
HAL Id: lirmm-00146450
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00146450

Submitted on 15 May 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Residue systems efficiency for modular products
summation: Application to Elliptic Curves

Cryptography
Jean-Claude Bajard, Sylvain Duquesne, Milos Ercegovac, Nicolas Méloni

To cite this version:
Jean-Claude Bajard, Sylvain Duquesne, Milos Ercegovac, Nicolas Méloni. Residue systems efficiency
for modular products summation: Application to Elliptic Curves Cryptography. Proceedings of SPIE :
Advanced Signal Processing Algorithms, Architectures, and Implementations XVI, Aug 2006, pp.0.
�lirmm-00146450�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00146450
https://hal.archives-ouvertes.fr

Residue systems efficiency for modular products

summation: Application to Elliptic Curves Cryptography

JC Bajarda, S. Duquesneb, M Ercegovacc and N Meloniab

a ARITH-LIRMM, CNRS Université Montpellier2, France;
b I3M, CNRS Université Montpellier2, France;

cUCLA, Computer Science Dep.Los Angeles, US

ABSTRACT

Residue systems of representation, like Residue Number Systems (RNS) for primary field(GF (p)) or Trino-
mial Residue Arithmetic for binary field (GF (2k)), are characterized by efficient multiplication and costly
modular reduction. On the other hand, conventional representations allow in some cases very efficient re-
ductions but require costly multiplications.

The main purpose of this paper is to analyze the complexity of those two different approaches in the
summations of products. As a matter of fact, the complexities of the reduction in residue systems and of
the multiplication in classical representations are similar. One of the main features of this reduction is that
it doesn’t depend on the field. Moreover, the cost of multiplication in residue systems is equivalent to the
cost of reduction in classical representations for special well-chosen fields.

Taking those properties into account, we remark that an expression like A ∗ B + C ∗D, which requires
two products, one addition and one reduction, evaluates faster in a residue system than in a classical one.
So we propose to study types of expressions to offer a guide for choosing a most appropriate representation.

One of the best domain of application is the Elliptic Curves Cryptography where addition and dou-
bling points formulas are composed of products summation. The different kinds of coordinates like affine,
projective, and Jacobean, offer a good choice of expressions for our study.

Keywords: Elliptic Curve Cryptography (ECC), modular addition, modular multiplication, modular re-
duction, Residue Number System (RNS), hardware implementation

1. MULTIPLICATION AND REDUCTION PROBLEMS

In the expressions using modular arithmetic in domains like cryptography we find combinations of multi-
plications and additions. The modular reductions are not necessarily linked to the operations, i.e., we can
perform several operations before modular reduction. This is particularly true for a series of additions, where
the growth of the numbers involved is slow.

In multiplications, however, the growth of precision is fast since the number of digits in the product
is the sum of those of the operands. Most of the time multiplications are followed by additions, allowing
minimizing the number of reductions. This is true for any number representations, but it is clear that the
faster the operations are, the better the expected gain would be, even if the reduction is costly.

1.1. Cost of Multiplication

Since we are considering Elliptic Curve Cryptography (ECC), we assume that the operands don’t need more
than 512 bits. Hence, we analyze only one multiplication algorithm: the Basic (paper-and-pencil) Method.
This is based on the GMP recommendations12. Toom-Cook method14 is only applicable for huge numbers
not used in the ECC, and Karatsuba method14 is more appropriate for software implementation (like in
GMP) than for dedicated architectures we are considering.

Architecture word size Karatsuba Toom-Cook
AMD K7 32 26 (832) 202 (6464)
Pentium 4 32 18 (576) 139 (4448)

PowerPC 32 32 20 (640) 226 (7232)
SPARC v7 32 32 8 (256) 466 (14912)
PowerPC 64 64 8 (512) 57 (3648)
ultrasparc-II 64 22 (1408) 98 (6272)

IA64 64 47 (3008) 288 (18432)

Table 1. Thresholds of method usefulness given in number of words (bits)

To summarize, depending on the architecture of the processors, the Basic Method is preferable up to an
average of 16 words (512 bits, for a 32 bits architecture), see Table 1.

