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Abstract – This paper addresses an efficient concurrent fault 

detection scheme for the SBox hardware implementation of the 
AES algorithm. Concurrent fault detection is important not only 
to protect the encryption/decryption process from random and 
production faults. It will also protect the system against side-
channel attacks, in particular fault-based attacks, i.e. the 
injection of faults in order to retrieve the secret key. We will 
prove that our solution is very effective while keeping the area 
overhead very low.  

 

I. INTRODUCTION 
Cryptographic algorithms play a crucial role in the 

information society. When we use teller machines, home 
banking services or credit cards, call someone on a mobile 
phone, get access to health care services, or buy something on 
the web, cryptographic algorithms are used to offer protection. 
These algorithms guarantee that nobody can steal our money, 
place a call at our expense, eavesdrop on our phone calls, or 
get unauthorized access to sensitive health data. Information 
technology keeps changing and will become increasingly 
pervasive, while disappearing from the eye of the user. 
However, this evolution keeps presenting new security 
challenges, and there is no doubt that cryptographic algorithms 
and protocols will form an important part of the solution.  

Fault detection and tolerance schemes for various 
implementations of cryptographic algorithm have recently 
been considered. Several motivations led to increase the 
reliability of these circuits. From one side the circuit 
implementation of cryptographic algorithms can be quite 
complex, increasing the probability of device failures. Fault 
detection is therefore helpful in finding faults during the 
production tests. In addition, fault tolerance schemes are very 
useful to on-line tolerate faults during mission time. From the 
other side, intentional intrusions and attacks based on the 
malicious injection of transient faults into the device are very 
efficient in order to extract the secret key [1] [2]. 

The Advanced Encryption Standard (AES) [3] is a block 
cipher adopted as an encryption standard by the U.S. 
government. AES began immediately to replace the data 
encryption standard (DES), which had been in use since 1976. 
AES outperforms DES in improved long-term security 
because of larger key sizes (128, 192, and 256 bits). Another 
major advantage of AES is the possibility of efficient 
implementation on various platforms. AES is suitable for 
small 8-bit microprocessor platforms and common 32-bit 

processors, and it is appropriate for dedicated hardware 
implementations. Hardware implementations can reach 
throughput rates in the gigabit range. 

Several hardware implementations for AES circuit have 
been proposed [4]. No matter the type of implementation, the 
most expensive part of the circuit in terms of area is the so 
called SBox. Section 2 will describe in detail the algorithm of 
the AES and in particular the definition and the characteristics 
of the SBox. In this paper we focus on a novel parity bit 
scheme to protect the SBox core. 

Conversely to the other computational blocks of the AES 
algorithm, the SBox performs an operation that is not linear 
and is not invariant with respect to the parity of the processed 
data, i.e., the parity bit is not preserved after the 
transformation. This is the reason why it is necessary to insert 
an additional circuit able to predict the value of the output 
parity bit starting from the input value. 

In this paper, we present novel low cost concurrent error 
detection (CED) S-Box architecture for the AES. Compared to 
previous works, our solution has higher fault coverage and 
lower area overhead. 

The paper is organized as follows. Section 2 describes the 
characteristics of the Advanced Encryption Standard 
algorithm. Section 3 summarizes the state-of-the-art on this 
topic. Section 4 presents the parity-based concurrent error 
detection approach, whereas Section 5 discusses the results in 
terms of fault detection capability and area overhead, and 
compares these results with those published in the literature. 
Eventually, Section 6 concludes the paper. 

II. ADVANCED ENCRYPTION STANDARD 
The Rijndael algorithm used for the AES standard 

implements a symmetric-key cryptographic function in which 
both the sender and receiver use a single key to encrypt and 
decrypt the information. 

