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MULTI-DIMENSIONAL STURMIAN SEQUENCESAND GENERALIZED SUBSTITUTIONSTHOMAS FERNIQUE ∗LIRMM, CNRS-UMR 5506 and Université Montpellier II,161 rue Ada 34392 Montpellier Cedex 5 - Fran
e.Re
eived (re
eived date)Revised (revised date)Communi
ated by Editor's nameABSTRACTThis paper is devoted to a study on the way generalized substitutions - a multi-dimensional extension of substitutions - a
t on multi-dimensional Sturmian sequen
es.We give a su�
ient 
ondition under whi
h these multi-dimensional Sturmian sequen
esare obtained by iterated 
ompositions of generalized substitutions. This 
ondition relieson Brun expansions - a multi-dimensional extension of 
ontinued fra
tion expansions.Keywords: Multi-dimensional Sturmian Sequen
e; Generalized Substitution; Multi-dimensional Continued Fra
tions; Brun Expansion; Substitutive Sequen
e.1. Introdu
tionThe general purpose of this paper is to 
ontribute to the extension of the theoryof Sturmian sequen
es in a multi-dimensional framework. Here, we are parti
ularlyinterested in the links between substitutions and 
ontinued fra
tion expansions. Wewill �rst review, in the one-dimensional 
ase, some basi
 notations, de�nitions andresults, whose multi-dimensional extension will then be studied in this paper.1.1. Sturmian Sequen
esLet A be an alphabet, i.e. a �nite set of symbols. A word (resp. sequen
e) over

A is a �nite (resp. in�nite) 
on
atenation of letters of A. For example, 121211is a word of length 6 over {1, 2}. A sequen
e w is ultimately periodi
 if it 
an bewritten w = uvv . . . v . . . for two words u and v, and aperiodi
 otherwise. A fa
torof a sequen
e w is a word whi
h o

urs in w. For example, the fa
tors of length
2 of 121211 are exa
tly 12, 21 and 11. The 
omplexity fun
tion pw of w is thende�ned as follows: pw(k) is the number of di�erent fa
tors of length k of w . It isknown that a sequen
e w is ultimately periodi
 if and only if pw(k) ≤ k for some
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k. Hen
e, a sequen
e w with 
omplexity pw(k) = k + 1 for all k is aperiodi
, andno aperiodi
 sequen
e with lower 
omplexity exists. These sequen
es are so-
alledSturmian sequen
es.Sturmian sequen
es have been widely studied for their intera
tions with 
om-plexity theory, dis
rete geometry, dynami
al systems, number theory, quasi
rystalsand tilings (see [32℄ and the referen
es inside). There are many other equivalentde�nitions of Sturmian sequen
es. The reader is referred to Chap.2 of [27℄ or Chap.6of [32℄ for a 
omplete and detailed presentation. We here just review two of them:
• a 
utting sequen
e is the dis
retization of a real line y = αx + ρ; α is 
alledthe slope of the sequen
e and ρ its inter
ept. Sturmian sequen
es 
orrespondto irrational slopes;
• a rotation sequen
e en
odes the traje
tory of an element ρ of the unit 
ir
leunder the a
tion of a rotation Rα of angle α. The 
ir
le is split into two in-tervals, and the k-th letter of the rotation sequen
e depends on whi
h interval
ontains Rk

α(ρ). Sturmian sequen
es 
orrespond to irrational angles.1.2. Substitutions and Continued Fra
tionsA substitution (or morphism) σ over an alphabet A maps ea
h letter of A ontoa non-empty words over A. This de�nition is extended to words and sequen
es over
A a

ording to the rule σ(uv) = σ(u)σ(v). Then, starting from an initial word u0,a substitution σ allows one to generate sequen
es σn(u0), for n ≥ 0. In parti
ular,if u0 is a pre�x of σ(u0) and if the length of σn(u0) tends to in�nity with n, one
an de�ne:

u = lim
n→∞

σ(u0)
n.Su
h a sequen
e u satis�es σ(u) = u and it is said to be invariant. One thende�nes the substitutive sequen
es as images by morphisms of the free monoid ofinvariant sequen
es. They are algorithmi
ally easily generated and have a stronglyordered stru
ture, although not ne
essarily periodi
. For example, the substitution

σ : 1 7→ 12, 2 7→ 1 yields a sequen
e (σn(1))n of unbounded length words su
h that
σn(1) is a pre�x of σn+1(1). Thus, in�nitely many appli
ations of σ on the letter 1lead to an invariant sequen
e:

1 → 12 → 121 → 12112 → · · · → 121121211211212112 · · ·Sturmian sequen
es and substitutions are strongly linked via 
ontinued fra
tionexpansions. Indeed, if u is a Sturmian sequen
e of slope α and inter
ept ρ = 0, andif [α] = [a0, a1, . . .] denotes the 
ontinued fra
tion expansion of α, then it is knownthat:1. u is S-adi
, i.e. there are two substitutions σ0, σ1 and a sequen
e (uk)k ofSturmian sequen
es su
h that (see e.g. [7℄):
∀k ≥ 0, u = σa0

0 ◦ σa1
1 ◦ σa2

0 ◦ · · · ◦ σak

k mod 2(uk);2



2. u is substitutive if and only if [α] is ultimately periodi
 (see e.g. [10, 18, 43℄).Note that the 
ase of a non-zero inter
ept ρ admits a similar 
hara
terization (seee.g. [8, 10℄).1.3. Toward a Multi-dimensional ExtensionIn this paper, we would like to extend what we re
alled above to a multi-dimensional 
ase. The �rst step is to de�ne a notion of multi-dimensional Stur-mian sequen
e. In fa
t, su
h a notion already exists and has been de�ned in the
2-dimensional 
ase in [41℄ by dis
retizations of real planes. This dis
retization 
or-responds, in dis
rete geometry, to the notion of standard arithmeti
 plane (see [33℄).An equivalent de�nition by rotations has also been given (see [11, 12℄). We re
allin the multi-dimensional 
ase both de�nitions in Se
tion 2, where we also dis
ussthe problem of a de�nition in terms of aperiodi
 sequen
e of minimal 
omplexity.De�ning a notion of multi-dimensional substitution is more di�
ult. In theone-dimensional 
ase of sequen
es, the de�nition of a substitution σ is extendedfrom letters to sequen
es a

