
HAL Id: lirmm-00141799
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00141799v1

Submitted on 16 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Novel Parity Bit Scheme for SBOX in AES Circuits
Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre

To cite this version:
Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre. A Novel Parity Bit Scheme for SBOX in
AES Circuits. IEEE Design and Diagnostics of Electronic Circuits and Systems (DDECS), Apr 2007,
Cracovie, Poland. pp.267-271, �10.1109/DDECS.2007.4295295�. �lirmm-00141799�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00141799v1
https://hal.archives-ouvertes.fr

A Novel Parity Bit Scheme for SBox in AES Circuits
G. Di Natale, M. L. Flottes, B. Rouzeyre

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier
Université Montpellier II / CNRS UMR 5506

161 rue Ada, 34392 Montpellier Cedex 5, France
{dinatale,flottes,rouzeyre}@lirmm.fr

Abstract – This paper addresses an efficient concurrent fault

detection scheme for the SBox hardware implementation of the
AES algorithm. Concurrent fault detection is important not only
to protect the encryption/decryption process from random and
production faults. It will also protect the system against side-
channel attacks, in particular fault-based attacks, i.e. the
injection of faults in order to retrieve the secret key. We will
prove that our solution is very effective while keeping the area
overhead very low.

I. INTRODUCTION
Cryptographic algorithms play a crucial role in the

information society. When we use teller machines, home
banking services or credit cards, call someone on a mobile
phone, get access to health care services, or buy something on
the web, cryptographic algorithms are used to offer protection.
These algorithms guarantee that nobody can steal our money,
place a call at our expense, eavesdrop on our phone calls, or
get unauthorized access to sensitive health data. Information
technology keeps changing and will become increasingly
pervasive, while disappearing from the eye of the user.
However, this evolution keeps presenting new security
challenges, and there is no doubt that cryptographic algorithms
and protocols will form an important part of the solution.

Fault detection and tolerance schemes for various
implementations of cryptographic algorithm have recently
been considered. Several motivations led to increase the
reliability of these circuits. From one side the circuit
implementation of cryptographic algorithms can be quite
complex, increasing the probability of device failures. Fault
detection is therefore helpful in finding faults during the
production tests. In addition, fault tolerance schemes are very
useful to on-line tolerate faults during mission time. From the
other side, intentional intrusions and attacks based on the
malicious injection of transient faults into the device are very
efficient in order to extract the secret key [1] [2].

The Advanced Encryption Standard (AES) [3] is a block
cipher adopted as an encryption standard by the U.S.
government. AES began immediately to replace the data
encryption standard (DES), which had been in use since 1976.
AES outperforms DES in improved long-term security
because of larger key sizes (128, 192, and 256 bits). Another
major advantage of AES is the possibility of efficient
implementation on various platforms. AES is suitable for
small 8-bit microprocessor platforms and common 32-bit

processors, and it is appropriate for dedicated hardware
implementations. Hardware implementations can reach
throughput rates in the gigabit range.

Several hardware implementations for AES circuit have
been proposed [4]. No matter the type of implementation, the
most expensive part of the circuit in terms of area is the so
called SBox. Section 2 will describe in detail the algorithm of
the AES and in particular the definition and the characteristics
of the SBox. In this paper we focus on a novel parity bit
scheme to protect the SBox core.

Conversely to the other computational blocks of the AES
algorithm, the SBox performs an operation that is not linear
and is not invariant with respect to the parity of the processed
data, i.e., the parity bit is not preserved after the
transformation. This is the reason why it is necessary to insert
an additional circuit able to predict the value of the output
parity bit starting from the input value.

In this paper, we present novel low cost concurrent error
detection (CED) S-Box architecture for the AES. Compared to
previous works, our solution has higher fault coverage and
lower area overhead.