Although in [5], the block length of Rijndael can be 128, 
192, or 256 bits, the AES algorithm [3] only adopted the block 
length of 128 bits.  Meanwhile, the key length can be 128, 
192, or 256 bits. The AES algorithm’s internal operations are 
performed on a two dimensional array of bytes called State. 
The State consists of 4 rows of bytes and each row has Nb 
bytes. Each byte is denoted by Si, j (0 ≤ i < 4, 0 ≤ j < Nb). 
Since the block length is 128 bits, each row of the State 
contains Nb = 4 bytes. For sake of simplicity we focus on key 
length equal to 128 bits. The four bytes in each column of the 
State array form a 32-bit word, with the row number as the 



index for the four bytes in each word. At the beginning of 
encryption or decryption, the array of input bytes is mapped to 
the State array as illustrated in Fig. 1. The 128-bit block can 
be expressed as 16 bytes: in0, in1, in2, … in15. Encryption and 
decryption processes are performed on the State, at the end of 
which the final value is mapped to the output bytes array out0, 
out1, out2, … out15. 

 

in0

in1

in2

in3

in4

in5

in6

in7

in8

in9

in10

in11

in12

in13

in14

in15

Input bytes

out0

out1

out2

out3

out4

out5

out6

out7

out8

out9

out10

out11

out12

out13

out14

out15

Output bytes

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

State array

 
Fig. 1: Mapping of input bytes, State array and  

output bytes 
 
The AES algorithm is an iterative algorithm. Each 

iteration is called a round. The total number of rounds is 10. 
At the start of encryption, input is copied to the State array. 
After the initial roundkey addition, 10 rounds of encryption 
are performed. The first 9 rounds are the same, with small 
difference in the final round. As illustrated in Fig. 2, each of 
the first 9 rounds consists of 4 transformations: SubBytes, 
ShiftRows, MixColumns and AddRoundKey. The final round 
excludes the MixColumns transformation.  

The encryption structure in Fig. 2 can be inverted to get a 
straightforward structure for decryption. 

 
SubBytes Transformation 
The SubBytes transformation is a non-linear byte 

substitution that operates independently on each byte of the 
State using a substitution table (SBox). This SBox is 
constructed by composing two transformations: 
1. Take the multiplicative inverse in the finite field GF(28); 

the element (00000000)2 is mapped to itself; 
2. Apply the following affine transformation (over GF(2)): 
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for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the 
ith bit of a byte c whose value is fixed and is equal to 
{01100011}.  
 
This transformation can be pre-calculated for each 

possible input value since it works on a single byte, therefore 
there are only 256 values. Implementations of the SBox are 
discussed in Section 3. 

 
ShiftRows Transformation 
In this transformation, the bytes in the first row of the 

State do not change. The second, third, and fourth rows shift 
cyclically to the left one byte, two bytes, and three bytes, 
respectively. 
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Fig. 2: AES Algorithm (encryption) 

 
MixColumns Transformation 
The MixColumns transformation is performed on the 

State array column-by-column. Each column is considered as 
a four-term polynomial over GF(28) and multiplied by a(x) 
modulo x4 + 1, where:  

a(x) =  (00000011)2 x3 + (00000001)2 x2 +  
(00000001)2 x + (00000010)2 

 
AddRoundKey Transformation 
In AddRoundKey transformation, a roundkey is added to 

the State array by bitwise XOR operation. Each roundkey 
consists of 16 words generated from Key Expansion described 
below. 

 
Key Expansion 
The key expansion routine, as part of the overall AES 

algorithm, takes the input key of 128 bits. The output is an 
expanded key of 11*128 bits, i.e., the expanded key is 
composed of the secret key and 10 roundkeys, one for each 
round. Details of the algorithm that allows determining the 
value of each roundkey is described are given in [3]. 

III. STATE-OF-THE-ART 
Since crypto chips are consumer products of mass 

production, cheap solutions for concurrent error detection and 
correction are of great importance [6] [7] [8] [9]. A natural 
choice for concurrent error detection is the application of 
parity codes. Concurrent checking for the AES by parity 
prediction was first introduced in [11] and [12]. One of the 
main problems targeted in the literature is the prediction of the 
output parity given the input state and the input parity bit.  