ording to the rule σ(uv) = σ(u)σ(v). But there isno 
anoni
al extension of su
h a rule in the multi-dimensional 
ase. Thus, variousnotions of substitution have been proposed (see e.g. [5, 6, 23, 35℄). Here we usethe notion of generalized substitution introdu
ed in [6℄. Generalized substitutionsare obtained by duality from 
lassi
 substitutions, and it is proven in [23℄ that theyare a parti
ular 
ase of lo
al rules substitutions introdu
ed in [5, 23℄. In Se
tion3, we re
all the de�nition of generalized substitutions. We show pre
isely the waythey a
t over multi-dimensional Sturmian sequen
es (Theorem 1). We also providea way to e�e
tively generate multi-dimensional sequen
es (Theorem 2).Finally, Se
tion 4 investigates links between generalized substitutions and multi-dimensional Sturmian sequen
es. More pre
isely, we would like to 
hara
terizemulti-dimensional Sturmian sequen
es whi
h are S-adi
 or substitutive, naturallygeneralizing the 
orresponding notions for one-dimensional sequen
es. We prove inSe
tion 4.2 that any multi-dimensional Sturmian sequen
e is S-adi
. In Se
tion4.3, we prove that a multi-dimensional Sturmian sequen
e is substitutive if theve
tor of its parameters (whi
h generalizes the slope of a Sturmian sequen
e) hasan eventually periodi
 Brun expansion (Theorem 4). The Brun expansion is a multi-dimensional 
ontinued fra
tion expansion whi
h is re
alled in Se
tion 4.1. Note thatit is only a su�
ient 
ondition. We end the paper by dis
ussing the di�
ulty of
ompleting this 
hara
terization.2. Multi-dimensional Sturmian Sequen
es2.1. Aperiodi
 Sequen
es of Minimal ComplexityIn this se
tion, we would like to extend, in the multi-dimensional 
ase, the de�-3



nition of Sturmian sequen
es as aperiodi
 sequen
es of minimal 
omplexity.The �rst step 
onsists in de�ning multi-dimensional sequen
es. It is natural tode�ne an n-dimensional sequen
e over the alphabet A as an in�nite array in AZ
n .For n = 1, we do not exa
tly obtain 
lassi
 sequen
es, but rather a two-sided ver-sion of them, i.e. with letters indexed by Z instead of N. This however does notmatter sin
e the results for one-sided sequen
es 
an be easily and similarly statedfor two-sided sequen
es (see [17℄).The se
ond step has to do with the notion of periodi
ity. Generalizing theone-dimensional 
ase, a non-zero ve
tor t ∈ Zn is a ve
tor of periodi
ity for the

n-dimensional sequen
e u if u(x + t) = u(t) for all x ∈ Zn, where u(y) denotes theletter of u at position y. But now u 
an have up to n linearly independent ve
tors ofperiodi
ity- this leads to a notion of r-periodi
ity, with r being the maximal num-ber of linearly independent ve
tors of periodi
ity. Aperiodi
ity then 
orresponds to
0-periodi
ity.The last step would be to de�ne multi-dimensional Sturmian sequen
es as aperi-odi
 multi-dimensional sequen
es of minimal 
omplexity. It seems natural to de�neon Nn the 
omplexity fun
tion pu of an n-dimensional sequen
e u by the number
pu(k1, . . . , kn) of re
tangular fa
tors of size k1×. . .×kn whi
h o

ur in u. For n = 1,we retrieve the 
lassi
 
omplexity fun
tion, and let us re
all that, in this 
ase, u isaperiodi
 if and only if pu(k) ≥ k+1 for all k. For n = 2, let us re
all a 
onje
ture ofM. Nivat ([30℄): if the 2-dimensional sequen
e u is aperiodi
, then pu(k, k′) ≥ kk′+1for all k, k′. This 
onje
ture has been proven in the parti
ular 
ase k = 2 or k′ = 2in [39℄, and for all k, k′ in the slightly weaker version pu(k, k′) ≥ kk′

16 + 1 in [34℄.However, it is, 
onversely, not hard to �nd a periodi
 2-dimensional sequen
e u with
omplexity pu(k, k′) ≥ kk′ + 1. This 
onje
ture thus will never be a su�
ient partof a 
omplete 
hara
terization of the aperiodi
ity of multi-dimensional sequen
es.In order to get around this problem, a �rst way 
ould be to de�ne the 
omplexityby repla
ing the re
tangular shapes of fa
tors with some other shapes. In this way,various shapes of fa
tors are 
onsidered in [16℄. In parti
ular, those obtained bydis
retization of real 
onvex sets seem promising. A se
ond way 
ould be to 
hara
-terize the aperiodi
ity within only a subset of multi-dimensional sequen
es. Indeed,in the one-dimensional 
ase, Sturmian sequen
es turn out to be all uniformly re
ur-rent, i.e. su
h that a fa
tor whi
h o

urs somewhere reo

urs at a bounded distan
efrom every point. But it is worth noti
ing that aperiodi
 2-dimensional sequen
es ofre
tangular 
omplexity kk′ +1 are not uniformly re
urrent, although they would besequen
es of minimal 
omplexity among aperiodi
 sequen
es, a

ording to the 
on-je
ture of M. Nivat (see [15℄). It thus seems reasonable to 
hara
terize aperiodi
itywithin the set of uniformly re
urrent multi-dimensional sequen
es. In this way, it isproven in [12℄ that among uniformly re
urrent 2-dimensional sequen
es, those withre
tangular 
omplexity kk′ + k (or kk′ + k′) are aperiodi
, and no aperiodi
 ones4



of lower 
omplexity are known. One thus 
an hope for a 
omplete 
hara
terization,although additional restri
tions on the 
onsidered set of sequen
es would possiblybe required. It is also worth noti
ing that the aperiodi
 2-dimensional sequen
es of[12℄ were obtained from a 2-dimensional version of the multi-dimensional sequen
esde�ned in the next se
tion.2.2. Hyperplane Sequen
esIn the one-dimensional 
ase, Sturmian sequen
es 
an be des
ribed as 
utting se-quen
es, i.e. as dis
retizations of real lines of the plane. Here we 
onsider dis
retiza-tions of (n− 1)-dimensional real hyperplanes of Rn whi
h yield (n− 1)-dimensionalsequen
es over {1, . . . , n}.The basi
 tools for our dis
retization are the fa
es of the unit hyper
ubes of Rn:De�nition 1 The fa
e (~x, i∗) is the subset of Rn de�ned by:
(~x, i∗) = {~x + ~ei +