In this paper, we consider a k-bit word architecture, with k = 16, 32 or 64. Let β = 2k. Then, a large

integer is represented with radix β as A =

n−1∑

i=0

aiβ
i , having a length of kn bits.

1.1.1. The Basic Method

The Basic Method is best performed with the Horner scheme :

Algorithm 1: Basic(A,B)

Data: A =

n−1∑

i=0

aiβ
i and B =

n−1∑

i=0

biβ
i;

Result: P such that P = A×B;
P ← 0 ;
for i=n-1 to 0 do

(P , P)← ai ×B;1

P ← (P + P)β + P2

end

return P

Line 1, the digit-by-digit product ai× bj consists two k-bit words, the upper and the lower one. The product
ai × B result in upper and lower parts, stored in two n-words numbers P and P which are added to the
partial result P . In this form we have a better idea of the number of additions needed.

The cost of the Basic Method is n2 products of two k-bits words giving a result on two words, and 2n2−n
additions (with a carry) of two k-bits words. We don’t take into account the carry propagation.

1.1.2. About parallel implementation

In fact, in the literature, only parallel implementations of the Basic Method are proposed. In this algorithm
when we have at our disposal n2 multipliers, all the products (n times line 1 of algorithm 1) can be done in
parallel. Then with a tree of adders, all the additions can be computed in a logarithmic time. With some
tricks the area can be reduced in O(n2/ log2(n))8.

In a configuration with n arithmetic units, we can perform in parallel the n products of each call to line
1 of the Basic algorithm. Then, to avoid the carry propagation, we propose to accumulate the carries of
the previous in a n-words variable R initialized to 0 (a kind of carry save approach). Thus the line 2 of
Algorithm 1, becomes:

(P,R)← (P + P)β + P (1)

Further author information: JC Bajard: E-mail: bajard@lirmm.fr.

At the end a carry-propagate addition produces P ← P + R.

The time complexity of this kind of implementation is n word-products and 3n word-additions (taking
into account the accumulation of carries) and a final carry-propagate addition of two numbers of 2n words.

1.2. Modular reduction algorithms

1.2.1. Pseudo-Mersenne moduli

The NIST recommendations propose to use moduli which satisfy the Pseudo-Mersenne property:

N = βn − c, with c < β
n
2 , and wH(c) < t

where wH represents the Hamming weight and t is a small number. We remark that c can be written using
sign digits. In this case wH represents the non-zero digits.

The reduction can be done with three additions and two (half) products by c. If c is composed of wH(c)
non-zero digits then those operations can be done by wH(c) additions.

If X < β2n then
X = X1β

n + X0 ≡ c×X1 + X0 = X ′ (2)

Now X ′ < β
3

2
n, we reiterate the previous process

X ′ = X ′

1β
n + X ′

0 ≡ c×X ′

1 + X ′

0 = X” (3)

.

Thus X” < 2βn, and a last reduction could be useful. In this case we just have to consider the bit r of
weight βn:

If r = 1 then X (mod N) = (X” + c) mod βn

else X̂ = (X” + c) mod βn and r′ = (X” + c) div βn;

if r′ = 1 then X (mod N) = X̂ else X (mod N) = X”.

To summarize: the cost of this reduction is two multiplications of n
2
×n words integers and three n-words

additions , or if t is small, lower than 3+2t n-words additions. Many approaches around this class of numbers
have been considered such as in9,21.

1.2.2. Montgomery approach

This reduction is available when we use the Montgomery representation: An integer X is represented by the
value X̃ = X × βn mod N .

Hence when a reduction occurs after a multiplication we get X̃×Ỹ ≡ XY ×β2n×β−n mod N ≡ XY ×βn

(mod N), which is a Montgomery representation of the product XY .

