measures to evaluate the quality of integrated schemas.
It goes further on the evaluation aspect. Indeed all the
matching tools are evaluated against the same scenarios,
thus involving a better and more thorough comparison.

9.2 Schema Matching Tools
In this section we review works classified under the schema

matching. The surveys [22, 25, 28] incorporate solutions
from schema level (metadata), as well as instance level (data)
research, including both Database and Artificial Intelligence
domains. Most of the methods discussed in these surveys
compare two schemas (with or without their data instances)
and work out quality matching for the elements of schema 1
to the schema 2. Some of the tools also suggest the merging
process of the schemas based on the matching found in first
step. Here we present the main schema matching namely
the one we have tested with our benchmark.

TRANSCM [20] objective is to transform instances of
source schema into target schema. It can have input schemas
as DTD or OODB. Internally the schemas are converted into
labeled trees and the match process is performed node by
node in the top-down manner. TRANSCM presumes a high
degree of similarity between the two schemas. TRANSCM
supports a number of matchers (rules), to find correspon-
dences between schema nodes. Each rule may in turn com-
bine multiple match criteria, e.g. name similarity and the
number of descendants. The rules are assigned distinct pri-
orities and applied in a fixed order. If more than one target
elements are found as possible match, user interaction is re-
quired to select the match. And in case no match is found
user is allowed to apply a new rule to find a match.

DIKE [21] prototype implements a hybrid approach to au-
tomatically find synonymy, hypernymy and homonym cor-
respondences between elements of Entity-Relationship (ER)
schemas. User specific set of synonyms, hypernym and homo-
nym are utilized, constructed by some expert or using some
thesauri. Other then the linguistic and syntactic compari-
son, the main algorithm is a structural matcher, which per-
forms a pair-wise comparison of elements from the input
schemas. The weight of similarity between two elements is
increased, if the algorithm finds some similarity between the
related elements of the pair of elements.

CUPID [18] is a generic, hybrid schema matching proto-
type, consisting of a name matcher and a structural one. It
has been used for XML and relational schemas. Internally,
schemas are converted into trees, in which additional nodes
are added to resolve the multiple/ recursive relationships
between a shared node and its parent nodes. First, linguis-
tic similarity of pair of nodes is calculated using external
oracles of synonyms and abbreviations. Then the structural
matcher is applied on the tree structures in post order man-
ner. This technique gives similarity possibilities for non-leaf
nodes, depending upon the similarity of their leaves. For

each pair of nodes, their linguistic and structural similar-
ity are aggregated to a weighted similarity using a weighted
sum. If the weighted similarity exceeds a threshold, the
structural similarity of the leaf pairs is increased. Other-
wise, it is decreased. For each source element, CUPID se-
lects the target element with the highest weighted similarity
exceeding a given threshold as the match candidate.

Similarity Flooding [19] have been used with Relational,
RDF and XML schemas. These schemas are initially con-
verted into labeled graphs and SF approach uses fix-point
computation to determine correspondences of 1:1 local and
m:n global cardinality between corresponding nodes of the
graphs. The algorithm has been implemented as a hybrid
matcher, in combination with a name matcher based on
string comparisons. First, the prototype does an initial
element-level name mapping, and then feeds these mappings
to the structural SF matcher. The weight of similarity be-
tween two elements is increased, if the algorithm finds some
similarity between the related elements of the pair of ele-
ments. In a modular architecture, the components of rondo,
such as schema converters, the name and structural match-
ers, and filters, are available as high-level operators and can
be flexibly combined within a script for a tailored match
operation.

PROTOPLASM [6] target is to provide a flexible and a
customizable framework for combining different match algo-
rithms. Present CUPID and Similarity flooding are being
used as the base matchers it. SQL and XML schemas, con-
verted into graphs internally, have been successfully matched.
PROTOPLASM supports various operators for computing,
aggregating, and filtering similarity matrices. Using a script
language, it allows flexibly defining and customizing the
work flow of the match operators.

COMA/COMA++ [1, 9] is a generic, composite matcher
with very effective match results. It uses the same archi-
tecture like that of Protoplasm but its range of match al-
gorithms is more complete. It can process the relational,
XML, RDF schemas as well as ontologies. Internally it con-
verts the input schemas as trees for structural matching. For
linguistic matching it utilizes a user defined synonym and
abbreviation tables like CUPID, along with n-gram name
matchers. Similarity of pairs of elements is calculated into a
similarity matrix. At present it uses 17 element level match-
ers. For each source element, elements with similarity higher
then than threshold are displayed to the user for final selec-
tion. The COMA++ supports a number of other features
like merging, saving and aggregating match results of two
schemas.

S-MATCH/S-MATCH++ [2, 14] takes two directed acyclic
graphs like structures e.g. XML schemas or ontologies and
returns equivalence, subsumption type correspondences be-
tween pairs of elements. It uses external oracle Wordnet
to evaluate the linguistic matching along with its structural
matcher to return a subsumption type match. It is also
heavily dependent on SAT solvers, which decreases its time
efficiency. At present it uses 13 element-level matchers and
3 structural level matchers.

