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Abstract

We provide an example of a 5-chromatic oriented graph D such that the categorical product of D
and T'Ts is 3-chromatic, where T'T5 is the transitive tournament on 5 vertices.

The transitive tournament 7T} is the digraph on the vertex set {1,2,3,4,5} and edge set {(i,5) : i <
j}. Let Dy = (V4, Eq) and Dy = (Va, E3) be two digraphs. The categorical product of D, and Dy is the
digraph D; x Dy = (V4 x Vi, E) where E = {((z,y), (2,t)) : (z,2) € By and (y,t) € E2}. Motivated by
Hedetniemi’s conjecture (see Sauer [5] for a survey), the following function was defined:

d(n) := min{x(D1 x D3) : x(D1) = x(D2) =n and Dy,D, € D}

where D is the class of finite digraphs and x(D) is the chromatic number of D. The first striking result
concerning this function was proved by Poljak and Rddl [4]: either § is bounded by 4 or it tends to
infinity. Later on, Poljak [3], and independently Zhu [6] proved that 4 can be replaced by 3. When § is
restricted to undirected graphs, Hedetniemi [2] conjectured that §(n) = n. El-Zahar and Sauer proved
in [1] that 6(4) = 4 for undirected graphs. For directed graphs, it is known that 6(4) = §(3) = 3.

Theorem 1 §(5) =3

Proof. The oriented graph D depicted in Fig. 1 is 5-chromatic. Observe for this that the twelve vertices
with degree 8 induce a graph G which is uniquely 4 colorable up to a rotation. Indeed the stability of G
is 3 and the color classes must consist of three consecutive vertices in the cyclic order. Now, one of the
three vertices with degree 4 has to have one neighbour in each of the four color classes. Thus D is not
4-colorable. The 3-coloration f of D xTTj is given by the label of the vertices of D: when a vertex z of D
is labelled by c®a?, for instance, we mean that f(z,1) = ¢, f(z,2) = ¢, f(z,3) = ¢, f(z,4) = a, f(z,5) = a.
To see that f is a good coloration, note that when there is an edge from z to y (both seen as words of
length 5 on the alphabet {a,b,c}), the i*? letter of z is not equal to the j*® letter of y for every j > i. O
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This example is a subgraph of the graph K77® which has chromatic number 5 (this is not hard to
check). A short analysis also gives that x(K2™*) = 6 and x(K1 ™) =4 for all k > 5. We were not able
to find an infinite family of 5-chromatic digraphs (Dy, D3) such that x(D; x D3) = 3.
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