∑

j 6=i

λj~ej, 0 ≤ λj ≤ 1}.The set of fa
es is denoted by F .
e1

e2

e3

x0 0
0

0Figure 1: From left to right, the fa
es (~0, 1∗), (~0, 2∗), (~0, 3∗) and (~x, 2∗) (in R3).We use these fa
es to dis
retize the real hyperplane:
P~α,ρ = {~x ∈ Rn | 〈~x, ~α〉 + ρ = 0},where 〈~x, ~y〉 denotes the 
anoni
al inner produ
t of ~x and ~y.De�nition 2 Let ~α ∈ Rn
+\{0} and ρ ∈ R. The stepped hyperplanes S+

~α,ρ and S−
~α,ρare the sets of fa
es de�ned by:

S+
~α,ρ = {(~x, i∗) | 〈~x, ~α〉 + ρ < 0 ≤ 〈~x + ~ei, ~α〉 + ρ} ,

S−
~α,ρ = {(~x, i∗) | 〈~x, ~α〉 + ρ ≤ 0 < 〈~x + ~ei, ~α〉 + ρ} .Note that S+

~α,ρ = S−
~α,ρ for almost all ρ ∈ R. In what follows, we write S~α,ρ forboth S+

~α,ρ or S−
~α,ρ when it does not matter.Let us en
ode stepped hyperplanes into (n − 1)-dimensional sequen
es over thealphabet {1, . . . , n}. We �rst de�ne a bije
tion between the fa
es of a given stepped5



Figure 2: Stepped hyperplanes in the n = 2 (left) and n = 3 (right) 
ases.hyperplane and the points of the (n − 1)-dimensional latti
e Zn−1. This bije
tionis already stated in [3, 5, 11℄ in the 
ase of n = 3. We here provide a new proof forany n.Informally, this bije
tion 
onsists of two steps. First, a proper vertex is asso
i-ated with ea
h fa
e of a stepped hyperplane, i.e. a point of Zn whi
h belongs tono other fa
e of the stepped hyperplane. Then we use the orthogonal proje
tiononto the real hyperplane normal to the ve
tor (1, . . . , 1)- the fa
es are mapped ontothree types of lozenges, identi
al up to rotation, and it turns out that the proper ver-ti
es of the fa
es are mapped onto an n−1 dimensional latti
e. Fig.3 illustrates this.
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Figure 3: From left to right (for n = 3): a proper vertex 
orresponds to ea
hfa
e (at its bla
k 
orner); the type 1, . . . , n of a vertex depends on the type ofits 
orresponding fa
e; the proje
tion onto the hyperplane normal to the ve
tor
t(1, . . . , 1) maps the verti
es to an (n − 1)-dimensional latti
e; we thus obtain an
(n − 1)-dimensional sequen
e over {1, . . . , n}.Formally: 6



Proposition 1 Let v : F → Zn and π : Zn → Zn−1 be the maps de�ned by:
v(~x, i∗) = ~x + ~e1 + . . . + ~ei and π(x1, . . . , xn) = (x1 − xn, . . . , xn−1 − xn).Then, π ◦ v maps bije
tively the fa
es of a given stepped hyperplane onto Zn−1.Proof. We prove this for S+

~α,ρ, with the proof for S−
~α,ρ being similar. Wedenote by V+

~α,ρ ∈ Zn the set of verti
es of S+
~α,ρ, i.e. the points of Zn whi
h 
an bewritten ~x +

∑

j∈I ~ej for (~x, i∗) ∈ S+
~α,ρ and I ⊂ {1, . . . , n} with i ∈ I.We �rst prove that v maps bije
tively the fa
es of S+

~α,ρ onto V+
~α,ρ. It is 
lear that

v(S+
~α,ρ) ⊂ V+

~α,ρ. Let then (~x, i∗) and (~y, j∗) be two fa
es of S+
~α,ρ su
h that v(~x, i∗) =

v(~y, j∗). If i < j, then ~x = ~y +~ei+1 + . . . +~ej. So 〈~x, ~α〉 = 〈~y +~ei+1 + . . . +~ej , ~α〉 ≥

〈~y + ~ej, ~α〉. Sin
e (~y, j∗) ∈ S+
~α,ρ, 〈~y + ~ej , ~α〉 + ρ ≥ 0 and thus 〈~x, ~α〉 + ρ ≥ 0. But

(~x, i∗) ∈ S+
~α,ρ yields 〈~x, ~α〉+ρ < 0: i < j is impossible. Similarly, i > j is impossible.Hen
e i = j, and ~x = ~y follows. Thus, v is one-to-one from S+

~α,ρ to V+
~α,ρ.Conversely, let ~y ∈ V+

~α,ρ. Let (~x, i∗) ∈ S+
~α,ρ and I ⊂ {1, . . . , n}, i ∈ I, su
h that

~y = ~x +
∑

j∈I ~ej . Let us de�ne f : k 7→ 〈~x +
∑

j∈I ~ej − ~e1 − . . . − ~ek, ~α〉 + ρ. Onehas:
f(0) ≥ 〈~x + ~ei, ~α〉 + ρ ≥ 0, f(n) ≤ 〈~x, ~α〉 + ρ < 0, f(k + 1) ≤ f(k).So, let k0 su
h that f(k0−1) ≥ 0 and f(k0) < 0, and set ~y0 = ~y−~e1− . . .−~ek0. Onehas 〈~y0, ~α〉+ρ = f(k0) < 0 and 〈~y0+~ek0 , ~α〉+ρ = f(k0−1) ≥ 0, i.e. (~y0, k

∗
0) ∈ S+

~α,ρ.Sin
e v(~y0, k
∗
0) = y, this proves that v is onto on V+

~α,ρ.Let us prove now that π bije
tively maps the verti
es of V+
~α,ρ onto Zn−1. Let ~α =