Algorithm 2: MontgomeryN (R)

Data: R = X̃ × Ỹ < N2 < β2n and βn−1 ≤ N < βn

and a precomputed value (−N−1 mod βn);
Result: R′ = Rβ−n (mod N) < 2N ;
Q← R× (−N−1) mod βn ;
R′ ← (R + QN)/βn ;

We can also consider a digit version of this algorithm:

Algorithm 3: MontgomeryDN (R)

Data: R = X̃ × Ỹ < N2 < β2n and βn−1 ≤ N < βn

and a precomputed value (−n−1
0 mod β);

Result: R′ = Rβ−n (mod N) < 2N ;
R′ ← R ;
for i = 0 to n-1 do

q ← r′0 × n−1
0 mod β ;1

R′ ← (R′ + qN)/β ;2

end

In line 1, we perform a multiplication of two words where only the lower word of the result is considered.
Then in line 2, we multiply a n words value by a word, as described before, the result can be stored in two
n words values, one for the lower parts and one for the upper one. That means that we have to perform
n words products. Then, those results have to be added to R, that represents 2(n − 1) words additions.
Here we don’t take into account the carry propagation. Hence, the total cost is n2 + n words products and
2n(n− 1) words additions.

Now, for a parallel implementation on n arithmetic units we can store the carries in a variable C, we
only have to evaluate exactly r0 using c0 (C is shifted like R). Thus, line 2 is reduced to one step of n words
products and two steps of (n− 1) words additions. At the end, C must be added to R.

Montgomery algorithm is actually the most often implemented method available for any modulo7,15,19.
It is particularly interesting for general architecture not dedicated to only one modulo, unlike the pseudo-
Mersenne ones. This is the reason why it is so popular.

2. RNS PROPERTIES

2.1. A short introduction

The Residue Number System (RNS)11,24 is discussed in detail in22 and14. The RNS is based on the Chinese
remainder theorem which allows to represent an integer X < M by the set (x1, . . . , xn) where M =

∏n
i=1 mi

with (mi,mj) = 1 for i 6= j, and the residues xi = X mod mi.

The use of RNS is well-known in signal processing13,23 and cryptography4,10. The main advantage of
those systems is due to the fact that additions and multiplications are done independently on the residues.
In other words, with a parallel architecture with n arithmetic units, the time needed to perform an addition
or a multiplication is bounded by one modular operation on the largest residue. Therefore the choice of the
set (m1, . . . ,mn), called RNS basis, is very important, as we have to reduce modulo mi. In6, the authors
propose some criteria for selecting a ”good” RNS bases.

2.2. Choice of Moduli

To have better performance, the moduli must be pseudo-Mersenne numbers, namely of the form 2k − c with
c less than 2k/2 and it is preferable that the maximal weight of c in signed digit representation (denoted by
a) is as small as possible. In this section, we are interested in finding sufficiently many such integers which
are pairwise coprime.

To take into account the improvement of the change of basis presented in6 , one wants to have consecutive
moduli. We will denote by δ the amplitude of the set of moduli constructed. In general, such a set is split in
order to construct two basis. Then, the interesting value is δmax which is the maximum of the magnitudes
of the two basis.

We will deal with two sizes of numbers. On one hand we want numbers less than 216 to use RNS arithmetic
on 16-bit architectures and, on the other hand, we want numbers less than 232 to use RNS arithmetic on
32-bit architectures.

2.2.1. Case of 16 bits words

It is of course not easy to find a set of such pairwise coprime numbers. If a = 3, it is not possible to find a
set with more than 21 elements. We give here only the value of c.

{8, 15, 17, 27, 29, 39, 47, 57, 59, 63, 95, 113, 119, 123, 125, 127, 129, 131, 135, 137, 143}.

If a = 4 one can find a set of 40 such numbers (and no more).

{15, 17, 19, 21, 23, 27, 29, 33, 35, 39, 45, 47, 53, 57, 59, 63, 77, 83, 87, 89, 99, 105, 113, 117, 123, 125,
129, 143, 147, 153, 155, 165, 167, 183, 189, 192, 195, 197, 209, 225 }.

