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Local Rule Substitutions
and Stepped Surfaces

Thomas Fernique

LIRMM CNRS-UMR 5506 and Université Montpellier 11,
161 rue Ada, 34392 Montpellier Cedex 05, France

Abstract

Substitutions on words, ¢.e., non-erasing morphisms of the free monoid, are simple
combinatorial objects which produce infinite words by replacing iteratively letters by
words. This paper introduces a notion of substitution acting on multi-dimensional
words, namely the local rule substitutions. Roughly speaking, local rules play for
multi-dimensional words the role played by the concatenation product for substitu-
tions on words. We then particularly focus on the local rule substitutions which act
on the 2-dimensional words coding stepped surfaces, and we show that a wide class
of them can be derived from generalized substitutions.

Key words: Multi-dimensional word, generalized substitution, stepped surface.

Introduction

A substitution acts on a word in this way: the image of each letter is a word,
and the image of the whole word is the concatenation of images of its letters.
Substitutions are powerful combinatorical tools and have natural interactions
with automata theory, language theory, number theory etc. (see [12| and ref-
erences inside). An extension of the notion of substitution to the more general
framework of multi-dimensional words, i.e., words with letters indexed by Z¢
instead of N for classic words, would be interesting, in particular in regards to
tilings, quasicrystals or discrete geometry.

One could define a map which does not act on letters of a multi-dimensional
word but on the boundaries of this word, as done e.g., in [5-7], but here we
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would like to directly deal with letters. More precisely, we would like to define
a map from multi-dimensional letters to multidimensional words, such that
this map can be extended to multi-dimensional words. However, contrarily to
the case of classic substitutions on words, we cannot map a letter L’ “after”
a letter L onto a multi-dimensional word o(L’) “after” the multi-dimensional
word o (L), since the term “after” does not make any more sense. For this rea-
son, we rely in this paper on so-called local rules. Local rules were introduced
on an example in [3], and are closely related to the notion of combinatorial sub-
stitution defined in terms of graphs in [11], which extends the classic notions
of substitution rules used by physicists. A set of local rules defines the way
the images of two adjacent letters (i.e., multi-dimensional words) are placed
each relatively to the other. This is a local definition, which naturally yields
a corresponding algorithm, and is thus convenient for effective computations.
However, the main problem is that such a local definition does not clearly yield
a consistent global definition, since given local rules can be used in different
ways for computing the image of a word; it is not obvious to find non-trivial
examples of local rules acting on large sets of multi-dimensional words.

Our two main results (besides all the formalism introduced for local rules) are
the following. First, Theorem 1 provides a way to obtain consistent local rules,
by derivation from a global rule. Second, Theorem 2 shows that generalized
substitutions, introduced in [4] and studied e.g. in [2,3,8,9,12], can be seen as
global rules on multi-dimensional words coding stepped surfaces. This provides
in particular a wide class of consistent local rules, by Theorem 1.

The rest of the paper is organized as follows. Section 1 introduces the formal-
ism, particularly local rules and the way they defines, when they are consis-
tent, a local rule substitution. Section 2 then gives two examples, namely classic
substitutions on words and uniform-shape substitutions, where consistent lo-
cal rules can be easily obtained. Then, Section 3 is more specifically devoted
to the problem of consistency of local rules. We define global rules and prove
Theorem 1. Last, we briefly review in Section 4 the notions of stepped surfaces
and generalized substitutions, and we prove Theorem 2 in Section 5.

1 Local rule substitutions

1.1  Multi-dimensional pointed and non-pointed words

Let A be a finite alphabet. A d-dimensional pointed letter is an element
L = (Z,1) of Z% x A, with ¥ being the support of the letter . The set of



d-dimensional pointed letters is denoted by L;. A d-dimensional pointed word
P is a set of d-dimensional pointed letters with distinct supports, and the
support of P is defined as the set of supports of its letters. The set of d-
dimensional pointed words is denoted by P,.