(α1, . . . , αn). It is 
lear that π(V+
~α,ρ) ⊂ Zn−1. Then let ~y = (y1, . . . , yn−1) ∈ Zn−1,and prove that there is a unique ~x = (x1, . . . , xn) ∈ V+

~α,ρ su
h that π(~x) = ~y.Suppose that ~x satis�es π(~x) = ~y, and let (~x′, i∗) ∈ S+
~α,ρ be the fa
e su
h that

v(~x′, i∗) = x, i.e. ~x = ~x′ − ~e1 − . . . − ~ei. One has 〈~x′, ~α〉 + ρ < 0 ≤ 〈~x′ + ~ei, ~α〉 + ρ,hen
e 0 ≤ 〈~x′, ~α〉 + ρ + αi < αi. Thus:
0 ≤

n
∑

j=1

xjαj −

i
∑

j=1

αj + ρ + αi < αi.Then, π(~x) = ~y, that is, xj = yj + xn for j < n, yields:
0 ≤

n−1
∑

j=1

yjαj + xn

n
∑

j=1

αj + ρ <

i
∑

j=1

αj ≤

n
∑

j=1

αj ,and performing the division by ∑n
j=1 αj > 0, we obtain:

0 ≤

∑n−1
j=1 yjαj + ρ
∑n

j=1 αj

+ xn < 1.7



Sin
e xn ∈ Z, the previous inequalities 
ompletely 
hara
terize xn. Hen
e ~x isunique, if it exists. And it does exist, sin
e setting xn as above and xi = yi + xnfor i = 1 . . . n − 1 yields ~x = (x1, . . . , xn) ∈ V+
~α,ρ and π(~x) = ~y. �We then use this bije
tion to map a fa
e orthogonal to ~ei onto a letter i indexedby Zn−1:De�nition 3 A hyperplane sequen
e is a (n − 1)-dimensional sequen
e over thealphabet {1, . . . , n} whi
h is image of a stepped hyperplane by the map:

φ :
F → Zn−1 × {1, . . . , n}

(~x, i∗) 7→ (π ◦ v(~x, i∗), i).Note that not all the (n − 1)-dimensional sequen
es over {1, . . . , n} are hyper-plane sequen
es, some of them 
annot be obtained as images by φ of a steppedhyperplane.
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Figure 4: A 2-dimensional hyperplane sequen
e. Note that it seems to be stronglyregular although not periodi
.We �nally de�ne multi-dimensional Sturmian sequen
es. Let us re
all that a
lassi
 Sturmian sequen
e is a dis
retization of a line of dire
tion (1, α), with 1, αlinearly independent over Q. Thus we set:De�nition 4 An n-dimensional Sturmian sequen
e is the image by φ of a steppedhyperplane St(1,α1,...,αn),ρ, with 1, α1, . . . , αn linearly independent over Q.Then, a

ording to this de�nition, 1-dimensional Sturmian sequen
es 
orrespondto 
lassi
 two-sided Sturmian sequen
es.2.3. Rotation Sequen
esIn this se
tion, we de�ne rotation sequen
es. They are (n − 1)-dimensional se-quen
es over {1, . . . , n} obtained as the 
oding, relative to a partition into n intervalof [0, 1), of the a
tion of n − 1 rotations on an element ρ ∈ [0, 1). We prove that8



we exa
tly retrieve the hyperplane sequen
es of the previous se
tion. Rotation se-quen
es have been de�ned in [29℄ for n = 1 and in [11, 12℄ for n = 2, where the
orrespondan
e with the hyperplane sequen
es is also proven. Here we state andprove these results for any n.Let us �rst summarize basi
 de�nitions from Chap. 2 of [27℄. For 0 < α < 1,the rotation of angle α is the mapping Rα from [0, 1) into itself de�ned by:
Rα(z) = {z + α},where {z} denotes the fra
tional part of z. It is 
onvenient to identify [0, 1) withthe torus R/Z, i.e. the unit 
ir
le. For 0 ≤ b < a < 1, the set [a, 1] ∪ [0, b) is then
onsidered as an interval and denoted by [a, b). Thus, for any subinterval I of [0, 1),the sets Rα(I) and R−1

α (I) are always intervals (even when overlapping the point0). We now de�ne rotation sequen
es :De�nition 5 Let ~α = (α1, . . . , αn) ∈ Rn
+ su
h that ∑j αj = 1 and ρ ∈ [0, 1).The rotation sequen
es U+

~α,ρ and U−
~α,ρ are the (n − 1)-dimensional sequen
es over

{1, . . . , n} de�ned by:
U+

~α,ρ(y1, . . . , yn−1) = i ⇔ Ry1
α1

◦ · · · ◦ Ryn−1
αn−1

(ρ) ∈ I+
i ,

U−
~α,ρ(y1, . . . , yn−1) = i ⇔ Ry1

α1
◦ · · · ◦ Ryn−1

αn−1
(ρ) ∈ I−i ,where I+

i =
∑

j<i αj + [0, αi) and I−i =
∑

j<i αj + (0, αi].The following proposition shows that these rotation sequen
es and the hyper-plane sequen
es of De�nition 3 are in fa
t the same:Proposition 2 For ~α = (α1, . . . , αn) ∈ Rn
+ su
h that ∑j αj = 1 and ρ ∈ [0, 1):

U+
~α,ρ = φ(S+

~α,ρ) and U−
~α,ρ = φ(S−

~α,ρ).Proof. We prove this for S+
~α,ρ, with the proof for S−

~α,ρ being similar. Let ~y ∈

Zn−1, denoted by ~y = (y1, . . . , yn−1), and i = φ(S+
~α,ρ)(~y). By Proposition 1, thereis a unique fa
e (~x, i∗) ∈ S+