Without any condition on a, the largest possible set has 48 elements. Since in a n-words RNS arithmetic
it is necessary to have a set with 2n elements, it is not possible to perform RNS arithmetic with more than
24 16-bits words.

{15, 17, 19, 21, 23, 27, 29, 33, 35, 38, 39, 45, 47, 53, 57, 59, 63, 77, 83, 87, 89, 99, 105, 113, 117, 123,
125, 129, 143, 147, 153, 155, 165, 167, 173, 179, 183, 189, 195, 197, 209, 213, 215, 225, 227, 243, 249, 255}.

Finally, the difference between two numbers of the same set is always less than 28 by construction so
that the improvements on the RNS change of basis given in6 can be done. Moreover, it is possible to split
the sets above in two parts such that the difference between two numbers in each subset is even smaller. For
instance, if one wants to perform ECC 160, one can choose {8, 15, 17, 27, 29, 39, 47, 57, 59, 63 } and {113,
119, 123, 125, 127, 129, 131, 135, 137, 143} so that δmax < 26.

2.2.2. Case of 32 bits words

There are more choices in this case. If a = 3 the maximal size of a suitable set is 87 and if a = 4 one
can find 448 numbers which are pairwise coprime. This is more than necessary to deal with very large
numbers. We do not give the sets here since they are easy to find, using for instance the program available
at http://www.math.univ-montp2.fr/∼duquesne.

However the improvement given in6 cannot be used since we only have by construction that δ ≤ 216. We
will now take into account the constraint that the difference between two numbers of the set must be less
than δ.

A good value for δ is 28. If a = 4, one can find 47 such numbers

{3, 5, 9, 13, 15, 17, 21, 23, 27, 29, 33, 39, 45, 47, 57, 63, 65, 68 69, 75, 77, 83, 89, 93, 99, 105, 107, 117,
119, 129, 135, 143, 149, 153, 155, 159, 185, 189, 195, 197, 209, 225, 227, 233, 237, 245, 255 }.

This is more than required by elliptic curve cryptography since 32 numbers are sufficient. It is easy to
extract from this set two bases of 16 moduli such that δmax < 27, two bases of 8 moduli such that δmax < 25

or two basis of 6 moduli such that δmax < 24. Hence elliptic curve cryptography can be very efficiently
implemented with this kind of moduli.

In order to obtain better performance, one can choose a = 3. But, in this case, one can find only 25
numbers which are pairwise coprime and satisfy the constraint on δ. It is not enough. If one wants to
perform RNS arithmetic with large numbers one must relax the constraint. If we take δ = 29 one can find
32 numbers with a = 3

{3, 5, 7, 9, 17, 21, 23, 27, 29, 33, 39, 47, 57, 59, 63, 65, 68, 69, 119, 129, 135, 143, 159, 225, 255, 383,
449, 479, 497, 507, 509, 513}.

Of course, it is not possible to have δmax < δ for two bases of 16 moduli, but one can again obtain
δmax < 25 for two bases of 8 moduli and δmax ≤ 24 for two bases of 6 moduli. We summarize in the table
2 the possibilities for performing RNS arithmetic.

16 bits word words bits
a = 3 10 160

a = 3, δmax < 26 10 160
a = 4 20 320

a = 4, δmax < 26 12 192
a = 4, δmax < 27 20 320

a arbitrary 24 384

32 bits words words bits
a = 3 43 1376

a = 3, δmax < 29 16 512
a = 3, δmax < 28 12 384
a = 3, δmax < 25 8 256
a = 3, δmax < 24 6 192

a = 4 224 7168
a = 4, δmax < 28 23 736
a = 4, δmax < 27 16 512
a = 4, δmax < 25 8 256
a = 4, δmax < 24 6 192

Table 2. number of words for which RNS is possible

2.3. The RNS Montgomery Reduction

An efficient RNS modular reduction was proposed in2. This approach is a translation in RNS of the algorithm
2, where operations are performed in RNS.