The lattice Z¢ acts by translation on the supports of d-dimensional pointed
letters and words. Cosets of this action are called d-dimensional non-pointed
letters and words, and respectively denoted by £, and P, with the coset of a
d-dimensional pointed letter L (resp. word P) being denoted by L (resp. P).
One thus has:

VP, P e P, P =P < 37 Z%such that P = #+ P,

and in such a case, we denote the vector Z by (P, P’).

In all that follows, we omit to mention the dimension d when it is not necessary.
Note that d-dimensional words are not necessarily connected, although we will
further introduce a similar condition (see Def. 7).

1.2  Local rules

A classic substitution on words o is defined on letters of a finite alphabet A:
it maps them onto non-empty words. Then, ¢ acts on words over A according
to the rule o(u-v) = o(u)- o(v), where - is the concatenation product.

By analogy, a “d-dimensional substitution” should be defined on d-dimensional
letters of a finite alphabet and should map them onto non-empty d-dimensional
words over this alphabet. Then, it should act on d-dimensional words accord-
ing to a rule which would play the role of a “d-dimensional concatenation
product”. The aim of this section is to define such d-dimensional substitutions.

We first define our d-dimensional substitutions, which map non-pointed letters
onto non-empty non-pointed words:

Definition 1 Non-pointed substitutions are non-erasing maps from Ly to Py.
We then introduce local rules:
Definition 2 Local rules for a non-pointed substitution & are of two types:

(1) an initial rule \* maps a pointed letter [(\*) = L onto a pointed word



such that \*(L) =a(L);
(2) an extension rule \ is defined on a set E(\) = {L,L'} of two pointed

letters with distinct supports, which are mapped onto poi_nted words with
distinct supports, such that \(L) = o (L) and A(L') = (L').

Roughly speaking, an initial rule tells how to map, out of context, a first
pointed letter, and extension rules then tell how to map, one relatively to the

other, the following pointed letters (see Fig. 1).

] ]
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| O
Fig. 1. An initial rule and two extension rules (top, from left to right); the computa-

tion, step by step, of the image of a pointed word by these three local rules (bottom,
from left to right).

More precisely:

Definition 3 (Local rule substitution) Let P be a pointed word and A be
a finite set of local rules for a non-pointed substitution &.
Let (P,) be the sequence of pointed words defined by:

Po={LeP st IN €A, I(\')=L},

Py ={L' € P st IL, T\ €P,xZx A\, EQ\) ={Z+ L, 7+ L'}}.
We then define an action of @ endowed by A, denoted by (7, ), which maps
the pointed letters of the P,’s to pointed words as follows:

VL € Py, (7,A)(L) = X\ (L),
where \* € A and I(\*) = {L},
VL' € Po1, (@, A)(L) =ANZ+ L") +d(\NZ+ L), (7,A)(L)),
where (L, 7,\*) € P, x Z¢x A and E(\) = {Z+ L, 7+ L'}.

Note, however, that two problems can arise in the definition of (7, A). First,
although P, C P for any n, it is not ensured that any pointed letter of P
eventually belongs to a P,. In other words, (7, A) is not necessarily defined
on the whole P. Second, more than one triplet (L, 7, \) € P, x Z? x A, which
is used to define the image of L' € P, relatively to the image of L, can



exist, and do not necessarily lead to the same definition. We thus introduce
the following definition:

Definition 4 (Consistency) A finite set A of local rules for a non-pointed
substitution @ is said to be consistent on a pointed word P if the map (7, )
is unambiguously defined (Def. 3) over all the pointed letters of P.

Then, it is especially interesting when A is consistent over a set WV of pointed
words, such that (7, A)(WW) C W. Indeed, this allows to iterate (&,A) on
pointed words. This yields natural interactions with ergodic theory and spec-
tral theory (see e.g. [12] and references inside). Before discussing more carefully
the problem of consistency of local rules, we provide in the next section some
simple examples.

