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1 Introduction

This paper presents some recent works on hardware
evaluation of functions. A method for the automatic
generation of high-performance arithmetic operators based
on polynomial approximations is described. Some parts of
this paper have been presented by Michard et al. (2006)
and Tisserand (2006).

The design of high-performance arithmetic operators is
an important issue in Application Specific Integrated Circuits
(ASICs), Systems on Chip (SoCs) and Field Programmable
Gate Arrays (FPGAs) implementations. Basic operations
such as addition/subtraction or multiplication have always
been implemented as high-performance operators in digital
circuits (see Ercegovac and Lang, 2003). Some recent
applications require fast evaluation of more complex
operations such as division, reciprocal, square-root,
inverse square-root, trigonometric functions, logarithm or
exponential. Evaluation of compositions of such functions
is also required.

Function approximation is often performed using
polynomial evaluation in software as well as in hardware
implementations. For instance, elementary functions

(sine, cosine, exponential, logarithm, arc-tangent, etc.)
are often evaluated using polynomials (see Muller, 2006).
In some digital-signal processing applications, such as
frequency demodulation, low degree polynomials are often
used for evaluating reciprocals. Other algebraic functions,
such as square root or square root reciprocal can be efficiently
approximated using polynomials.

In this paper, a method that produces polynomial
approximations ‘well-suited’for high-performance hardware
implementations is described. It faces with two problems:
the generation of the polynomial coefficients that
ensure low approximation errors and the sizing of
intermediate computations that provide low round-off errors.
The complete method has been implemented as an automatic
code generator. The generated operators are small and fast.
They are also numerically validated at compile time. The
method determines the maximum total error (approximation
and round-off) possible for each generated operator and set
of parameter.

This paper is organised as follows. Notations and
background on function approximation are presented in
Section 2. Previous works are summarised in Section 3.
The generation method is described in Section 4. Section 5
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illustrates the method on several examples implemented on
FPGAs. Section 6 concludes this paper.

2 Notations and background

The target function is f with input and output in
fixed-point format (2’s complement notation). The function
f is approximated using the degree-d polynomial p.
The argument x is in the domain [a, b] and the result
p(x) is in the range [a′, b′]. Extension to other forms
of input/output intervals such as [a, b] is straightforward
and is not considered here. Here, we consider function
evaluation without range reduction (see Muller, 2006). The
generation method below can be used in more complex
schemes including range reduction. The argument x is a
wI -bit number and the output p(x) is a wO-bit number.
The input argument x is considered as exact. The position
of the binary point (i.e. the number of integer bits) is fixed
by the format of the smallest representation that include both
a and b. The number of fractional bits will be computed
by the generation method to fit the target accuracy
requirements. The polynomial coefficients are denoted p0,
p1, p2, …, pd , then p(x) = ∑d

i=0 pix
i . The polynomial

coefficients are represented using 2’s complement or
borrow-save notation (see below). Basic notations are
summarised in Figure 1.

Figure 1 Operator notations

operator

x

p(x) ≈ f(x)

wI

wO

Several evaluation schemes may be used to compute the value
p(x) in practice. In this work we only consider the direct and
Horner evaluation schemes:

p(x) =
{

p0 + p1x + p2x
2 + · · · + pdx

d direct

p0 + x (p1 + x (p2 + x(· · · + xpd) · · · )) Horner

The Horner scheme is implemented using basic blocks called
Fused Multiply and Adds (FMAs). A FMA computes uv+w

with more or less the same cost (delay and circuit area) than
a single multiplication uv. The evaluation schemes differ
on several aspects: computation cost, internal parallelism
and accuracy. The direct scheme leads to a cost of d

additions and d + �log2 d� multiplications while the Horner
scheme only requires d additions and d multiplications. The
Horner scheme is a sequential structure while the direct
scheme allows some internal parallelism (at the monomial
level). From the accuracy point of view, the Horner scheme
is known to be slightly more accurate than the direct
scheme (see Higham (2002) for the accuracy analysis in
scientific computing applications). Our results also show
that the Horner is slightly more accurate than the direct one
(see Section 5).