Algorithm 4: RNS MontgomeryN (R, R̃)

Data: Two RNS bases Bn , {m1, . . . ,mn}, where M =
∏n

i=1 mi;

and B̃ñ, {m̃1, . . . , m̃ñ}, where M̃ =
∏ñ

i=1 m̃i where gcd(M,M̃) = 1 and M < M̃ ;
N known in the two bases, with gcd(N,M) = 1, and 0 < (n + 2)N < M

R given in RNS in the two RNS bases with R < M ∗N , we note R̃
Result: R < (n + 2)N expressed in the two RNS bases with R ≡ R×M−1(modN)
Q← R×

RNS
(−N)−1 in Bn ;1

Extension 1: Q→ Q̂ from Bn to B̃ñ ;2

R̃← (R̃ +
RNS

Q̂×
RNS

N) ×
RNS

M−1 in B̃ñ ;3

Extension 2: R̃→ R from B̃ñ to Bn4

The drawback of this algorithm is due to the inversion of M , which is not possible in its basis, so a bases
extension is needed. We analyze those extensions in the next section.

2.4. Bases extensions

The first extension takes the Lagrange formulation:

Q̂ =
n∑

i=1

∣∣∣qi |Mi|
−1

mi

∣∣∣
mi

Mi = Q + αM (4)

for some value of α where 0 ≤ α < n. Thus, this computing is done for each modulo m̃j of the basis B̃ñ.

Hence, the first extension does not really give the representation of Q in B̃ñ, but the one of Q̂. That gives
the condition 0 < (n + 2)N < M .

Now for the second extension, we use the same approach with R̂, which is such that: R̂ ≡ R (mod N).

R̂ =

n∑

i=1

∣∣∣r̃i

∣∣∣M̃i

∣∣∣
−1

emi

∣∣∣
emi

M̃i = R̃ + αM̃ (5)

But, using an extra modulus mx > n20 (most of the time, mx is a small power of 2), we can evaluate α20:

α =

˛

˛

˛

˛

˛

˛

|fM |−1

mx

0

@

n
X

i=1

˛

˛

˛

˛

˛

˛

˛

˛

˛

r̃i

˛

˛

˛

fMi

˛

˛

˛

−1

emi

˛

˛

˛

˛

mi

fMi

˛

˛

˛

˛

˛

mx

−
˛

˛

˛

eR

˛

˛

˛

mx

1

A

˛

˛

˛

˛

˛

˛

mx

(6)

Thus it is now possible to compute rj = |R|mj
by

rj =

∣∣∣∣∣∣

n∑

i=1

∣∣∣∣∣

∣∣∣∣r̃i

∣∣∣M̃i

∣∣∣
−1

emi

∣∣∣∣
emi

M̃i

∣∣∣∣∣
mj

−
∣∣∣αM̃

∣∣∣
mj

∣∣∣∣∣∣
mj

(7)

2.5. Complexity

2.5.1. First extension

This extension is made using formula (4) for each m̃j and for mx. So, that needs n products mod mi for the∣∣∣qi |Mi|
−1

mi

∣∣∣
mi

, and n2 + n products by the Mi modulo m̃j , and n2 − 1 additions.

If we consider an architecture with n (+1 but for small value mx), that is done in a time equivalent to
n + 1 modular products and n additions.

Now if we consider that a modular product costs 1 product and a additions, the complexity is n2 + 2n
words products and n2(a + 1) + na − 1 words additions. In parallel, the time complexity is equivalent to
n + 1 words products and n(a + 1) + a words additions.

2.5.2. Second extension

Now we use the formulas (4) and (6) which give the same complexity as for the first extension, plus one
addition and one modular product for the evaluation of α and n modular products and n additions for the
last reduction in equation (7).