2 Two simple examples

2.1 Substitutions on words

Here, we show that classic substitutions on words are local rule substitutions.
Let, for example, o be the classic Fibonacci substitution on words defined on
the alphabet A = {a,b} by o(a) = ab and ¢(b) = a. We define! a non-pointed
substitution & by:

(0,a) — {(0,a),(1,b)}
(0,6) — {(0,a)}

We then define a set A of local rules for @ which consists of the following two
initial rules:

Al (0,a) — {(0,a),(1,b)} A5 o (0,0) — {(0,a)}

and of the following four extension rules:

N (0,a) — {(0,a),(1,0)} N\, - (0,a) — {(0,a),(1,0)}

(1,a) — {(2,0),(3,b)} (1,0) — {(2,0)}

Ny (0,0) — {(0,a)} Ny - (0,6) — {(0,a)}

(L) — {(1,a),(2,b)} ) = (e

It is convenient to represent these local rules as depicted on Fig. 2.

! Recall that a letter [ with support & is denoted by (&, 1).



[a] = [a]b] [a]a] > [alb]alb] | [2]b]— [a]a]

(o] = [a] [a]b] - [a]b]a] [o]a] — [a]alv]

Fig. 2. A set of local rules: two initial rules (leftmost column) and four extension rules
(right). For initial rules, a black corner highlights the pointed letters with support 0.
For extension rules, framed pointed letters are mapped onto framed pointed words.

Then, it is not hard to see that A is consistent over the set WV, of 1-dimensional
pointed words whose supports are intervals of Z. Moreover, (7, A)(W,) C Wy,
so that (7, A) can be iterated on WW;. Note that there is nothing astonishing-
we just retrieved the action of classic substitutions on words (see Fig. 3).

- e e

[a[a]b[a] —[a[b]a[b]afa[b]

Fig. 3. Knowing the image of a pointed word (top-left) allows us to compute the
image of a larger pointed word (bottom-left) by a suitable extension rule (right).

2.2 Uniform-shape substitutions

We here introduce uniform-shape substitutions, and we show that they are
local rule substitutions.

Definition 5 (Uniform-shape substitution) Let U = (dy,...,Uy), up €
72, and S C Z¢ (the “uniform-shape”), such that (Sz)zcza 18 a partition of Z2,
where:
S(ml,...,md) = Z fﬂkﬁk + 8.
1<k<d

Then, the d-dimensional uniform-shape substitution py g : L4 — Py maps a
pointed letter L = (Z,1) onto a pointed word py s(L), with support Sz and such
that pys(L) depends only on the letter 1.

Note that the support S thus provides a periodic tiling of Z2. For example, the
following case corresponds to the substitutions studied in [1,13|, which map
letters to rectangular words:

a, beN,  U=((a,0),(0,b), S={3,5),0<i<a, 0<j<b}



Here, the framework is more general, and includes, for example, the following
two-dimensional case (see Fig. 4):

U= ((2, 1)’ (1’ _2))7 S = {(07 O)a (1’ O)’ (O’ 1)7 (17 1)7 (07 2)}

.—»3

@—»2
3

(3] — 3]

Fig. 4. Example of a uniform-shape substitution acting on pointed letters (left) and
on a pointed word (right).

Given a uniform-shape substitution 1.5, let @ be the non-pointed substitution
defined by 7(L) = pys(L), and A be the finite set of local rules for & consisting
of the initial rules:

Az (0,0) — pus(0,0), 1€ A,

and of the extension rules:

—

(0,0) — ps(0,0)
U

)\l,l’ . .
(dg,

, lIE.A, 1<k <d,
) — pus(dy,l)

where d; is the vector whose k-th entry is a 1 and the others are 0’s.

For example, the extension rules associated with the uniform-shape substitu-
tion of Fig. 4 are depicted on Fig. 5.

Fig. 5. The extension rules associated with the uniform-shape substitution of Fig. 4
are all on the same model; framed pointed letters are mapped onto framed pointed
words.

It is not hard to see that A is consistent over the set VW, of d-dimensional
pointed words whose supports are connected, i.e., such that for two letters L



and L', there is a sequence of pointed letters L = Ly,..., Ly = L’ where the
support Z; of L;.; is obtained from the support z;,; of L;,; by adding or
removing 1 to exactly one of the entries of Z;. Moreover, (7, A)(W;) C Wy, so
that (o, A) can be iterated on W,.