The numerical quality of the approximation to f using the
polynomial p deals with two components: the approximation
error and the round-off error. The approximation error

measures the distance between the mathematical function f

and the function used for the approximation, here the
polynomial p. The approximation error is also called
the method error. In order to measure the theoretical
approximation error εapp due to the use of the polynomial p

to approximate the function f on [a, b], we use the distance:

εapp = ‖f − p‖∞ = max
a≤x≤b

|f (x)− p(x)| (1)

Here, the value p(x) is the mathematical value computed
using an infinite precision. The approximation error εapp is
the smallest theoretical error that can be obtained using the
polynomial p for approximating f . Due to the finite precision
of the coefficients and intermediate computations during the
practical evaluation of p, we will have to deal with larger
errors. In this work, the value of εapp is numerically estimated
using the Maple infnorm command. We assume that the
approximated functions are ‘smooth’ enough to ensure that
infnorm result is correct (see Muller, 2006). Furthermore, we
will use overestimations of εapp to ensure that the generated
operators fit the target accuracy.

The polynomial approximations used in the following are
based on the minimax polynomial approximation as a starting
point. The degree-d minimax polynomial approximation to
f on [a, b] is the polynomial p∗ that satisfies:

‖f − p∗‖∞ = min
p∈Pd

‖f − p‖∞ (2)

where Pd is the set of polynomials with real coefficients
and degree at most d. Minimax approximations can be
computed thanks to an algorithm due to Remes (1934).
More details about minimax approximations may be found
by Muller (2006). In this work, the minimax polynomials are
numerically computed using the Maple minimax command.

The round-off error or rounding error due to the
discrete nature of the intermediate and final values adds
up to the approximation error. It is the difference
between the calculated approximation of a number and
its exact mathematical value. This error is small for one
single operation, that is a fraction of the weight of the
Least Significant Bit (LSB). But during a sequence of
operations, these small errors may accumulate themselves
and significantly degrade the accuracy of the final result.
In order to limit the rounding error, we introduce g additional
guard bits for the intermediate computations (i.e. they are
done on words of wO + g bits).

In the following, errors are expressed directly or as
equivalent accuracy. The accuracy is the number of correct
or significant bits. The relation between the error ε and
the accuracy µ is µ = − log2 |ε|. For instance, the error
ε = 0.0000107 is equivalent to an accuracy of µ = 16.5
correct or significant bits.

The notation ()2 denotes the binary representation of a
value, for example, 3.125 = (11.001)2. The polynomial
coefficients will be represented in the borrow-save format
(see Ercegovac and Lang, 2003), that is radix-2 redundant
representation with the digit set {−1, 0, 1}. Borrow-save
representation is denoted ()bs. Bits with a negative weight
are denoted by 1. In the borrow-save fixed-point format with
k integer bits and l fractional bits, values are represented by∑k

i=−l vi2i with vi ∈ {1, 0, 1}. This representation avoids
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long strings of ones, for example, 63.0 = (1000001.0)bs

(see Ercegovac and Lang (2003) for examples of such
representations in multipliers or other arithmetic operators).
As we deal with hardware implementations, multiplications
by powers of 2 reduce to shifts (only routing).

3 Previous works

A wide variety of algorithms for the approximation
of functions has been proposed. Among them table
based methods (Section 3.1), polynomial or rational
approximations (Section 3.2), digit-recurrence algorithms
(Section 3.3) and combinations of these solutions are the
most commonly used. This section presents some of the main
previous works on arithmetic operators dedicated to function
approximation in hardware. More detailed presentations
may be found by Ercegovac and Lang (2003) for computer
arithmetic and by Muller (2006) and Markstein (2000) for
elementary functions evaluation algorithms. In Section 3.4,
this section ends with some methods and tools proposed
to bound the total error (approximation and round-off) in
arithmetic operators.

3.1 Table based methods

One of the first methods proposed to approximate functions
was to tabulate the values of the target function for each
possible input. Obviously, this solution is very limited due
to the exponential size of the table: 2wI words of wO bits.
In practice the maximum number of address bits of the table
wI is in the range 8–12 depending on the technology.

Table-based methods are frequently used in FPGAs
because these devices are very well suited for the
implementation of tables as they are composed on small
programmable memories. For instance, Xilinx FPGAs are
based on basic cells composed of two 4 input bits Lookup
Table (LUTs) and some programmable logical resources.
Those LUTs can be used to implement arbitrary logic
functions or very small memories.

Higher accuracies can be reached by combining
tables and arithmetic operations. Architectures based on
tables and additions/subtractions are very common for
function approximation (see de Dinechin and Tisserand
(2005) for a small survey on table-and-addition methods).
The bipartite method uses two tables and only one final
addition as illustrated on Figure 2.