Thus we obtain n2 + 3n words products and n2(a + 2)− 1 words additions. In parallel implementation,
the time complexity is equivalent to n + 1 words products and n(a + 1) + a words additions.

2.5.3. Total cost of the RNS reduction

The complexity of lines 1 and 2 is due to RNS operations, thus we must perform 3n words modular products
and n words modular additions. Since the cost of the reduction is a words additions, we get 3n words
products and (3a + 1)n words additions.

Hence, the total cost is 2n2 +8n+1 words modular products and 2n2 +2n− 1 words modular additions.
Thus the complexity is 2n2 + 8n + 1 words products and 2n2 + 2n− 1 + a(2n2 + 6n) words additions (mx is
a power of 2 and the reductions of the additions are included in those of the products).

3. STUDY OF DIFFERENT VARIETIES OF FORMULA

Here we propose to compare our approach in terms of multiplications which are more costly than additions.
Furthermore, the a additions of the modular product reduction can be easily included in the product gener-
ation in dedicated architecture (i.e., on FPGAs1). We summarize in Tables 3 and 4 the different complexity
found for the global cost of the methods and the time complexity for a parallel implementation with n
arithmetic units.

Method words-products words-additions
Basic n2 2n2 − n

Pseudo Mersenne 2B 3n
Pseudo Mersenne 0 (3 + 2t)n

Montgomery n2 + n 2n(n− 1)
RNS multiplication 2n 2an
RNS Montgomery 2n2 + 8n + 1 2n2 + 2n− 1 + a(2n2 + 6n)

Table 3. Number of words operations

Method words-products words-additions
Basic n 3n + (2n or log(n))

Pseudo Mersenne 2B 3(n or log(n))
Pseudo Mersenne (3 + 2t)n

Montgomery 2n 2n + 1
RNS multiplication 2 2a
RNS Montgomery 2n + 7 2n + 1 + a(2n + 6)

Table 4. Parallel implementation : Number of words operations

3.1. Formulas of the type

s∑

i=1

AiBi mod N

Whatever the representation of the values involved in the calculation of a such an expression, it is clear
that the best is to compute reductions modN only when necessary. In this case, we consider that only one
reduction is necessary.

Indeed, that modifies somewhat the conditions depending on the reduction method. For example, with
the Montgomery method for summing log2 s extra rounds could be necessary, or with the pseudo-Mersenne
c must be smaller than βn/2−log

2
s.

Thus, the complexity of the evaluation of the kind of formulas is equivalent to s products and s − 1
additions following by only one reduction. In Table 5 we summarize the cost as a function of s of the
different combinations which could be used to compute our expression: Basic + Pseudo Mersenne (B+PM),
Basic + Montgomery (B+Montg), and RNS product + RNS Montgomery (RNS) .

Combination # products parallel cost over n units
B+PM (s)× n2 s× n

B+Montg (s + 1)× n2 + n (s + 2)× n
RNS (2s + 8)× n + 2n2 + 1 2s + 2n + 8

Table 5. Number of products in the evaluation of

s
X

i=1

AiBi mod N

If we consider the global cost of these different approaches, we could evaluate for which value of s RNS
becomes more efficient. First we deal with B+PM, in which case we have:

(2s + 8)× n + 2n2 + 1 < s× n2 (8)

s >
2n2 + 8n + 1

n2 − 2n
(9)

Thus, for s = 3 the RNS is better as long as 15 ≤ n, and s = 4is required if 9 ≤ n ≤ 14. Now, we could

compare to B+Montg with the RNS approach:

(2s + 8)× n + 2n2 + 1 < (s + 1)× n2 + n (10)

s >
n2 + 7n + 1

n2 − 2n
(11)

Here, RNS is most efficient for s ≥ 2 and n ≥ 12, s ≥ 3 and 7 ≤ n ≤ 11 or s ≥ 4 with n = 6.