3 Consistency of local rules
3.1 A more complex example

The previous section provided an example where the consistency of local rules
is obvious. Let us now consider the local rules of Fig. 6.

2]

-5 | mE— » 7-B E-o

3

Fig. 6. A set of three initial rules (leftmost column) and 16 extension rules.

This set of local rules turns out to be consistent on the pointed words depicted
on Fig. 7. However, Fig. 8 shows that these local rules are not consistent over
all 2-dimensional pointed words.

3
_ BE
2 — — [3]2] ;

Fig. 7. Three examples of the action of the local rules of Fig. 6, which are rather
easily computed.



als B -2

Fig. 8. The local rules of Fig. 6 turn out to be consistent on the first two pointed
words here depicted (leftmost). Note that the images of these two pointed words
contain different pointed letters sharing the same support. Thus, these local rules
are not consistent on the last pointed word (rightmost).

Characterizing the pointed words on which the previous local rules are consis-
tent does not seem obvious. This is a motivation for the global rules introduced
hereafter. Indeed, it is worth being able, either to obtain consistent local rules,
or to ensure the consistency of given local rules.

3.2 Local rules derived from global rules

Let us define global rules:

Definition 6 (Global rule) Let P be a pointed word and @ be a non-pointed
substitution. A global rule on P, for @, is a map I', mapping the pointed letters
of P to pointed words, which satisfies:

o for any pointed letter L € P, I'(L) =& (L);
e distinct pointed letters are mapped onto pointed words with disjoint supports;
o f Lc P, L' c Pand¥cZ% are such that T+ L € P and £+ L' € P, then:

W&+ L), T(& + L)) = #(T(L),T(L')).

A global rule tells us where to place the image of each pointed letter. In
fact, this is exactly what we would like to do with local rule substitutions.
Intuitively, the aim of local rules is to provide finite and local descriptions
of global rules. For example, in Section 2, we have defined a uniform-shape
substitution by a map p7,s, which is easily checked to be a global rule. We then
have provided an equivalent local rule substitution, i.e., a local description of
the map pys. We are here interested in the general case. We first define a
notion of weak connectivity:

Definition 7 (3-connectivity) Let ¥ be a finite set of pairs of pointed let-
ters. A pointed word P is said to be Y-connected if, for two pointed letters L
and L' of P, there are a sequence ((Ay, By),. .., (Ax, Bx)) of pairs of ¥ and a
sequence (T;,...,T1) of vectors of Z¢, such that T + Ay = L, T + By, = L/
and T; + B; = X1 + Ay for 1 <i < k.



Then, a set of Y-connected pointed words is said to be Y-connected. This
notion turns out to be meaningful for computing consistent sets of local rules:

Theorem 1 (Derivation) Let I' be a global rule on a pointed word P, for
a non-pointed substitution &. If P is Y-connected, then one can effectively
derive from ¥ a finite set A of local rules for @, such that ' = (7,A) on P. In
particular, A is consistent on P.

PROOF. Let A be the finite set consisting of one initial rule \* : Ly — I'(Ly),
for one specific pointed letter Ly € P, and of the extension rule A : A —
I'(A), B — I'(B), for each pair (A, B) € . We prove, by induction on n, that
[' = (7, A) on the pointed letters of the P,’s (with the notations of Def. 3):

e one has Py = {Lo}, and (7, A)(Lo) = I'(Lo);

e suppose now that I' = (7, A) on the pointed letters of P,. Let L' € P, ;
and (\,7,L) € A x Z? x P, such that E(\) = {# + L, 7 + L'}. First,
(@,A)(L) = I'(L) by induction. Second, A\(¥+ L) = I'(Z+ L) and A\(Z¥+L') =
['(# 4 L), by definition of A. Third, the fact that I' is a global rule yields
I'#+ L)+ 9@+ L), T'(L)) =T(L). Thus, one computes:

(@, A\)(L')=XNz+ L")+ 0Nz + L), (c,A) (L))
=Nz + L")+ 9\Z+ L), T'(L))
=07+ L")+ d((Z+ L),[(L))
=T(L).