Figure 2 Bipartite method architecture

x1 x2 x3x =

T1 T2

+

≈ f(x)

The bipartite method uses a decomposition of x into
3 subwordsx1, x2 andx3 of lengthw1, w2 andw3, respectively
such that wI = w1 + w2 + w3. The domain of x is

decomposed into 2w1 intervals. On each interval the function
is approximated by 2w2 affine segments with a constant slope.
Table T1 stores the initial value for each segment and table
T2 stores the offset to the initial value for each point of the
segments (there are 2w3 points per segment).

The bipartite table method leads to tables with a total of
only 22wI /3 address bits compared to the 2wI address bits
of the single table solution. The authors from Muller (1999)
and Stine and Schulte (1999) have expressed the bipartite
method in terms of Taylor approximation, which allows a
formal error analysis. Some optimisations are possible at the
architecture level. For instance in Schulte and Stine (1999),
the authors have remarked that it is possible to exploit the
symmetry of the segments on each small interval to halve the
size of table T2 using some additional XOR gates.

The bipartite table method has been extended to a number
of tables larger than 2, it is called the multipartite method.
It uses several tables looked-up in parallel and final addition
of the all tables’ contributions as illustrated on Figure 3.
Multipartite table methods have been the subject of much
recent attention (de Dinechin and Tisserand, 2005; Muller,
1999; Schulte and Stine, 1999; Stine and Schulte, 1999).
They allow computing commonly used functions with low
accuracy (up to 24 bits) with significantly lower hardware
cost than that of a straightforward table implementation,
while being faster than digit-recurrence algorithms or basic
polynomial approximations.

Figure 3 Multipartite method architecture for three tables

x1 x2 x3 x4x =

T1 T2 T3

+

≈ f(x)

Tables are also use to provide initial seeds to iterative
methods such as the Newton-Raphson algorithm for division
and square root which is commonly used in floating-point
units of current processors (see Ercegovac et al., 2005).
Other solutions propose to perform some precomputations,
several parallel table lookups and a final large addition as in
Wong and Goto (1995).

3.2 Polynomial or rational approximations

The main drawback of table based methods is the fact
that the tables are dedicated to only one specific function.
Sharing tables among several functions is not possible in
practice. Some ‘compression’ is possible at the logical level,
but the gain is very limited. Using polynomial or rational
approximations, the basic operators (mainly adders and
multipliers) required for the evaluation can be shared or
reused. Indeed, one just needs to change the coefficients to
perform an approximation to another function or to the same
function but with a different domain. Based on this property,
function approximation in software is often performed using
polynomial or rational approximations (see Muller (2006) for
a complete presentation).
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Rational approximations are not frequently used in
hardware due to the high latency of the final division.
Some methods have been proposed to limit the cost of
the final division. As an example in Ercegovac et al.
(1995), rational approximations are evaluated using a
digit-recurrence algorithm based on the E-method. In this
work, we only deal with polynomial approximations.

Polynomial approximations are used in hardware since a
long time (e.g. Burleson, 1990; Duprat and Muller, 1988).
In hardware implementation, the size of the multipliers is
a major concern. Several solutions have been investigated
to limit their sise. In Pineiro et al. (2001) a method based
on a degree-2 polynomial and a specialised squaring unit is
proposed. This solution leads to 50% area savings compared
to standard methods.

Several solutions based on modifications of polynomial
approximations have been proposed in the literature.
Weighted sum methods are examples of such modifications
(see Hassler and Takagi, 1995; Johansson et al., 2006). The
coefficients of the polynomial are distributed at the bit level.
Thus, the polynomial is rewritten as the sum of a huge set of
weighted products of the bits of x. Some of these terms are
neglected. This method leads to interesting practical results
for some functions.

Polynomial approximations are also combined with
tables. A lot of methods based on this combination have
been proposed. A method based on tables and a single
multiplication is proposed by Detrey and de Dinechin (2004).
In Ercegovac et al. (2000) a method based on argument
reduction and series expansions is used for the evaluation
of reciprocals, square roots, reciprocal square roots and
some elementary functions using small multipliers and tables.
A recent method based on polynomials and tables is proposed
by Detrey and de Dinechin (2005).

We will see below that the determination of polynomials
with coefficients exactly representable in the target format
is one of the main problems in the implementation of
polynomial approximations. A general but quite slow method
dedicated to this problem is proposed by Brisebarre et al.
(2006). This method has been used by Brisebarre et al.
(2004) for the automatic generation of best polynomial
approximations dedicated to hardware implementation. The
generated polynomial approximations lead to high-speed
and small hardware operators because of the use of sparse
coefficients (i.e. they include fixed strings of zeros in the
binary representation of the coefficients).