The paper is organized as follows. Section 2 describes the
characteristics of the Advanced Encryption Standard
algorithm. Section 3 summarizes the state-of-the-art on this
topic. Section 4 presents the parity-based concurrent error
detection approach, whereas Section 5 discusses the results in
terms of fault detection capability and area overhead, and
compares these results with those published in the literature.
Eventually, Section 6 concludes the paper.

II. ADVANCED ENCRYPTION STANDARD
The Rijndael algorithm used for the AES standard

implements a symmetric-key cryptographic function in which
both the sender and receiver use a single key to encrypt and
decrypt the information.

Although in [5], the block length of Rijndael can be 128,
192, or 256 bits, the AES algorithm [3] only adopted the block
length of 128 bits. Meanwhile, the key length can be 128,
192, or 256 bits. The AES algorithm’s internal operations are
performed on a two dimensional array of bytes called State.
The State consists of 4 rows of bytes and each row has Nb
bytes. Each byte is denoted by Si, j (0 ≤ i < 4, 0 ≤ j < Nb).
Since the block length is 128 bits, each row of the State
contains Nb = 4 bytes. For sake of simplicity we focus on key
length equal to 128 bits. The four bytes in each column of the
State array form a 32-bit word, with the row number as the

index for the four bytes in each word. At the beginning of
encryption or decryption, the array of input bytes is mapped to
the State array as illustrated in Fig. 1. The 128-bit block can
be expressed as 16 bytes: in0, in1, in2, … in15. Encryption and
decryption processes are performed on the State, at the end of
which the final value is mapped to the output bytes array out0,
out1, out2, … out15.

in0

in1

in2

in3

in4

in5

in6

in7

in8

in9

in10

in11

in12

in13

in14

in15

Input bytes

out0

out1

out2

out3

out4

out5

out6

out7

out8

out9

out10

out11

out12

out13

out14

out15

Output bytes

S0,0

S1,0

S2,0

S3,0

S0,1

S1,1

S2,1

S3,1

S0,2

S1,2

S2,2

S3,2

S0,3

S1,3

S2,3

S3,3

State array

Fig. 1: Mapping of input bytes, State array and

output bytes

The AES algorithm is an iterative algorithm. Each

iteration is called a round. The total number of rounds is 10.
At the start of encryption, input is copied to the State array.
After the initial roundkey addition, 10 rounds of encryption
are performed. The first 9 rounds are the same, with small
difference in the final round. As illustrated in Fig. 2, each of
the first 9 rounds consists of 4 transformations: SubBytes,
ShiftRows, MixColumns and AddRoundKey. The final round
excludes the MixColumns transformation.

The encryption structure in Fig. 2 can be inverted to get a
straightforward structure for decryption.

SubBytes Transformation
The SubBytes transformation is a non-linear byte

substitution that operates independently on each byte of the
State using a substitution table (SBox). This SBox is
constructed by composing two transformations:
1. Take the multiplicative inverse in the finite field GF(28);

the element (00000000)2 is mapped to itself;
2. Apply the following affine transformation (over GF(2)):

iii

iiii

cbb
bbbb

⊕⊕
⊕⊕⊕=

++

++

8mod)7(8mod)6(

8mod)5(8mod)4(
'

for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the
ith bit of a byte c whose value is fixed and is equal to
{01100011}.

This transformation can be pre-calculated for each

possible input value since it works on a single byte, therefore
there are only 256 values. Implementations of the SBox are
discussed in Section 3.

ShiftRows Transformation
In this transformation, the bytes in the first row of the

State do not change. The second, third, and fourth rows shift
cyclically to the left one byte, two bytes, and three bytes,
respectively.

Plaintext (128 bits)

Ciphertext (128 bits)

roundkey(0)

for i=1 to 9

SubBytes

ShiftRows

MixColumns

roundkey(i)

SubBytes

ShiftRows

roundkey(10)

Fig. 2: AES Algorithm (encryption)

MixColumns Transformation
The MixColumns transformation is performed on the

State array column-by-column. Each column is considered as
a four-term polynomial over GF(28) and multiplied by a(x)
modulo x4 + 1, where:

a(x) = (00000011)2 x3 + (00000001)2 x2 +
(00000001)2 x + (00000010)2

AddRoundKey Transformation
In AddRoundKey transformation, a roundkey is added to

the State array by bitwise XOR operation. Each roundkey
consists of 16 words generated from Key Expansion described
below.