The prediction of the parity bit (when a parity bit is added 
to each byte) is almost straightforward for the ShiftRows, 
MixColumns and AddRoundKey steps [11]. On the contrary, 
the prediction of the parity bit is not trivial for the Sbox. In 
this section we summarize the solutions based on the parity bit 
for the SBox. 



The SBox is usually implemented either as a 256x8 bits 
memory consisting of a data storage section and an address 
decoding circuit, or a combinational circuit. The incoming 
data bytes will normally have properly generated even parity 
bits. A solution to generate the outgoing parity bits is proposed 
in [12] and sketched in Fig. 3.a: an even parity bit is either 
stored with each data byte in the SBox (memory 
implementation), or on-line generated with an ad-hoc 
combinational circuit (in the case of combinational logic 
implementation for the SBox). This solution is not very 
expensive and it guarantees acceptable fault coverage. 
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Fig. 3: State-of-the-Art 

 
To increase the dependability and to detect additional 

input parity errors and some internal memory errors (data or 
decode), [11] proposes replacing the original 8-bit decoder 
with a 9-bit one, yielding a 512x9 bits memory (Fig. 3.b). If a 
9-bit address with an even parity is decoded, the 
corresponding output byte with its associated even parity bit is 
produced. Otherwise, a constant word of 9 bits with a 
deliberately odd parity is output, e.g., “00000000 1”. Thus, 
half of the entries in the SBox memory will be deliberately 
wrong (in the figure, all the rows marked with a ‘*’). In case 
of a single error in the input value, a wrong cell will be 
addresses. That cell will contain an erroneous parity bit that 
will be detected during the parity bit check. This solution 
guarantees higher fault coverage but it’s very expensive in 
terms of used area.  

Section 5 gives some comparative results. 

IV. ARCHITECTURE DESCRIPTION 
In this paper we focus on the use of the parity code for a 

single Sbox. We propose a solution that is suitable for all the 
schemes where there is a parity check for each byte element of 
the matrix S. The main problem in implementing the parity bit 
for the SBox is related to the fact that the SBox transformation 
is not invariant with respect to the parity bit. Hence, it is 
necessary to implement a method to predict the output parity, 
given the input value. 

In order to meet higher fault detection capability a code-
based fault detection approach has been adopted, consisting of 
information redundancy applied to both data and address of 
the memory storing the SBox values. With this solution we are 

able to target Address Faults as well. An Address Faults 
typically causes that during a read operation an unexpected 
cell is accessed by a given address. The use of detection codes 
based on both the address and the data allow the detection of 
Address Faults [13]. 

One characteristic of the Sbox is that it implements an 
invertible function. This feature allows calculating the input 
value starting from the output response. Therefore it is 
possible to predict the parity bit of the input word starting 
from the output response of the SBox (without implementing 
the inverse function, see below for details).  

The main idea is that we do not add any parity bit in the 
memory that stores the SBox values (or into the combinational 
logic that implements it). On the contrary, we calculate the 
parity of the input value and we compare it with the parity bit 
predicted starting from the output value of the Sbox. In 
addition, we calculate the parity bit of the output of the SBox 
and we compare it with the prediction of this bit starting from 
the input value. All works presented in the past were based on 
the predictor of the output parity. 

We calculated the Output Parity Predictor and the Input 
Parity Predictor using the truth tables of the SBox and of the 
parity bits, calculated for both the input value and the output 
value. Fig. 4 shows the first elements of the truth tables. 