Smiljanic et al. work, [26] shows how personal schema for

querying, can be efficiently matched and mapped to a large
repository of related XML schemas. The method identi-
fies fragments with in each schema of the repository, which
will best match to the input personal schema, thus mini-
mizing the target search space. The prototype implementa-
tion, called bellflower, uses k-means data mining algorithm
as the clustering algorithm. The authors also demonstrate
that this work can be implemented as an intermediate phase
with in the framework of existing matching systems. The
technique does produce efficient system but with some re-
duction in effectiveness.

Porsche [23] utilizes tree mining technique to cluster and
holistically match and merge large number of schemas (rep-
resented as trees). It gives approximate matchings and gen-
erates an integrated schema with mappings from source sche-
mas to this integrated schema. It has been devised to cater
the quality as well as the performance element for large scale
scenarios using domain specific linguistic matching (domain
specific synonym and abbreviation oracles). It works in
three steps. First, in the pre-mapping part, schema trees
are input to the system as a stream of XML and calculate
the scope and node number for each of the nodes in the
input schema trees. Other statistics like each schema size,
maximum depth and node parent are also calculated. A
listing of nodes and a list of distinct labels for each tree is
constructed. Next, a linguistic matcher identifies semanti-
cally distinct node labels in the labels list. The user can set
the level of similarity of labels as A) Label String Equiv-
alence, B) Label Token Set Equivalence (abbreviation ta-
ble)and C) Label Synonym Token Set Equivalence(synonym
table). Then Porsche derives the meaning for each individ-
ual token and combines these meanings to form a label con-
cept. Finally, similar labels are clustered together. Since
each input node remains attached to the its label object,
this intuitively forms similar label nodes clusters within
a certain schema.

BtreeMatch [11] approach uses the B-tree as the main
structure to locate matches and create mappings between
XML tree structures. The advantage of searching for map-
pings using the B-tree approach is that B-tree have indexes
that significantly accelerate this process. For example, let
us consider two schemas S1 and S1 with respectively 8 and
9 elements. Matching these schemas will entail 2 matching
possibilities with an algorithm that tries all combinations.
By indexing in a B-tree, we are able to reduce this number
of matching possibilities, thus involving better performance.
BtreeMatch does not use a matrix to compute the similar-
ity of each couple of elements. Instead, a B-tree, whose
indexes represent tokens, is built and enriched as we parse
new schemas, and the discovered mappings are also stored
in this structure. The tokens reference all labels which con-
tains it. For each input XML schema, the same algorithm
is applied: the schema is parsed element by element by pre-
order traversal. This enables to compute the context vector
of each element. The label is split into tokens. We then
fetch each of those tokens in the B-tree, resulting in two
possibilities:

• no token is found, so we just add it in the B-tree with
a reference to the label.

• or the token already exists in the B-tree, in which case

we try to find semantic similarities between the current
label and the ones referenced by the existing token.
We assume that in most cases, similar labels have a
common token (and if not, they may be discovered
with the context similarity).

9.3 Data Instance Based Schema Matching
In this section we consider some recent prototypes, which

use schema instance data and machine learning techniques
to find possible matches between two schemas. Theses match-
ers compute all possible match or mismatch possibilities
among the attributes of the two source schemas to come
up with best results.

AUTOMATCH [4] is the predecessor of AUTOPLEX [3].
It uses single strategy, machine learning match technique. It
explicitly uses Naive Bayesian algorithm to analyse the in-
put instances of relational schemas fields against previously
built global schema. The match result consists of 1:1 corre-
spondences and global cardinality.

CLIO [16] has been developed at IBM. It has comprehen-
sive GUI interface and provides matching for XML and SQL
schemas. It uses a hybrid approach, combining approximate
string matcher for element names and Naive Bayes-learning
algorithm for exploiting instance data. It also facilitates in
producing transformation queries (SQL, XQuery, or XSLT)
from source to target schemas, depending upon the com-
puted mappings.

LSD [10] is a composite matcher. It requires an already
developed global schema, against which newer schemas and
their data instances are matched. LSD uses machine learn-
ing algorithms for in matching as well as in summing up
the match results for each pair of attribute comparisons.
LSD has been further utilized in Corpus-based Matching
[17] , which creates a CORPUS of existing schema and their
matches. In this work, input schemas are first compared
to schemas in the corpus before they are compared to each
other. Another extension based on LSD is IMAP [7]. Here
the authors utilize LSD to find 1:1 and n:m mapping among
relational schemas. It provides a new set of machine-learning
based matchers for specific types of complex matchings e.g.
name is a concatenation of firstname and lastname. It also
provides the information about the prediction criteria for a
match or mismatch.

10. CONCLUSION
In this paper, we present a benchmark for XML schema

matching tools. Our approach is focusing on the evaluation
of the matching tools in terms of matching quality and per-
formance. Our work extends the criteria provided in [8] by
adding new scoring functions which evaluate the quality of
integrated schemas and extends the evaluation methodology.
Indeed, in XBenchMatch all the matching tools are evalu-
ated against the same scenario, and produce an improved ob-
jective comparison. Next, we also aim at giving an overview
of a matching tool by analysing its features and deducing
some criteria it might fulfill. This should help an end-user
to choose among the available matching tools depending on
his requirements. Finally, we Furthermore, we provide a
testbed involving a large schema corpus that can be used by
everyone to quickly benchmark new matching algorithms.