Last, to complete the proof, note that U, P, = P by Y-connectivity of P. m

Note that the previous theorem also allows us to derive a consistent set of local
rules from a global rule I' on a »-connected set of pointed words W C P,.
Indeed, the derived set of local rules depends on I'" and ¥. When T'(W) C W,
this thus allows us to iterate the obtained local rule substitution.

The previous theorem showed that consistent local rules can be derived from
a given global rule. So, a natural question is: can we directly (and effectively)
ensure the consistency of a given set of local rules (i.e., without global rules)?
Note that checking the consistency of a set of local rules on a finite pointed
word can be easily done, trying to compute the image of this word. The inter-
esting case is the one of infinite pointed words or of an infinite set of pointed
words. We thus can adress the following question (whose answer seems to be
positive, although a proof of this remains to be written):

Question 1 Let Fi, ..., F}, be finite pointed words and A be a finite set of local
rules. Is the consistency of A, on pointed words without factor F;, computable?

10



4 Stepped surfaces and generalized substitutions

Notions of stepped surfaces, stepped planes and generalized substitutions, as
well as known results concerning them, are here briefly reviewed. A more
detailed exposition can be found in [2,8] (see also references inside). These
notions and results are then used, in the next section, to provide a large class
of consistent local rules.

4.1 Stepped surfaces and stepped planes
Let (€}, €, 3) be the canonical basis of R?. The face of type i € {1,2,3} and
located at ¥ € Z3, denoted by (7,4*), is the subset of R* defined by:

(Z,7") ={Z+D_ANej, 0< N\ <1}
JFi

The set of faces is denoted by F. Fig. 9 represents some faces.

A

Fig. 9. The faces (0,1%), (0,2*), ) and ( (from left to right).

Let 7 be the orthogonal projection onto A, the real plane of normal vector
€1 + €5 + €3. One defines stepped surfaces as follows:

Definition 8 A stepped surface is a set of faces S, whose union is homeo-
morphic, by m, to the real plane A.

Moreover, stepped surfaces corresponding to discrete approximations of real
planes are called stepped planes:

Definition 9 Let p € R and @ be a vector of R® with positive entries. The
stepped plane Py, is the set of faces defined by:

Pap = {(Z,7) | {T,0) +p <0 <(T+6,0d) +p},
where (.,.) is the canonical scalar product.

Fig. 10 illustrates both Def. 8 and 9.

11
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Fig. 10. A stepped surface (left) and a stepped plane (right). In both cases, the union
of their faces is homeomorphic to the real plane of normal vector €1 + €5 + €3, by
the orthogonal projection onto this plane. Note that, besides the three dimensional
viewpoint, there is also a two-dimensional viewpoint as lozenge tilings of the plane.

Let us now see how to code stepped surfaces by 2-dimensional words. The
projection, by m on A, of the faces of a stepped surface, provides a tiling of
A by lozenges of three types, whose vertices belong to a lattice of rank 2. It
turns out that this tiling admits a 2-dimensional coding. Indeed, let v be the
map defined on faces by:

(T, =L+ e+ ...+ € 7P

Then, wowv is a bijection between the faces of a given stepped surface and the
2-dimensional lattice Zm(€;) + Zm(€3) C A. Thus, the following map codes a
stepped surface by a 2-dimensional pointed word over {1,2,3} (see Fig. 11):

F - 72x{1,2,3}
(Z,7%) = ((a,b), 1),

U o

where arn(e)) + br(ez) = mov(Z,i*).

Fig. 11. Consider a stepped surface (left). The vertices mowv(Z,i*), with (Z,7*) being
a face of the stepped surface, form the lattice Zm(€1) + Zn(€2) (in the middle, with
the black corner of a face (Z,i*) highlighting the vertex 7 o v(&,7*)). So that the
stepped surface can naturally be coded by a 2-dimensional pointed word (right).

Although a stepped surface can always be coded by a 2-dimensional pointed
word, it is not hard to see that the converse does not hold. In fact, 2-dimensional

12



pointed words which are coding of stepped surfaces are characterized in [10]:
they are the 2-dimensional pointed words which do not have factors in the
finite set of factors depicted on Fig. 12.

ol o ol sl w0 el 6 e e sl o el s s

Fig. 12. A 2-dimensional pointed word is the coding of a stepped surface if and only
if it avoids these 15 forbidden factors (see, for example, Fig. 11).