This scheme allows double protection of the SBox circuit 
and it should allow covering more faults than the architectures 
proposed in the literature. Section 5 will prove that actually 
this scheme is more effective. 
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Fig. 4: Proposed solution 

 
 
 



Input Parity (Input) SBox Output Parity (Output)
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Fig. 5: Parity Predictions truth tables 

 

V. EXPERIMENTAL RESULTS 
In this section we provide some results related to the area 

overhead and the fault coverage of the proposed approach. We 
also compare these results with the architecture proposed in 
[11] and [12]. 

The architecture proposed in Fig. 4 has been described in 
VHDL and synthesized using Synopsys Design Compiler. 
Both the SBox and the prediction circuits have been 
synthesized as combinational logic. However, the proposed 
solution can be implemented using a ROM for the SBox. 

We used the 0.35µm CMOS library provided by Austria 
Micro Systems [14]. 

The architecture has been implemented in two different 
ways in order to better assess the detection capabilities of the 
proposed approach. One synthesis has been performed posing 
as a constraint the minimization of the area. The second 
synthesis has been optimizing for the speed of the circuit. 

Table 1 summarizes the area of the circuit described in 
Fig. 4, with both results (area optimization and speed 
optimization). 

The area overhead is 37,35% with area optimization and 
37,92% with speed optimization. 

In order to measure the detection capability of the 
proposed architecture we used the fault simulator provided by 
Synopsys (TetraMax). The circuit has been modified in such a 
way that the only output signals visible by the fault simulator 
are the comparator signals. In this way, the obtained fault 
coverage gives a measure of the detection capability when a 

single error affects the circuit. In this experiment we focused 
on single stuck-at faults. The obtained fault coverage is equal 
to 99,20% for the circuit synthesised with area optimization 
and 99,25% for the speed optimization. 

 
TABLE 1 

AREA  
 Area  

Optimization 
Speed  

Optimization 
Module 

# Cells 
Area 
[µm2] # Cells 

Area 
[µm2] 

SBox 555 34780 566 35672 
InPrediction 90 5569 99 6061 
OutPrediction 93 5879 94 5923 
Parity 8 1420 8 1420 
Comparators 2 124 2 124 
 
Table 2 summarizes some comparison between our 

solution and the architectures proposed in [12] and [11], 
sketched respectively in Fig. 3.a and Fig. 3.b. Those 
architectures have been synthesized using the same 
technological library. In both cases the SBox has been 
implemented as combinational logic. 

 
TABLE 2 

COMPARISON  
 

Architecture 
Area 

Overhead 
Fault 

Coverage 

Our approach 37,35% 99,20% 
[12] (Fig. 3.a) 18,17% 91,95% 
[11] (Fig. 3.b) 47,28% 93,43% 

 
The solution proposed in [12] allows covering 91,95% of 

the faults only, guaranteeing anyway a lower area overhead.  
The solution proposed in [11] guarantees higher fault 

coverage than the solution proposed in [12], but it has a very 
high area overhead (47,28%). In addition, the area overhead is 
even higher when the ROM is used to implement the SBox. In 
this case the overhead is about 125%. 

In any case, our solution guarantees higher fault coverage 
and, thanks to the double prediction based on both address and 
data, it would allow covering a percentage of address faults 
when the SBox is implemented as a ROM. 

VI. CONCLUSIONS 
Crypto-systems are inherently computationally complex, 

and in order to satisfy the high throughput requirements of 
many applications, they are often implemented by means of 
VLSI devices.  

The high complexity of such implementations raises 
concerns regarding their reliability. Research is therefore 
needed to develop methodologies and techniques for designing 
robust cryptographic systems, and to protect them against both 
accidental faults and intentional intrusions and attacks, in 
particular those based on the malicious injection of faults into 
the device for the purpose of extracting the secret information.  



The introduction of the parity bit prediction, both in input 
and output, increased significantly the fault coverage of the 
circuit, without resorting to expensive solutions requiring 
large extra memory area. 

We consider as future work the development of a scheme 
for concurrent error detection with double prediction of the 
parity bits using a pipelined architecture in order to lower even 
more the hardware overhead. 
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