The RNS is remarkable when we consider a parallel implementation on n arithmetic units. Compared
to B+PM, RNS begin to be efficient when s ≥ 3 for n ≥ 13 (the condition is s ≥ 2n+7

n−2
). But if we deal

with general architectures available for many fields, B+Montg is preferable. In this case RNS is better when
s > 0 for n ≥ 9 (the condition is s ≥ 7

n−2
).

3.2. Application to ECC

Let p be a prime number and E : y2 = x3+ax+b be an elliptic curve defined over Fp. Let also P = (Xp, Yp, Zp)
and Q = (Xq, Yq, Zq) ∈ E(Fp) given in projective coordinates. Assume that the difference P −Q = (x, y) is
known in affine coordinates. Then one can obtain the X and Z-coordinates for P + Q and 2P in terms of
the X and Z-coordinates for P and Q by the following formulas :

Xp+q = −4bZpZq(XpZq + XqZp) + (XpXq − aZpZq)
2,

Zp+q = x
(
(XpZq + XqZp)

2 − 4XpXqZpZq

)
,

X2p =
(
X2

p − aZ2
p

)2
− 8bXpZ

3
p ,

Z2p = 4XpZp

(
X2

p + aZ2
p

)
+ 4bZ4

p .

In3 we proposed to compute Xp+q and Zp+q using the following operations:

1. α = ZpZq 2. β = XpZq + XqZp 3. γ = XpXq 4. δ = −4bα

5. Xp+q = βδ + (γ − aα)2 6. ǫ = β2 − 4αγ 7. Zp+q = xǫ

To compute X2p and Z2p, the following operations must be done :

1. α = Z2
p 2. β = 2XpZp 3. γ = X2

p 4. δ = −4bα

5. X2p = βδ + (γ − aα)2 6. Z2p = 2β(γ + aα)− αδ

The scalar point multiplication over E is performed using the Montgomery ladder1716 which involves an
addition and a doubling at each step of the algorithm. With the previous formulae, this operation can be
done in 17 multiplications and 13 modular reductions.

So, one step of the Montgomery exponentiation algorithm using the previous formulae requires 18(2n) +
13(2n2 + 8n) operations in RNS, 17n2 + 14(n2 + n) with the Montgomery modular multiplication and 17n2

with Mersenne numbers.

We can see that in practice our approach is slower than both methods for standard length (160-192). We
make two remarks: first, compared to the Montgomery modular multiplication, we are asymptotically better;
second, the problem comes from the fact that those formulae remain simple and involve only 4 independent
coordinates, which limits the possibility of obtaining long sums of products. This suggests that our approach
may be more suited to hyperelliptic curves (which can involve 12 different parameters).

|p|2 word RNS Montgomery Mersenne
160 5 1350 845 425
192 6 1776 1200 612
256 8 2784 2096 1088
320 10 4000 3240 1700
512 16 8896 8160 4352

Table 6. Number of word size multiplications for one step of Montgomery exponentiation algorithm

4. CONCLUSIONS

In this study we have shown that the cost of the reduction in the RNS is compensated by fast evaluation of
the product and the sum. Whenever more than two products have to be added, the RNS is a good alternative
and if the number of terms of the sum increases, it becomes clearly the most efficient method.

One domain of application for this approach is the Elliptic Curve Cryptography where expressions of
points addition formulae can be rewritten to take into account the RNS specificities3. These expressions can
be improved and they could be extended to hyper-elliptic curves approaches.

Another point that could be analyzed is the number and the size of the RNS bases elements. It could
be interesting to mix the basic approach with the RNS one. For example, we could consider mi as pseudo-
Mersenne numbers of 128 bits on which products and additions are made with the classical approach. In this
cases the number of elements of the RNS bases should be small, for example 4, and we could perform the
operations in the RNS and then convert into classical representation for the reduction. In fact, this could
be used also for the modulo calculation for each mi which will be part of our future research.

REFERENCES

1. Badrignans B., Mesquita D., et al: A Parallel and Secure Architecture for Asymmetric Cryptography
ReCoSoC 2006, Montpellier France.