Key Expansion
The key expansion routine, as part of the overall AES

algorithm, takes the input key of 128 bits. The output is an
expanded key of 11*128 bits, i.e., the expanded key is
composed of the secret key and 10 roundkeys, one for each
round. Details of the algorithm that allows determining the
value of each roundkey is described are given in [3].

III. STATE-OF-THE-ART
Since crypto chips are consumer products of mass

production, cheap solutions for concurrent error detection and
correction are of great importance [6] [7] [8] [9]. A natural
choice for concurrent error detection is the application of
parity codes. Concurrent checking for the AES by parity
prediction was first introduced in [11] and [12]. One of the
main problems targeted in the literature is the prediction of the
output parity given the input state and the input parity bit.

The prediction of the parity bit (when a parity bit is added
to each byte) is almost straightforward for the ShiftRows,
MixColumns and AddRoundKey steps [11]. On the contrary,
the prediction of the parity bit is not trivial for the Sbox. In
this section we summarize the solutions based on the parity bit
for the SBox.

The SBox is usually implemented either as a 256x8 bits
memory consisting of a data storage section and an address
decoding circuit, or a combinational circuit. The incoming
data bytes will normally have properly generated even parity
bits. A solution to generate the outgoing parity bits is proposed
in [12] and sketched in Fig. 3.a: an even parity bit is either
stored with each data byte in the SBox (memory
implementation), or on-line generated with an ad-hoc
combinational circuit (in the case of combinational logic
implementation for the SBox). This solution is not very
expensive and it guarantees acceptable fault coverage.

SBox

Parity
=

SBox

Parity
=

*256x9
512x9

(a) (b)
Parity

*
*
*
**
**
*

Fig. 3: State-of-the-Art

To increase the dependability and to detect additional

input parity errors and some internal memory errors (data or
decode), [11] proposes replacing the original 8-bit decoder
with a 9-bit one, yielding a 512x9 bits memory (Fig. 3.b). If a
9-bit address with an even parity is decoded, the
corresponding output byte with its associated even parity bit is
produced. Otherwise, a constant word of 9 bits with a
deliberately odd parity is output, e.g., “00000000 1”. Thus,
half of the entries in the SBox memory will be deliberately
wrong (in the figure, all the rows marked with a ‘*’). In case
of a single error in the input value, a wrong cell will be
addresses. That cell will contain an erroneous parity bit that
will be detected during the parity bit check. This solution
guarantees higher fault coverage but it’s very expensive in
terms of used area.

Section 5 gives some comparative results.

IV. ARCHITECTURE DESCRIPTION
In this paper we focus on the use of the parity code for a

single Sbox. We propose a solution that is suitable for all the
schemes where there is a parity check for each byte element of
the matrix S. The main problem in implementing the parity bit
for the SBox is related to the fact that the SBox transformation
is not invariant with respect to the parity bit. Hence, it is
necessary to implement a method to predict the output parity,
given the input value.

In order to meet higher fault detection capability a code-
based fault detection approach has been adopted, consisting of
information redundancy applied to both data and address of
the memory storing the SBox values. With this solution we are

able to target Address Faults as well. An Address Faults
typically causes that during a read operation an unexpected
cell is accessed by a given address. The use of detection codes
based on both the address and the data allow the detection of
Address Faults [13].

One characteristic of the Sbox is that it implements an
invertible function. This feature allows calculating the input
value starting from the output response. Therefore it is
possible to predict the parity bit of the input word starting
from the output response of the SBox (without implementing
the inverse function, see below for details).