3.3 Digit-recurrence algorithms

Digit-recurrence algorithms, also called shift-and-add
algorithms, produce one digit of the result every iteration
starting from the Most Significant Digit (MSD). For instance
when computing the division x/y, the paper and pencil
method gives one decimal digit per iteration. A complete
presentation of this kind of algorithm may be found
in Ercegovac and Lang (2003) for division and square root
operations. In Flynn and Oberman (2001) high-performance
implementations of these algorithms are presented in the
context of floating-point units.

Those algorithms seem to be simple at a very high level,
but their practical implementation is not straightforward as

it is demonstrated by the numerous works on this topic
over the years. Some small mistakes can occur in the
numerous equations and bounds computed during their
optimisation. For instance the Pentium division unit has
some small errors in a small selection table (see Edelman,
1997). The two most well known digit-recurrence algorithms
are: the SRT algorithm for division, square root and other
algebraic functions and the Coordinate Rotations on a Digital
Computer (CORDIC) algorithm for elementary functions.

The SRT algorithm was invented independently by
Sweeney, Robertson and Tocher at around the same time
(see Robertson, 1958; Tocher, 1958). This algorithm leads
to a small number of iterations using a high radix. It uses
a redundant number system for the result digits produced
at each iteration. This allows correcting some small errors
from previous iterations due to the reduced internal precision.
The combination of a redundant number system and reduced
precision leads to very fast iterations. Many variations of
these algorithms exist and it is very difficult to decide
which one is best suited with respect to some constraints.
Divgen is a fixed-point divider unit generator designed to
explore the design space (see Michard et al., 2005). Given
a set of parameters and options, it automatically generates
an optimised VHDL description of the corresponding divider
operator for some specific implementation target constraints.

Several digit-recurrence hardware operators have been
developed in the past for more complex algebraic functions.
For instance a reciprocal square root operator is presented
by Takagi (2001). The case of an operator dedicated to
the computation of the Euclidean norm of a 3D vector is
presented by Takagi and Kuwahara (2000).

The CORDIC algorithm was introduced by Volder (1959)
and extended by Walther (1971). It only uses additions and
shift to approximate some elementary functions. Then it
only produces one new digit of the result at each iteration.
This algorithm is very well suited for low-area hardware
implementations due the very simple resources required
during the computation. For instance, it was used in some
HP pocket calculators. A complete description of this
algorithm and its numerous variations can be found by Muller
(2006).

3.4 Errors bounds

We have seen in Section 2 that two kinds of error occur during
the evaluation of a polynomial in a digital integrated circuit
(processor,ASIC, SoC, FPGA, etc.). The approximation error
due to the mathematical quality of the approximation and the
round-off error due the finite precision computations.

One can deal with the approximation error by using more
accurate approximations. This mainly corresponds to use
higher degree minimax polynomials. In practice bounding
the approximation error is not really difficult using tools such
as the numapprox package in Maple.

But bounding the round-off error is a very complex task.
This problem leads to a very active research field during
the last years. In digital-signal processing some methods have
been proposed to model round-off errors using noise
(see Ménard and Sentieys, 2002). In scientific computing
several tools have been developed for floating-point
arithmetic. As an example, FLUCTUAT, presented by
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Goubault et al. (2006) is a static code analyser which allows
detecting some accuracy degradation in floating-point codes.
The CADNA software, presented by Chesneaux et al. (2006),
implements a stochastic arithmetic in order to analyse the
average accuracy of floating-point programs (a fixed-point
version is under development).

The GAPPA software, presented by Melquiond (2006),
allows to evaluate and to produce a proof of mathematical
properties on numerical codes. The main useful characteristic
of GAPPA used in this work is its capability to tightly bound
round-off errors and prove these bounds are below some
threshold. GAPPA can generate a file for the Coq proof assistant
(see The Coq Development Team, 2004).

Figure 4 presents an example of GAPPA input for a
polynomial approximation to ex on the domain [1/2, 1].
All the computations are supposed to be performed on
10-bit fixed-point format with 1 integer bit (noted 1Q9). The
polynomial is

p(x) = 571

512
+ 275

512
x + 545

512
x2

Figure 4 GAPPA example

1 p0 = 571/512; p1 = 275/512; p2 = 545/512;
2 x = fixed <-9,dn>(Mx);
3 x2 fixed<-9,dn>= x * x;
4 p fixed <-9,dn>= p2 * x2 + p1 * x + p0;
5 Mp = p2 * (Mx*Mx) + p1 * Mx + p0;
6 {Mx in [0.5 ,1] /\ |Mp -Mf| in [0 ,0.001385]
7 -> |p-Mf| in ? }