~α,ρ su
h that π ◦ v(~x, i∗) = ~y. Writing ~x = (x1, . . . , xn),this yields yj = xj + 1 − xn for j ≤ i and yj = xj − xn for i < j < n, with xn ∈ Z.One thus 
omputes:
〈~x, ~α〉 =

n−1
∑

j=1

yjαj −
∑

j≤i

αj + xn

n
∑

j=1

αj .Hen
e one has, modulo 1:
∑

j≤i

αj + 〈x, ~α〉 =

n−1
∑

j=1

yjαj =
∑

j<i

αj + 〈x + ~ei, ~α〉,and 〈~x, ~α〉 + ρ < 0 ≤ 〈~x + ~ei, ~α〉 + ρ then yields, modulo 1:
∑

j<i

αj ≤

n−1
∑

j=1

yjαj + ρ <
∑

j≤i

αj ,9



that is, U+
~α,ρ(~y) = i. �Su
h a de�nition by rotations is, for example, very 
onvenient for studyingfrequen
ies of fa
tors (see [1, 11℄ in one- or two-dimensional 
ases).3. Multi-dimensional Substitutions3.1. Generalized SubstitutionsWe here brie�y re
all the de�nition of generalized substitutions. The reader isreferred to [6℄ or Chap.8 of [32℄ for a less su

in
t presentation.Let us re
all that the in
iden
e matrix of a substitution σ over {1, . . . , n} isthe n × n integer matrix whose 
oe�
ient at row i and 
olumn j is the numberof o

uren
es of the letter i in the word σ(j). A substitution σ is then said to beunimodular if detMσ = ±1.To a unimodular substitution is asso
iated a map a
ting on the fa
es introdu
edin Se
tion 2.2 (De�nition 1):De�nition 6 ([6℄) Let σ be a unimodular substitution over {1, . . . , n}. The gen-eralized substitution Θ∗

σ is de�ned on the fa
e (~x, i∗) of Rn by:
Θ∗

σ(~x, i∗) =
⋃

p|σ(j)=p·i·s
1≤j≤n

(

M−1
σ (~x − ~f(p)), j∗

)

,where ~f(u) is the ve
tor of Zn whose i-th 
oordinate is the number of o

urren
esof the letter i in the word u (in parti
ular, ~f(σ(i)) = Mσ~ei). Note that sin
e σis unimodular, M−1
σ also has integer 
oe�
ients, and thus Θ∗

σ(~x, i∗) ⊂ F . Thisde�nition is then extended to sets of fa
es by:
∀E ⊂ F , Θ∗

σ(E) =
⋃

(~x,i∗)∈E

Θ∗
σ(~x, i∗).It is 
onvenient to de�ne an a
tion of Zn on the fa
es by:

~x + (~y, i∗) = (~y + ~x, i∗).Indeed, one then 
he
ks that Θ∗
σ(~x, i∗) = M−1

σ ~x + Θ∗
σ(~0, i∗), so that the images by

Θ∗
σ of the fa
es (~0, i∗) for 1 ≤ i ≤ n su�
e to de�ne Θ∗

σ on the whole F .Example 1 Let us 
onsider the substitution σ : 1 7→ 12, 2 7→ 1. One has:
Mσ =

(

1 1
1 0

) and M−1
σ =

(

0 1
1 −1

)

,and one 
omputes (see also Fig.5):
Θ∗

σ(~0, 1∗) =
{

(~0, 1∗), (~0, 2∗)
}

,

Θ∗
σ(~0, 2∗) = {(−~e2, 1

∗)} .10



e2

e1

e2

e1

e2

e1

e2

e1Figure 5: The a
tion of the generalized substitution asso
iated to σ : 1 7→ 12, 2 7→ 1on the fa
es (~0, 1∗) and (~0, 2∗).Example 2 Let us 
onsider the substitution σ : 1 7→ 12, 2 7→ 13, 3 7→ 1. One has:
Mσ =





1 1 1
1 0 0
0 1 0



 and M−1
σ =





0 1 0
0 0 1
1 −1 −1



 ,and one 
omputes (see also Fig.6):
Θ∗

σ(~0, 1∗) =
{

(~0, 1∗), (~0, 2∗), (~0, 3∗)
}

,

Θ∗
σ(~0, 2∗) = {(−~e3, 1

∗)} ,

Θ∗
σ(~0, 3∗) = {(−~e3, 2

∗)} .Note that two distin
t fa
es 
an be mapped by a generalized substitution ontothe same fa
e. It is 
ertainly possible a

ording to De�nition 6, but we would liketo avoid this, in order to de�ne a suitable notion of multi-dimensional substitution.To this aim, in the following se
tion we 
onsider parti
ular sets of fa
es, namelystepped hyperplanes (De�nition 2). We prove that distin
t fa
es of su
h sets aremapped by a generalized substitution onto distin
t sets of fa
es.3.2. A
tion on Stepped HyperplanesIn [6℄, it is proven that if ~α is the left eigenve
tor of the in
iden
e matrix Mσof a unimodular substitution σ, then the generalized substitution Θ∗
σ maps distin
tfa
es of the stepped hyperplane S~α,0 onto disjoint sets of fa
es of S~α,0. We hereextend this result, proving that any stepped hyperplane S~α,ρ is mapped withoutoverlaps onto the whole stepped hyperplane StMσ~α,ρ. In parti
ular, distin
t fa
esof S~α,ρ are mapped onto distin
t fa
es of StMσ~α,ρ.Theorem 1 Let σ be a unimodular substitution on {1, . . . , n}, Mσ denote its in-
iden
e matrix and Θ∗

σ be the asso
iated generalized substitution. Then, for ~α ∈

Rn
+\{0} and ρ ∈ R, one has:

Θ∗
σ(S~α,ρ) = StMσ~α,ρ.11



e2 e2

e1 e1

e3 e3

e2 e2
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e1 e1

e3 e3

Figure 6: The a
tion of the generalized substitution asso
iated with σ : 1 7→ 12, 2 7→
13, 3 7→ 1 on the fa
es (~0, 1∗), (~0, 2∗) and (~0, 3∗).Proof. We prove this for S+

~α,ρ, with the proof for S−
~α,ρ being similar. The proofis in two steps: we �rst prove that a fa
e of S+

~α,ρ is mapped by Θ∗
σ onto fa
es of

S+
tMσ~α,ρ, and then that a fa
e of S+

tMσ~α,ρ belongs to the image of exa
tly one fa
eof S+
~α,ρ.Let (~x, i∗) ∈ S+

~α,ρ and (~y, j∗) ∈ Θ∗
σ(x, i∗). One 
an write ~y = M−1

σ (~x − ~f(p)) with
σ(j) = p· i· s. One then has:

〈~y, tMσ~α〉 = 〈M−1
σ (~x − ~f(p)), tMσ~α〉

= 〈MσM−1
σ (~x − ~f(p)), ~α〉

= 〈~x − ~f(p), ~α〉

≤ 〈~x, ~α〉,and:
〈~y + ~ej ,

tMσ~α〉 = 〈M−1
σ (~x − ~f(p) + Mσ~ej),

tMσ~α〉

= 〈~x − ~f(p) + Mσ~ej , ~α〉

= 〈~x − ~f(p) + ~f(p· i· s), ~α〉

= 〈~x + ~ei + ~f(s), ~α〉

≥ 〈~x + ~ei, ~α〉.12



Thus, (~x, i∗) ∈ S+
~α,ρ yields 〈~y, tMσ~α〉 + ρ < 0 and 〈~y + ~ej,

tMσ~α〉 + ρ ≥ 0, that is,
(~y, j∗) ∈ S+

tMσ~α,ρ. This yields Θ∗
σ(S+

~α,ρ) ⊂ S+
tMσ~α,ρ.Now, let (~y, j∗) ∈ S+

tMσ~α,ρ. Note that (~x, i∗) is su
h that (~y, j∗) ∈ Θ∗
σ(~x, i∗) ifand only if one 
an write σ(j) = p· i· s so that ~y = M−1

σ (~x − ~f(p)). Thus, for
σ(j) = i1 · · · iq, the preimages by Θ∗

σ of (~y, j∗) are exa
tly the fa
es (~xk, i∗k)k=0...qwhere ~xk = Mσ~y + ~f(i1 · · · ik−1). Let us prove that exa
tly one of these preimagesbelongs to S~α,ρ. Let h be the fun
tion de�ned for k = 0 . . . q by h(k) = 〈~xk, ~α〉+ ρ.Sin
e (~y, j∗) ∈ StMσ~α,ρ, one has:
h(0) = 〈Mσ~y, ~α〉 + ρ = 〈~y, tMσ~α〉 + ρ < 0,

h(q) = 〈Mσ~y + ~f(σ(j)), ~α〉 + ρ = 〈Mσ~y + Mσ~ej , ~α〉 + ρ = 〈~y + ~ej ,
tMσ~α〉 + ρ ≥ 0.Moreover, for k ≥ 0:

h(k + 1) = 〈~xk+1, ~α〉 + ρ = 〈~xk + ~f(ik), ~α〉 + ρ ≥ h(k).Thus, there is a unique k0, 0 ≤ k0 < q, su
h that h(k0) < 0 ≤ h(k0 + 1), whi
hexa
tly means that (~xk0 , i
∗
k0

) is the unique preimage by Θ∗
σ of (~y, j∗) whi
h belongsto S+

~α,ρ. �Figure 7 illustrates Theorem 1.

Figure 7: A stepped hyperplane S~α,ρ (left) is mapped by the generalized substitution
Θ∗

σ onto the stepped hyperplane StMσ~α,ρ (right).Note that although the proof Theorem 1 is rather te
hni
al, it is on the 
ontraryeasy to 
he
k that:
M−1

σ P~α,ρ = PtMσ~α,ρ,where P~α,ρ is the hyperplane introdu
ed in Se
tion 2.2 whose dis
retization is thestepped hyperplane S~α,ρ. In other words, the generalized substitution Θ∗
σ a
ts as a�dis
retization� of the linear map M−1

σ . This viewpoint 
an help to more intuitivelyunderstand the way generalized substitutions a
t.13



Note also that two di�erent substitutions 
an have the same in
iden
e matri-
es. In this 
ase, the asso
iated generalized substitutions are di�erent, but theya
t similarly on stepped hyperplanes a

ording to Theorem 1. Indeed, they a
t inthe same way globally, i.e. on whole stepped hyperplanes, but not lo
ally, i.e. onsubsets of fa
es (see Fig.8).

Figure 8: Let σ : 1 → 12, 2 → 23, 3 → 123 and σ′ : 1 → 12, 2 → 32, 3 → 231.Although Mσ = Mσ′ , one 
an see that Θ∗
σ (left) and Θ∗

σ′ (right) a
t di�erently onthe same initial set of fa
es. However, it is worth noting that both obtained sets offa
es are in
luded in the same stepped hyperplane (the origin is highlighted by thebla
k 
ir
le).Finally, it is straightforward to restate Theorem 1 in terms of multi-dimensionalsequen
es, thanks to the proje
tion onto hyperplane sequen
es of Se
tion 2.2 (Propo-sition 1 and De�nition 3). Hen
e, generalized substitutions map hyperplane se-quen
es (resp. Sturmian sequen
es) onto hyperplane sequen
es (resp. Sturmiansequen
es). Note that, among 
lassi
 substitutions on words, only Sturmian mor-phisms map Sturmian words onto Sturmian words (see [9℄ or Chap.2 of [27℄). It istherefore natural to 
onsider generalized substitutions as a multi-dimensional ex-14



tension of Sturmian morphisms rather than a general notion of multi-dimensionalsubstitution. Last, note that Sturmian morphisms do not a
t only over Sturmianwords but over all the two-letter words. It is thus natural to extend the a
tion ofgeneralized substitutions beyond stepped hyperplanes. In this dire
tion, the wayexplored by [4℄ seems promising.3.3. E�e
tive Generation of Stepped HyperplanesTheorem 1 shows the way generalized substitutions a
t on stepped hyperplanes.But these substitutions also allow one to generate e�e
tively sequen
es. So we dis-
uss here the possibility of obtaining a stepped hyperplane as the limit of su

essiveappli
ations of a generalized substitution on a �nite set of fa
es (see Fig.9).
Figure 9: From left to right, some iterations on a �nite set of fa
es of the generalizedsubstitution asso
iated with σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 (des
ribed Fig.6). The originis highlighted by the bla
k 
ir
le.In what follows, we 
onsider only 
hara
teristi
 stepped hyperplanes:De�nition 7 The stepped hyperplane S~α,ρ is said to be 
hara
teristi
 if ρ = 0. Forthe sake of simpli
ity, a 
hara
teristi
 stepped hyperplane S~α,0 is denoted by S~α.Theorem 1 yields that generalized substitutions are permutations onto the setof 
hara
teristi
 stepped hyperplanes. Moreover, we also 
onsider here only Pisotsubstitutions:De�nition 8 A substitution σ on {1, . . . , n} with in
iden
e matrix Mσ is Pisot if
Mσ has a spe
trum {λ, µ1, . . . , µk} su
h that 0 < |µi| < 1 < λ, for i = 1, . . . , k.In [14℄, it is proven that if σ is a Pisot substitution, then Mσ (and hen
e tMσ)is irredu
ible and diagonalizable with simple eigenvalues. Thus, a