The main idea is that we do not add any parity bit in the
memory that stores the SBox values (or into the combinational
logic that implements it). On the contrary, we calculate the
parity of the input value and we compare it with the parity bit
predicted starting from the output value of the Sbox. In
addition, we calculate the parity bit of the output of the SBox
and we compare it with the prediction of this bit starting from
the input value. All works presented in the past were based on
the predictor of the output parity.

We calculated the Output Parity Predictor and the Input
Parity Predictor using the truth tables of the SBox and of the
parity bits, calculated for both the input value and the output
value. Fig. 4 shows the first elements of the truth tables.

This scheme allows double protection of the SBox circuit
and it should allow covering more faults than the architectures
proposed in the literature. Section 5 will prove that actually
this scheme is more effective.

SBox

Input
Parity

Prediction

Parity

=

Parity

Output
Parity

Prediction

=

Fig. 4: Proposed solution

Input Parity (Input) SBox Output Parity (Output)

00000000 0 01100011 0

00000001 1 01111100 1

00000010 1 01110111 0

00000011 0 01111011 0

00000000

00000001

00000010

00000011

Output Parity Prediction

0

1

0

0

Input Parity Prediction

0

1

1

0

01100011

01111100

01110111

01111011

...

...

Fig. 5: Parity Predictions truth tables

V. EXPERIMENTAL RESULTS
In this section we provide some results related to the area

overhead and the fault coverage of the proposed approach. We
also compare these results with the architecture proposed in
[11] and [12].

The architecture proposed in Fig. 4 has been described in
VHDL and synthesized using Synopsys Design Compiler.
Both the SBox and the prediction circuits have been
synthesized as combinational logic. However, the proposed
solution can be implemented using a ROM for the SBox.

We used the 0.35µm CMOS library provided by Austria
Micro Systems [14].

The architecture has been implemented in two different
ways in order to better assess the detection capabilities of the
proposed approach. One synthesis has been performed posing
as a constraint the minimization of the area. The second
synthesis has been optimizing for the speed of the circuit.

Table 1 summarizes the area of the circuit described in
Fig. 4, with both results (area optimization and speed
optimization).

The area overhead is 37,35% with area optimization and
37,92% with speed optimization.

In order to measure the detection capability of the
proposed architecture we used the fault simulator provided by
Synopsys (TetraMax). The circuit has been modified in such a
way that the only output signals visible by the fault simulator
are the comparator signals. In this way, the obtained fault
coverage gives a measure of the detection capability when a

single error affects the circuit. In this experiment we focused
on single stuck-at faults. The obtained fault coverage is equal
to 99,20% for the circuit synthesised with area optimization
and 99,25% for the speed optimization.

TABLE 1

AREA
 Area

Optimization
Speed

Optimization
Module

Cells
Area
[µm2] # Cells

Area
[µm2]

SBox 555 34780 566 35672
InPrediction 90 5569 99 6061
OutPrediction 93 5879 94 5923
Parity 8 1420 8 1420
Comparators 2 124 2 124

Table 2 summarizes some comparison between our

solution and the architectures proposed in [12] and [11],
sketched respectively in Fig. 3.a and Fig. 3.b. Those
architectures have been synthesized using the same
technological library. In both cases the SBox has been
implemented as combinational logic.

TABLE 2

COMPARISON

Architecture
Area

Overhead
Fault

Coverage

Our approach 37,35% 99,20%
[12] (Fig. 3.a) 18,17% 91,95%
[11] (Fig. 3.b) 47,28% 93,43%

The solution proposed in [12] allows covering 91,95% of

the faults only, guaranteeing anyway a lower area overhead.
The solution proposed in [11] guarantees higher fault

coverage than the solution proposed in [12], but it has a very
high area overhead (47,28%). In addition, the area overhead is
even higher when the ROM is used to implement the SBox. In
this case the overhead is about 125%.