The first line specifies the coefficients (exactly representable
in the target 1Q9 format). By convention in this work
variables starting by a capital M denote mathematical values
(with an infinite precision), all other variables denotes
actual values in the circuit (input/output or intermediate
registers). Line 2 specifies that x is the ‘circuit version’ of
the mathematical argument Mx. The notation fixed<-9,dn>
is a rounding mode declaration for fixed-point format with
a LSB weight of 2−9 and rounding direction set to down dn
(this is the standard truncation in the fixed-point format).
Line 3 specifies that the variable x2 is the circuit result
of the square x2. Line 4 describes how the polynomial
is computed in the circuit while line 5 describes its
mathematical computation (with an infinite precision because
there is no fixed<·,·> rounding mode). Lines 6 and
7 specify the target property (between { and }). The
left hand side of the sign -> is the assumption set.
Here there are two assumptions: x ∈ [1/2, 1] and
the fact that the approximation error is less 0.001385
(the approximation error is the distance between Mp
and Mf). The right hand side of the sign -> asks to GAPPA

in which interval (in ?) is the total error (the distance
between the evaluated polynomial p and the mathematical
function Mf). The total error includes both the approximation
error and the round-off error. The result from GAPPA (version
0.7.2) is:

Results for Mx in [0.5, 1] and |Mp - F|
in [0, 0.001385]: |p - F|

in [0, 232010635959353905b-64
{0.0125773, 2ˆ(-6.31303)}]

GAPPA recalls the assumptions and indicates that there is a
bound for |p − f | and the final accuracy is at least 6.31
correct bits.

In Figure 4, the polynomial is evaluated using the direct
scheme. Figure 5 presents the required modifications to
specify an evaluation using the Horner scheme. The final
accuracy is then 6.57 correct bits.

Figure 5 Modification of GAPPA example from Figure 4

3 y1 fixed<-9,dn>= p2 * x + p1;
4 p fixed <-9,dn>= y1 * x + p0;
5 Mp = (p2 * Mx + p1) * Mx + p0;

For a given argument x it is possible to measure the effective
total error ε = f (x) − output(p(x)) which includes
all kinds of error. Here, output(p(x)) is the result of
the evaluation of p(x) by the circuit using finite precision
computations. Indeed, for all possible values of x, the
effective result is evaluated and compared to the theoretical
value.

4 Generation method

The generation method described below has been presented
by Michard et al. (2006) and Tisserand (2006). It provides
an answer to two practical questions about implementation
of polynomial approximation. The first one is ‘What values
should be used for the implemented coefficients?’ The
second one is ‘What is the minimal size for the intermediate
computations?’ The generation method answers to the first
question using coefficients that ensure low approximation
errors and that are representable in the target format.
The answer to the second one is provided by the use
of intermediate computations with minimal size and that
provide low round-off errors.

As our method does not explore all the parameter space
corresponding to these two questions, the result may not be
optimal. At the theoretical point of view, the optimal result is
not known! In practice, the generation method provides very
good results as reported in Section 5.

The input parameters of the method are:

• f the function to be evaluated

• [a, b] the domain of the argument x

• the argument format x (size wI bits)

• µ the total maximal target absolute error (the
accuracy constraint).

The results from the method are:

• d the degree of the polynomial

• p0, p1, p2,…, pd the coefficients values (representable
in the target format)

• n the coefficient size

• n′ the data-path size.1



High-performance hardware operators for polynomial evaluation 19

The generation method consists in three main steps and an
optional step:

Step 1: Determination of the initial polynomial

Step 2: Coefficients optimisation

Step 3: Data-path optimisation

Step 4: Post-optimisations (optional).

Steps 1–4 are respectively described in Sections 4.1–4.4.
There may be no result produced by a given step or the
result is not considered ‘good enough’. Then it is necessary
to loop back to a previous step. This may lead to loops that are
discussed in Section 4.5. Finally, a summary of the method
is presented in Section 4.6.

4.1 Step 1: Determination of the initial polynomial

The first step defines a good starting point for the method.
We use a minimax polynomial as a starting point
(see Section 2) provided by the MAPLE minimax function.
We look for the minimax polynomial p∗ with the smallest
degree d and accurate enough to approximate f on [a, b]with
an error less than µ, that is, ε∗app < µ with ε∗app = ||f−p∗||∞.
We start with d = 1 and d is incremented until p∗ leads to
an approximation error ε∗app such that ε∗app < µ.