Then, it is proven in [2|, that if S and S’ are two stepped surfaces, then
U(S) = ¥(&') if and only if S and S’ are equal up to translation by a vector
k(€14 &5+ ¢€3), k € Z. This yields, in particular, that ¥ is a bijection from the
set of stepped surfaces containing the origin 0 onto the set of 2-dimensional
pointed words avoiding the forbidden factors of Fig. 12.

4.2 Generalized substitutions

Let o be a classic substitution on words over the alphabet {1,2,3}. The inci-
dence matriz of o is the 3 X 3 matrix whose entry at row ¢ and column j is
the number of occurrences of the letter ¢ in the word o(j). If det M, = +1,
o is said to be unimodular; in this case, note that M ! has, as well as M,,
integer coefficients.

The Parikh mapping f : {1,2,3}* — N3 is defined by f(w) = ‘(Jwly, |w|s, [w]s).

In particular, one has f(o(w)) = M, f(w) for any word w € {1,2,3}*. Then,
generalized substitutions are defined in [4] as follows:

Definition 10 ([4]) Let o be a unimodular substitution over {1,2,3}. The
generalized substitution ©F : F — F is defined by:

VEE'CF,  OLEUE) =0LE)UOLE),

v@ieF,  oy{@iny = U (M @+ ().

lo(j)=p-i-s

For example, for o0 : 1 — 13,2 — 1,3 — 2, one has:

110 00 1
Ma: 001 and M;lz 10 =1
100 01 0

13



This yields (see Fig. 13):
{(

0 + {l

{(

1*)} = {(Ma_lf—i_ 51 - 52’ 1*>’ (Ma_lf’ 2*>}
2°)} = {(M;17,3%)}
;3 = (M1 1)}

8 8

8y

®
[
*

o

o &

—_—

N =
Q@)

C 0, .
Fig. 13. Action of the generalized substitution ©} on some sets of faces.

Although generalized substitutions are defined over all the sets of faces, stepped
surfaces and stepped planes are particularly interesting. Indeed, it is proven in
[2] that a generalized substitution ©% maps a stepped surface, hence a stepped
plane, onto a stepped surface, with distinct faces being mapped onto disjoint
sets of faces (more exactly, with disjoint interiors). Moreover, stepped planes
are mapped onto stepped surfaces which turn out to be also stepped planes.
More precisely, one has (see [8]):

or Pd,p — PtMU&,p.

[ea

Thus, one can iterate the application of generalized substitutions on both
stepped surfaces and stepped planes.

5 Local rule substitutions on stepped surfaces
5.1 Local rules derived from a generalized substitution

Let ©F be a generalized substitution and S be a stepped surface. One defines
a map I', on the pointed letters of the 2-dimensional pointed word ¥(S) by:

\I’(S) C Py — Ps
U(7,i") — W(O(Z,i))

One also defines a non-pointed substitution o* : £, — P, by:

o U(0,i) — L, (0,i).

14



Then one has:
Theorem 2 The map I, is a global rule on ¥ (S), for o*.

PROOF. Let ¥ € Z3 and i € {1,2,3}. Let ¢ € Z> and (c,d) € Z? such that
7(y) = cen(€1) + dm(€2). One thus has V(§ + (Z,i*)) = (¢,d) + ¥(Z,i*). One
then computes, for the pointed letter L = W(Z,1):

Let us show that this yields that I', satisfies the three properties characterizing
a global rule. This will complete the proof.

First, if we take i/ = —7, then (¢, d) 4+ L has support 0, and T, (L) = o= ().
Then, if we denote 7(M_ %) by Z, one has for a pointed letter L':

7T ((e,d)+ L), T((e,d)+ L") =0(Z+T,(L),Z+ (L)) = 0(I'(L),T(L")).