We are planing to extend our experiments to CUPID pro-
totype and other matching tools if they are available. We
also plan to include evaluation about the scalability. This
does not require any extension of our benchmark. We only
require to manually generate an expert schema for a large
number of input schemas to be matched.

11. ACKNOWLEDGMENTS
The authors would like to thank all the researchers who

made available their schema matching tools.

12. REFERENCES

[1] D. Aumueller, H. H. Do, S. Massmann, and E. Rahm.
Schema and ontology matching with coma++. In
ACM SIGMOD Conference, DEMO paper, pages
906–908, 2005.

[2] P. Avesani, F. Giunchiglia, and M. Yatskevich. A large
scale taxonomy mapping evaluation. In ISWC
Conference, pages 67–81, 2005.

[3] J. Berlin and A. Motro. Automated discovery of
contents for virtual databases. In CoopIS Conference,
pages 108–122, 2001.

[4] J. Berlin and A. Motro. Database schema matching
using machine learning with feature selection. In
CAiSE Conference, 2002.

[5] P. A. Bernstein. Applying model management to
classical meta data problems. In CIDR Conference,
2003.

[6] P. A. Bernstein, S. Melnik, M. Petropoulos, and
C. Quix. Industrial-strength schema matching.
SIGMOD Record, 33(4):38–43, 2004.

[7] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. imap: Discovering complex semantic
matches between database schemas. In ACM
SIGMOD Conference, 2004.

[8] H. H. Do, S. Melnik, and E. Rahm. Comparison of
schema matching evaluations. In IWWD Conferenc,
2003.

[9] H. H. Do and E. Rahm. Coma - a system for flexible
combination of schema matching approaches. In
VLDB Conference, pages 610–621, 2002.

[10] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
schemas of disparate data sources - a machine learning
approach. In IACM SIGMOD Conference, 2001.

[11] F. Duchateau, Z. Bellahsene, M. Roantree, and
M. Roche. An indexing structure for automatic
schema matching. In SMDB Workshop ICDE, 2007.

[12] F. Duchateau, Z. Bellahséne, and M. Roche. A
context-based measure for discovering approximate
semantic matching between schema elements. In IEEE
RCIS Conference, 2007.

[13] A. Gangemi, N. Guarino, C. Masolo, and
A. Oltramari. Sweetening wordnet with dolce. AI
Magzine, 24(3):13–24, 2003.

[14] F. Giunchiglia, P. Shvaiko, and M. Yatskevich.
S-match: an algorithm and an implementation of
semantic matching. In ESWS Conference, 2004.

[15] J. Hammer, M. Stonebraker, and O. Topsakal. Thalia:
Test harness for the assessment of legacy information

integration approaches. In ICDE Conference, pages
485–486, 2005.

[16] M. A. Hernedez, R. J. Miller, and L. M. Haas. Clio: A
semi-automatic tool for schema mapping (software
demonstration). In ACM SIGMOD Conference, 2002.

[17] J. Madhavan, P. A. Bernstein, A. Doan, and A. Y.
Halevy. Corpus-based schema matching. In ICDE
Conference, pages 57–68, 2005.

[18] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic
schema matching with cupid. In VLDB Conference,
pages 49–58, 2001.

[19] S. Melnik, H. G. Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm and its
application to schema matching. In ICDE Conference,
2002.

[20] T. Milo and S. Zohar. Using schema matching to
simplify heterogeneous data translation. In VLDB
Conference, pages 122–133, 1998.

[21] L. Palopoli, G. Terracina, and D. Ursino. The system
dike: Towards the semi-automatic synthesis of
cooperative information systems and data warehouses.
In ADBIS-DASFAA Symposium, pages 108–117, 2000.

[22] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB J.,
10(4):334–350, 2001.

[23] K. Saleem and Z. Bellahséne. Scalable large scale
schema matching. In DECOR Workshop on Semantic
Matching, EGC’07, 2007.

[24] K. Saleem, Z. Bellahsene, and E. Hunt. Porsche:
Performance oriented schema matching. Technical
Report RR-06055, Laboratoire d’Informatique, de
Robotique et de Microelectronique de Montpellier
(LIRMM), 2006.

[25] P. Shvaiko and J. Euzenat. A survey of schema-based
matching approaches. J. Data Semantics IV, pages
146–171, 2005.

[26] M. Smiljanic, M. van Keulen, and W. Jonker. Using
element clustering to increase the efficiency of xml
schema matching. In Workshop ICDE, 2006.

[27] C. Van-Risbergen. Information Retrieval. 2nd edition,
London, Butterworths, 1979.

[28] M. Yatskevich. Preliminary evaluation of schema
matching systems. Technical Report DIT-03-028,
Informatica e Telecomunicazioni, University of Trento,
2003.