Below is an example with f = log2(x) and x in [1, 2]:

1 > minimax(log [2](x),x=1..2,[1,0],1,’err ’); -log [2]( err);
2 −.9570001094+1.000000000∗ x
3 4.537124583
4 > minimax(log [2](x),x=1..2,[2,0],1,’err ’); -log [2]( err);
5 −1.674903474+(2.024681754 − .3448476634∗ x )∗ x
6 7.659796889
7 > minimax(log [2](x),x=1..2,[3,0],1,’err ’); -log [2]( err);
8 −2.15362071+(3.04788416+( −1.05187503+.158248704∗ x )∗ x )∗ x
9 10.61615211

Lines 1, 4 and 7 are the user commands (the greater than
sign is the MAPLE prompt). Results are shown in italic. Line
1 means that we are looking for a degree-1 polynomial and
the approximation error ε∗app will be assigned to the variable
err. Lines 2 and 3 are the results: the polynomial p∗ and the
number of correct bits corresponding to ε∗app.

The first step provides:

• d the minimal degree of the approximation polynomial

• p∗(x) =∑d
i=0 p∗i xi the theoretical polynomial (real

coefficients)

• ε∗app the minimal theoretical error between the output of
the circuit and f (using infinite accuracy for the
coefficients and the computations).

The polynomial result p∗ will be modified in the next steps.
The next steps will degrade the accuracy (i.e. lead to errors
larger than ε∗app). Then some ‘margin’ between ε∗app and µ is
necessary as seen in the following sections.

In Section 5.2, we will see that some variable changes may
be useful in order to get values with similar magnitude order.
This will avoid some shifts in the fixed-point computations.
A standard modification occurs when evaluating f (x) over
[a, b]with a 	= 0, then it may interesting to consider f (x+a)

over [0, b−a]. Some functions cannot be approximated using
low degree polynomials, see (Muller, 2006, chap. 3) for the
elementary functions for instance.

4.2 Step 2: Coefficients optimisation

In this step, we look for the size n and the values pi of
the coefficients in the target format such that εapp < µ

where εapp = ||f − p||∞ and p(x) = ∑d
i=0 pix

i . Notice
that n may be smaller than the width of the target format.
As seen in Section 3.2 the choice of the coefficients is a
complex problem.

The proposed solution is based on an exploration over the
rounded coefficients. Each coefficient p∗i may be rounded
up pi = 
(p∗i ) or down pi = �(p∗i ). There are 2 choices
per coefficient, then 2d+1 different polynomials to test as
illustrated in Figure 6. For each possible polynomial p the
value εapp = ||f−p||∞ is evaluated using the infnorm MAPLE

function. In our applications d is small (d ≤ 6) then the total
exploration time is small.

Figure 6 Tested rounding modes for p∗ of degree d = 2
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We designed a MAPLE program that tests the 2d+1

polynomials corresponding to the different rounding modes
of the d + 1 coefficients p∗i . The program starts with n =
�− log2 |µ|�, tests all the rounding modes of the d + 1
coefficients for the current n size. If there are solutions (at
least one), that is, polynomials such that εapp < µ, it returns
the list of those polynomials for the next step (those where
εapp is minimal). If there is no solution then n is incremented
and all rounding modes tested.

In this step, we assume that all coefficients are represented
using the same size n. Some post-optimisations allow using
different sizes (see Section 4.4).

4.3 Step 3: Data-path optimisation

In this step, we look for the data-path size n′. Only two
polynomial evaluation schemes are supported in the method:
the direct and the Horner schemes (see Section 2). The idea
is very simple. We start with n′ = n and we check that the
data-path of size n′ fulfils the accuracy constraint µ using
GAPPA. If the total error bound computed by GAPPA is less than
µ then this step is finished. If not, the size n′ is incremented
and the new data-path should be tested using GAPPA.

The difference between n′ and n is called the number of
guard bits. Using a coefficient size n smaller than n′ allows a
reduction in the memory size required to store the coefficients
without degradation on the final accuracy.

4.4 Step 4: Post-optimisations (optional)

One kind of frequent post-optimisation is to simplify the
hardware when some coefficients are very close to power
of 2. As an example, if one coefficient from step 2 is
the value 0.5002441406 = (0.100000000001)2 and the
target accuracy µ is about 12 fractional bits, this coefficient
may be rounded to 0.5. In that case, the multiplication
by 0.5002441406 is replaced by a simple right shift
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(see Section 5.2 for a concrete example of this kind of
post-optimisation).