Last, since ¥ bijectively associates faces of the stepped surface S with pointed
letters, and since © maps distinct faces onto disjoint sets of faces, I', maps
distinct pointed letters onto pointed words with disjoint supports. [

Thus, generalized substitutions provide a wide class of global rules for 2-
dimensional pointed words coding stepped surfaces. Moreover, a 2-dimensional
pointed word coding a stepped surface has support Z?, and is thus 3;-connected
by (recall Def. 7), where:

¥ ={(((0,0),4), ((0,1),)), (((0,0),2), ((1,0),5)), 4,5 € {1,2,3}}.

Th. 1 then yields that one can effectively derive from a global rule I', a fi-
nite set of local rules, consistent over the 2-dimensional pointed words coding
stepped surfaces. Moreover, since generalized substitutions map stepped sur-
faces onto stepped surfaces, one can iterate these derived global rules (or the
corresponding local rule substitutions) onto 2-dimensional pointed words cod-
ing stepped surfaces.

In fact, the local rules depicted on Fig. 6, in Section 3, are derived from the
generalized substitution ©%, for o : 1 — 13,2 — 1,3 — 2 (see Fig. 13).
For example, Fig. 14 provides a three-dimensional viewpoint, 7.e., in terms of
stepped surfaces, for Fig. 8. Then, the corresponding local rule substitution

15



can be iterated on the 2-dimensional pointed words coding stepped surfaces.

- A-% | A

Fig. 14. Action, on some subsets of stepped surfaces, of the generalized substi-
tution from which the local rules of Fig. 6 are derived. This corresponds to a
three-dimensional viewpoint of Fig. 7.

5.2 Local rules not derived from a generalized substitution

The previous section proved that there are local rule substitutions over stepped
surfaces that can be derived from generalized susbtitutions. Here, we provide
examples of local rule substitutions over stepped surfaces which cannot be
derived from generalized substitutions. We then also discuss the problem of
characterizing these local rule substitutions.

Let us first define, as well as for classic substitutions on words, the incidence

matrix of a non-pointed substitution & defined over L; = (6, i), 1 € {1,2,3}.
This is the 3 x 3 matrix whose coefficient at row ¢ and column j is the number
of occurences of L; in the non-pointed word &(L;). One easily checks that,
if o is a classic substitution on words and that o* is a non-pointed substitu-
tion derived from the generalized substitution ©%, then M= = 'M,. Thus,
det(M5+) = £1 in such a case.

The uniform-shape substitution defined in Section 2, Fig. 4 (page 7), provides
a first example of local rule substitution over stepped surfaces which cannot be
derived from a generalized substitution. First, note that the incidence matrix
of the associated non-pointed substitution is:

222

1111,

222
which has determinant zero. Hence, this local rule substitution cannot be
derived from a generalized substitution. Then, a case-study, using the charac-
terization by forbidden factors of 2-dimensional pointed words coding stepped

surfaces (see Fig. 12), shows that it maps stepped surfaces onto stepped sur-
faces. This can be easily seen on Fig. 15, which gives a three-dimensional
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viewpoint of Fig. 4.

- W

Fig. 15. The three-dimensional viewpoint corresponding to Fig. 4 (page 7).

Fig. 16 and 17 provide a second example of local rule substitution, which is
not a uniform-shape substitution, and maps stepped surfaces onto stepped
surfaces. The incidence matrix of the associated non-pointed substitution is
diagonal, with diagonal (2, 1,2), and has thus determinant 4. Hence, this local
rule substitution cannot be derived from a generalized substitution.

Fig. 16. A global rule which stretches stepped surfaces (three-dim. viewpoint).
—— —
—

[3] 3] 3

m— [ _+H 5 - B

7
o .

A-8 ma-fy om0

uml

s-F | mm-§ | oE-

[w[e[«[«] Bl=[=] -] [«][<[S

Fig. 17. A set of local rules derived from the global rule of Fig. 16, but which cannot
be derived from a generalized substitution.
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Thus, among local rule substitutions mapping stepped surfaces onto stepped
surfaces, some can be derived from a generalized substitution, but not all. It
would be interesting to obtain a characterization of the former.
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