ording to thePerron-Frobenius theorem, tMσ has a positive eigenve
tor ~α asso
iated with itsdominant eigenvalue λ:

tMσ~α = λ~α.We will use the following lemma:Lemma 1 Let σ be a Pisot substitution. Let 0 < |µi|i < 1 < λ be the eigenvaluesof Mσ and ~α be a positive eigenve
tor of tMσ asso
iated with λ. Then:1. the eigenspa
e of M−1
σ asso
iated with the (µ−1

i )i is the real hyperplane:
P~α = {~x ∈ Rn | 〈~x, ~α〉 = 0};15



2. if µ = maxi |µi| < 1, then there is a positive real number c su
h that:
∀n ∈ N, ∀~x ∈ P~α, ‖M−n

σ ~x‖ ≥
c

µn
‖~x‖.Proof. Note that M−1

σ has eigenvalues λ−1 and µ−1
i for i = 1, . . . , n − 1.1. Let ~x be an eigenve
tor of M−1

σ asso
iated with µ−1
i . Sin
e µiM

−1
σ ~x = ~x and

λ~α = tMσ~α, one has:
〈~x, ~α〉 = 〈µiM

−1
σ ~x,

1

λ
tMσ~α〉 =

µi

λ
〈~x, ~α〉,and sin
e |µi

λ
| < 1, this implies 〈~x, ~α〉 = 0, i.e. ~x ∈ P~α. Thus, the eigenspa
eof M−1

σ asso
iated with the (µ−1
i )i is in
luded in P~α. With these spa
es havingboth dimension n − 1, this in
lusion turns out to be an equality.2. For i = 1, . . . , n − 1, let ~e′i be an eigenve
tor of M−1

σ asso
iated with µ−1
i . Ave
tor x ∈ P~α 
an be written ~x =

∑

i xi
~e′i. We set:

N(~x) =
∑

i

|xi|.It de�nes a norm N over P~α. One has:
N(M−n

σ ~x) = N

(

∑

i

xiM
−n
σ

~e′i

)

= N

(

∑

i

xi

µn
i

~e′i

)

=
∑

i

∣

∣

∣

∣

xi

µn
i

∣

∣

∣

∣

≤
1

µn
N(~x).Then, the equivalen
e of the norms N(.) and ‖.‖ yields a > 0 su
h that

1
a
‖~x‖ ≤ N(~x) ≤ a‖~x‖ for all ~x. One thus 
omputes:

‖M−n
σ ~x‖ ≤ aN(M−n

σ ~x) ≤
a

µn
N(~x) ≤

a2

µn
‖~x‖,and this yields the result with c = a2.

�The previous Lemma tells us that the real hyperplane P~α is invariant under thelinear map M−1
σ , and that this map is expansive on this real hyperplane. We havealready mentioned that it is worth 
onsidering the generalized substitution Θ∗

σ andthe stepped hyperplane S~α as dis
retizations of, respe
tively, the linear map M−1
σand the real hyperplane P~α. A

ording to this viewpoint, the following theorem isjust a �dis
rete version� of Lemma 1:Theorem 2 Let σ be a Pisot unimodular substitution and ~α be a positive left eigen-ve
tor of Mσ asso
iated with its dominant eigenvalue. Then, there is a �nite set offa
es P ⊂ S~α su
h that:

lim
n→∞

(Θ∗
σ)n (P ) = S~α.16



Proof. Let (~y0, j
∗
0 ) ∈ S~α. It follows from Theorem 1 that there are a uniquesequen
e (~yn, j∗n)n≥0 of fa
es of S~α and a unique sequen
e (pn)n≥0 of words, with

pn being a pre�x of σ(jn), su
h that:
∀n ≥ 0, ~yn = M−1

σ (~yn+1 − ~f(pn+1)).In parti
ular:
~y0 = M−n

σ ~yn −

n
∑

k=1

M−k
σ

~f(pk).Let us prove that there is C > 0 su
h that if ‖~y0‖ ≥ C, then ‖~yn‖ < ‖~y0‖ for some
n.Let us �rst bound the quantity ∑k M−k

σ
~f(pk). Note that the sequen
e (pn)n≥0ranges through a �nite number of words. Thus, there is F > 0 whi
h bounds

(‖~f(pn)‖)n≥0. Moreover, a 
lassi
 result of linear algebra yields:
∀~x ∈ Rn, ‖M−1

σ ~x‖ ≤ ̺‖x‖,where ̺ = ̺(M−1
σ ) > 1 is the spe
tral radius of M−1

σ . One 
omputes:
∥

∥

∥

∥

∥

n
∑

k=1

M−k
σ

~f(pk)

∥

∥

∥

∥

∥

≤

n
∑

k=1

̺kF = F
̺n+1 − 1

̺ − 1
.Let us now examine ‖M−n

σ ~yn‖. One 
an write ~yn = ~y′
n + ~y′′

n with ~y′
n ∈ P~α and

~y′′
n ∈ R~α- ‖y′′

n‖ is the distan
e from ~yn to P~α, and (~yn, j∗n) ∈ S~α yields that thisdistan
e is bounded by maxi αi. Thus, using Lemma 1 with ~y′
n ∈ P~α:

‖M−n
σ ~yn‖ ≥ ‖M−n

σ
~y′
n‖ − ‖M−n

σ
~y′′
n‖

≥
c

µn
‖ ~y′

n‖ −

∥

∥

∥

∥

1

λn
~y′′
n

∥

∥

∥

∥

≥
c

µn
(‖~yn‖ − ‖ ~y′′

n‖) −

∥

∥

∥

∥

1

λn
~y′′
n

∥

∥

∥

∥

≥
c

µn
‖~yn‖ −

(

c

µn
+

1

λn

)

max
i

αi.So �nally, if we set
T (n) = F

̺n+1 − 1

̺ − 1
+

(

c

µn
+

1

λn

)

max
i

αi,one has:
‖~y0‖ ≥

c

µn
‖~yn‖ − T (n).Then let n0 be su
h that c

µn0
> 2, and set C = T (n0). This yields ‖~yn0‖ < ‖~y0‖for ‖~y0‖ ≥ C. In other words, any fa
e (~y0, j