4.5 Loops

From a given step, it may be necessary to move back to
a previous step in some cases. For instance, there may
be no result from a given step or its result may not be
considered ‘good enough’. These possible loops correspond
to the dashed lines in the Figure 7.

Figure 7 Summary of the generation method
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As an example, the second step may not produce
representable coefficients that ensure εapp < µ. This case
is due to insufficient margin between ε∗app and µ in the first
step. In that case, one should move back to step 1 and try
with a higher degree polynomial (i.e. d ← d + 1).

Another standard loop occurs at step 3 when n′ is
considered too huge in front of n. In that case, it may be
more efficient to move back to step 2 and try a larger n.
By doing this, εapp will be smaller which leads to more margin
for round-off errors.

4.6 Summary of the method

The complete method is summarised in Figure 7. The
method has been implemented in a collection of MAPLE and
C++ programs.

5 Examples

The examples below have been implemented on Xilinx
FPGAs XCV200-5 using ISE8.1i tools. Synthesis and
place/route have been optimised for an area target with high
effort. The reported results include all the resources required
for the implementation (logic cells and registers).

5.1 Radix-2 exponential over [0, 1]
Here f (x) = 2x and x ∈ [0, 1]. The target accuracy is
12 bits, that is, µ = 2−12. We report the result from the
first step for the theoretical minimax polynomial for degrees
between 1 and 5. The corresponding accuracy is reported
below in number of correct bits.

d 1 2 3 4 5

ε∗app 4.53 8.65 13.18 18.04 23.15

Degree-1 and -2 theoretical minimax polynomials are
not accurate enough with respect to the 12-bit target
accuracy. Without the presented generation method a
degree-4 polynomial would be required assuming worst case
round-off error. Indeed for degree-3 one have 13.18 − d =
10.18 < 12 while for degree 4 one have 18.04 − d =
14.04 > 12. The values below represent all the rounding
modes for the degree-4 solution and their accuracy. One can
notice the large variation of the approximation errors for the
rounding modes of the theoretical coefficients from 11.41 to
17.12 bits of accuracy.
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Using the generation method we test the degree-3 solution.
In that case, the theoretical minimax polynomial is:

p∗(x) = 0.9998929656+ 0.6964573949x

+ 0.2243383647x2 + 0.0792042402x3

Then εapp = ||f −p∗||∞ = 0.0001070344, this corresponds
to 13.18 bits of accuracy (assuming infinite precision for the
coefficients and the computations). Due to the function, we
consider a fixed-point format with one integer bit and n− 1
fractional bits. We report below the results from step 2 for
several values of n− 1:

n−1 12 13 14 15 16

εapp 12.38 12.45 13.00 13.00 13.02

# step 2 results 0 0 2 2 7

For the solution n − 1 = 14 bits, all the rounding modes
possible in step 2 are reported below:
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There are two possible solutions:

8191

8192
+ 2853

4096
x + 1837

8192
x2 + 649

8192
x3

and

8191

8192
+ 2853

4096
x + 919

4096
x2 + 649

8192
x3

Those polynomials lead to an approximation error equal to
0.0001220703 (13.00 bits of accuracy).

In step 3, we look for the data-path size of the operator.
We report below the final accuracy evaluated using GAPPA for
the first possible polynomial and for several sizes n′:

n′ 14 15 16 17 18 19 20

εeval Horner 11.32 11.93 12.36 12.65 12.81 12.90 12.95
εeval direct 11.24 11.86 12.32 12.62 12.79 12.89 12.94

The values obtained for the other polynomial
(p2= 919/4096) are similar. Two solutions have been
implemented. The first one corresponds to the standard
solution (degree-4 polynomial, n = n′ = 18). The second
one is the result from the generation method (d = 3,
n − 1 = 14, Horner evaluation scheme and n′ = 16).
The implementation results are reported in Table 1. The
generation method leads to 17% smaller circuit and the
degree-3 approximation saves 38% of the computation
time.

Table 1 Implementation results 2x over [0, 1]
Solution Area [slices] Period [ns] #Cycles Delay [ns]

Degree-3, n′ = 16 193 21.9 3 65.7
Degree-4, n′ = 18 233 26.9 4 107.6

5.2 Square root

For the second example f (x) = √x, x ∈ [1, 2] and a target
accuracy of 8 correct bits is fixed (µ = 2−8). The first step
leads to d = 2 and ε∗app = 0.0007638369 which corresponds
to 10.35 correct bits (for d = 1 the accuracy is only
6.81 correct bits).