2. Bajard, J.C., Didier, L.S., Kornerup, P.: Modular multiplication and base extension in residue number
systems. 15th IEEE Symposium on Computer Arithmetic, IEEE Computer Society Press (2001) 59–65

3. Bajard, J.C., Duquenne S., Meloni, N.: Combining Montgomery ladder for elliptic curves defined over Fp

and RNS representation, Research Report LIRMM 06041 2006.

4. Bajard, J.C., Imbert, L.: A full RNS implementation of RSA. IEEE Transactions on Computers 53:6
(2004) 769–774

5. Bajard, J.C., Imbert, L., Liardet, P.Y., Teglia, Y.: Leak resistant arithmetic. CHES 2004, LNCS 3156
59–65

6. Bajard, J.C., Meloni, N., Plantard, T.: Efficient RNS bases for Cryptography IMACS’05, Applied Math-
ematics and Simulation, (2005) ???–???

7. Bosselaers, A., Govaerts, R., Vandewalle. J.: Comparison of the three modular reduction functions LNCS
773 (1994) 175–186

8. Bunimov, V., Schimmler, M.: Efficient Parallel Multiplication Algorithm for Large Integers Euro-Par
2003, International Conference on Parallel and Distributed Computing (2003) 923–928

9. Chung, J., Hasan, A.: More generalized mersenne numbers. SAC 2003, LNCS 3006 (2003) 335–347

10. Ciet, M., Neve, M., Peeters, E., Quisquater, J.J.: Parallel FPGA implementation of RSA with residue
number systems– can side-channel threats be avoided? 46th IEEE International Midwest Symposium on
Circuits and Systems (2003)

11. Garner, H.L.: The residue number system. IRE Transactions on Electronic Computers, EL 8:6 (1959)
140–147

12. The GNU Multiple Precision Arithmetic Library Edition 4.2.1, 2 May 2006
http://www.swox.com/gmp/gmp-man-4.2.1.pdf

13. Jullien G. A.: VLSI Digital Signal Processing: Some Arithmetic Issues Keynote at SPIE Conference on
Advanced Signal Processing, August 1996 (167,566 bytes)

14. Knuth, D.: Seminumerical Algorithms. The Art of Computer Programming, vol. 2. Addison-Wesley
(1981)

15. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44:170 (1985) 519–521

16. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comp. 48:177
(1987) 243–164

17. Okeya, O., Sakurai, K.: Efficient Elliptic Curve Cryptosystems from a Scalar Multiplication Algorithm
with Recovery of the y-Coordinate on a Montgomery-Form Elliptic Curve. Cryptographic Hardware and
Embedded Systems, LNCS 2162 (2001) 126–141

18. Shenoy, A.P., Kumaresan, R.: Fast base extension using a redundant modulus in RNS. IEEE Transac-
tions on Computer 38:2 (1989) 292–296

19. Sanu, M.O., Swartzlander, E.E., Chase, C.M.: Parallel Montgomery Multipliers. 15th IEEE International
Conference on Application-Specific Systems, Architectures and Processors (ASAP’04) (2004) 63–72

20. Shenoy A. P., Kumaresan R.: Fast base extension using a redundant modulus in RNS. EEE Transactions
on Computer, 38(2):292–296, 1989.

21. Solinas, J.: Generalized Mersenne numbers. Research Report CORR-99-39, Center for Applied Crypto-
graphic Research, University of Waterloo (1999)

22. Szabo, N.S., Tanaka, R.I.: Residue Arithmetic and its Applications to Computer Technology. McGraw-
Hill (1967)

23. Soderstrand M. A., Jenkins W. K. , Jullien G. A. , Taylor F. J.: Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing. IEEE Press, New York, 1986.

24. Svoboda, A., and Valach, M.: Rational system of residue classes. In Stroje na Zpraccorani Informaci,
Sbornik, Nakl. CSZV, Prague, 1957, pp. 9-37