In any case, our solution guarantees higher fault coverage
and, thanks to the double prediction based on both address and
data, it would allow covering a percentage of address faults
when the SBox is implemented as a ROM.

VI. CONCLUSIONS
Crypto-systems are inherently computationally complex,

and in order to satisfy the high throughput requirements of
many applications, they are often implemented by means of
VLSI devices.

The high complexity of such implementations raises
concerns regarding their reliability. Research is therefore
needed to develop methodologies and techniques for designing
robust cryptographic systems, and to protect them against both
accidental faults and intentional intrusions and attacks, in
particular those based on the malicious injection of faults into
the device for the purpose of extracting the secret information.

The introduction of the parity bit prediction, both in input
and output, increased significantly the fault coverage of the
circuit, without resorting to expensive solutions requiring
large extra memory area.

We consider as future work the development of a scheme
for concurrent error detection with double prediction of the
parity bits using a pipelined architecture in order to lower even
more the hardware overhead.

REFERENCES
[1] D. Boneh, R. DeMillo, R. Lipton, “On the Importance of Eliminating

Errors in Cryptographic Computations”, Journal of Cryptology, vol. 14,
pp. 101-119, 2001

[2] M. Akkar, C. Giraud, “An Implementation of DES and AES, Secure
against some Attacks”, Proc. Of CHES’01, pp. 315-325, 2001

[3] “Advanced Encryption Standard (AES)”, Federal Information
Processing Standards Publication 197, November 26, 2001.

[4] X. Zhang, K. K. Parhi, “Implementation Approaches for the Advanced
Encryption Standard Algorithm”, IEEE Circuits and Systems Magazine,
vol. 2, Issue 4, pp. 24-46, 2002

[5] J. Daemen, R. Rijmen,, “AES Proposal: Rijndael”, version 2, 1999,
Available at

 http://www.esat.kuleuven.ac.be/~rijmen/rijndael
[6] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri, “Detecting and

Locating Faults in VLSI Implementations of the Advanced Encryption

Standard”, Proc. 18th IEEE Int’l Symp. Defect and Fault Tolerance in
VLSI Systems, pp. 105-113, Nov. 2003

[7] K. Wu, R. Karri, G. Kuznetsov, M. Goessel, “Low Cost Concurrent
Error Detection for the Advances Encryption Standard”, Proc. Int’l Test
Conference, pp. 1242-1248, 2004

[8] R. Karri, K. Wu, P. Mishra, Y. Kim, “Concurrent Error Detection
Schemes for Fault-Based Side-Channel Cryptanalysis of Symmetric
Block Ciphers”, IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 12, Dec. 2002, pp. 1509-1517

[9] C. Yen, B. Wu, “Simple Error Detection Methods for Hardware
Implementation of Advanced Encryption Standard”, IEEE Trans
Computers, vol. 55, no. 6, June 2006, pp. 720-731

[10] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri, “A parity Code
Based Fault Detection for an Implementation of the Advanced
Encryption Standard”, Proc. IEEE Int. Symposium on Defect and Fault
Tolerance in VLSI, pp. 51-59, Nov. 2002

[11] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri “Error Analysis
and Detection Procedures for a Hardware Implementation of the
Advanced Encryption Standard”, IEEE Trans. Computers, vol. 52, no. 4,
pp.492-505, Apr. 2003

[12] V. Ocheretnij, G. Kouznetsov, R. Karri, M. Gossel, “On-Line Error
Detection and BIST for the AES Encryption Algorithm with Different S-
Box Implementations”, Proc. IEEE Int. On-Line Testing Symposium,
2005, pp. 141-146

[13] A. Benso, S. Chiusano, G. Di Natale, M. Lobetti-Bodoni, P. Prinetto,
“On-line & Off-line BIST in IP-Core Design”, IEEE Design and Test of
Computers, September/October 2001, Vol. 18, N. 5, pp. 92 99

[14] http://asic.austriamicrosystems.com/databooks/index.html