The minimax polynomial is p∗ = 0.4456804579 +
0.6262821240x − 0.7119874509x2. The fixed-point
evaluation of this polynomial requires some scaling in
the fixed-point format. With x in [1, 2], 2-integer bits are
required for x2 while the other operations only require
1-integer bit. In order to avoid this scaling problem,
we now consider f (x) = √1+ x with x ∈ [0, 1] (this is the
exactly the same function). Then the minimax polynomial
is: 1.0007638368 + 0.4838846338x − 0.7119874509x2.
The theoretical approximation error also leads to 10.35
correct bits (the variable change x = 1+ x does not modify
the minimax polynomial quality).

The coefficients p0 and p1 are close to power of
2 and we will try to use the post-optimisations proposed
in step 4 (see Section 4.4). The first optimisation
consists in using p0 = 1. The approximation polynomial
1+0.4838846338x−0.7119874509x2 leads to a theoretical

accuracy of 9.35 correct bits. The coefficient p1 is close
to 0.5. The approximation 1 + 0.5x − 0.7119874509x2

only leads to 6.09 correct bits. So p1 cannot be replaced
by 0.5. But we can try to recode p1 with only a few
non-zero digits (i.e. 1 or −1 = 1). The coefficient
p1 is close to (0.100001)2. The approximation polynomial
1 + (0.100001)2x − 0.7119874509x2 leads to an accuracy
of 9.45 correct bits and the product p1x is replaced by the
subtraction 1/2x − 1/26x. We try to recode p2 using a few
non-zero bits and we get p2 = (0.0001001)2. The product
p2x

2 is replaced by the addition 1/24x2 + 1/27x2.
The approximation polynomial 1 + (0.100001)2x +

(0.0001001)2x
2 leads to an accuracy of 9.49 bits and there

is only one multiplication for the computation x2. The GAPPA

input below evaluates the total error corresponding to the last
polynomial using n′ = 10 for the data-path size.

1 p0 = 1; p1 = 31/64; p2 = -9/128;
2 x = fixed <-10,dn>(Mx);
3 x2 fixed<-10,dn>= x * x;
4 p fixed <-10,dn>= p2 * x2 + p1 * x + p0;
5 Mp = p2 * (Mx*Mx) + p1 * Mx + p0;
6 { Mx in [0,1] /\ |Mp -Mf| in [0 ,0.0013829642]
7 -> |p-Mf| in ? }

GAPPA returns a total of 8.03 correct bits. But this GAPPA

program corresponds to the use of multipliers for the products
p1x and p2x

2. We need to modify the GAPPA input to take
into account the new evaluation scheme using only one
multiplication. This is the GAPPA input below. Step 3 of
the proposed method leads to n′ = 13. In that case the
total error is equivalent to 8.07 correct bits with only one
multiplication x2 as illustrated in Figure 8 (gray circles
denotes right shifts).

1 p0 = 1;
2 p11 = 1/2; p12 = -1/64;
3 p21 = -1/16; p22 = -1/128;
4 x = fixed <-8,dn>(Mx);
5 x2 fixed<-16,dn>= x * x;
6 p fixed <-13,dn>= p21*x2 + p22*x2 + p11*x + p12*x + p0;
7 Mx2 = Mx * Mx;
8 Mp = p21 * Mx2 + p22 * Mx2 + p11 * Mx + p12 * Mx + p0;
9 { Mx in [0,1] /\ |Mp -Mf| in [0 ,0.0013829642]

10 -> |p-Mf| in ? }

The operator presented in Figure 8 and the standard solution
(degree-2, Horner scheme with n = n′ = 11 bits) have been
implemented on FPGAs. The results are reported in Table 2.
A 40% area reduction and a 51% speedup are obtained.

Figure 8 Post-optimised operator for
√

1+ x over [0, 1]

×

x

1 6 4 7
1

+

+ + − − −

p
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Table 2 Implementation results
√

1+ x over [0, 1]
Solutions Area Period #Cycles Delay

[slices] [ns] [ns]

Degree-2 Horner 103 19.9 2 39.8
Degree-2 optimised 61 19.4 1 19.4

6 Conclusion

Some basic methods for the design and the optimisation
of hardware operator dedicated to function evaluation
have been presented. A complete method based
on high-performance polynomial approximation is
described. This method leads to small and fast hardware
operators. The generated operators are numerically validated
to design time. The method deals with both the approximation
and the round-off errors which is a something new. Some
results have been implemented, validated and compared
to standard solutions. Some significant improvements are
reported: up to 40% for circuit area reduction and up to 50%
speed improvement.
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1In some cases, using different values for n and n′ may reduce the
size of the circuit.