∗
0 ) of S~α su
h that ‖~y0‖ ≥ C is theimage, by iterated appli
ations of Θ∗

σ, of a fa
e (~yn0 , j
∗
n0

) with ‖~yn0‖ < ‖~y0‖. Hen
e,the �nite set of fa
es P = {(~y, j∗) ∈ S~α | ‖~y‖ ≤ C} su�
es to generate the wholestepped hyperplane S~α. �17



Note that the previous proof even provides a suitable set of fa
es whi
h generatesthe stepped hyperplane. However, it is not so easy to 
ompute this set, espe
iallybe
ause of the 
onstant c 
oming from Lemma 1. Figure 10 illustrates Theorem 2.

Figure 10: Let us 
onsider the unimodular Pisot substitution σ : 1 7→ 21, 2 7→
13, 3 7→ 1. Left, some iterations of Θ∗

σ on a �nite set of fa
es. Some fa
es nearthe origin (bla
k 
ir
le) turn out to be never obtained (gaps). However, a

ordingto Theorem 2, there is a �nite set of fa
es whi
h su�
es to generate the wholestepped hyperplane. Right, the set of fa
es obtained after some iterations of Θ∗
σ ona su�
iently large initial set.4. Multi-dimensional Continued Fra
tions4.1. Brun ExpansionsThere are various multi-dimensional generalizations of 
ontinued fra
tions (seee.g. [13℄ for an overview). Here we des
ribe the Brun algorithm, also 
alled themodi�ed Ja
obi-Perron algorithm (see [26℄).Let X = [0, 1)n and denote X\{0} by X∗. Let T : X∗ → X be de�ned by:

T (α1, . . . , αn) =

(

α1

αi

, . . . ,
αi−1

αi

,
1

αi

−

⌊

1

αi

⌋

,
αi+1

αi

, . . . ,
αn

αi

)

,where i is the smallest index su
h that αi = maxαj . Let also a : X∗ → N∗ and18



ε : X → {1, . . . , n} be de�ned by:
a(α1, . . . , αn) =

⌊

1

maxαj

⌋ and ε(α1, . . . , αn) = min{i | αi = max
j

αj}.The Brun expansion of ~α ∈ X∗ is the (possibly �nite) sequen
e:
(ak, εk)k≥0 = (a(T k(~α)), ε(T k(~α)))k≥0,and one writes:

[~α] = [(a0, ε0), (a1, ε1), . . .].Let us give a matrix viewpoint. For a ∈ N and ε ∈ {1, . . . , n}, one de�nes thefollowing (n + 1) × (n + 1) matrix:
Aa,ε =









a 1
Iε−1

1 0
In−ε









,where Ip is the p × p identity matrix and all the unspe
i�ed 
oe�
ients are zeroes.One 
he
ks for ~α ∈ X∗:
αε(~α)Aa(~α),ε(~α)

t(1, T (~α)) = t(1, ~α), (1)where (1, ~u) = (1, u1, . . . , un) for ~u = (u1, . . . , un).Finally, if the Brun expansion of ~α is greater than k in length, then the k-th 
on-vergent of ~α is de�ned by:
[(a0, ε0), . . . , (ak, εk)] =

(

p1

q
, . . . ,

pn

q

)

,where:
t(q, p1, . . . , pn) = Aa0,ε0 · · ·Aak,εk

t(1, 0, . . . , 0).Note that for n = 1, T is exa
tly the Gauss map. Sequen
e (an)n then turns outto be the 
ontinued fra
tion expansion of α, and one has εn = 1 for all n. Eq.(1)be
omes:
α

(

a 1
1 0

)(

1
T (α)

)

=

(

1
α

)

,and one 
he
ks, for example:
(

a0 1
1 0

)(

a1 1
1 0

)(

a2 1
1 0

)(

1
0

)

=

(

q
p

)

⇔
p

q
= a0 +

1

a1 +
1

a2

.For n > 1, map T applies the 
lassi
 Gauss map on the greatest 
oordinate of ~α.The result of the operation is then a(~α), while ε(~α) indi
ates the 
oordinates theoperation was performed on. 19



There are several results 
on
erning the 
onvergen
e of this algorithm. For
n = 1, it is known that the sequen
e of the 
onvergents of α tends to α withan exponential rate. For n = 2, the exponential 
onvergen
e is proven for almostevery ~α (see [24, 26, 28℄). For n > 2, [25℄ provides a general method to prove the
onvergen
e almost everywhere, whi
h however has been used only for n ≤ 3.4.2. S-adi
ityWe here 
ombine Theorem 1 and the Brun expansions to write any steppedhyperplane as a 
ontinued 
omposition of generalized substitutions. As in Se
tion3.3, we 
onsider here only 
hara
teristi
 stepped hyperplanes (see De�nition 7).Let a ∈ N∗ and ε ∈ {1, . . . , n}. The substitution σa,ε is de�ned over {1, . . . , n+1}by:

σa,ε :







1 7→ 1a· (ε + 1)
(ε + 1) 7→ 1

i 7→ iOne 
he
ks that the in
iden
e matrix of σa,ε is Aa,ε. Moreover σa,ε is unimodularsin
e one 
omputes det(Aa,ε) = −1. One thus 
an 
ombine Eq.(1) and Theorem 1to obtain:
Θ∗

σa(~α),ε(~α)

(

St(1,T (~α))

)

= St(1,~α).In parti
ular, if ~α has a Brun expansion at least k in length, this yields:
Θ∗

σa0,ε0
◦ . . . ◦ Θ∗

σak,εk

(

St(1,T k+1(~α))

)

= St(1,~α). (2)Note that the number of di�erent substitutions in Eq.(2) is unbounded. Sin
eit is not very suitable for e�e
tive 
omputations, let us rewrite this equation usinga �nite number of substitutions. For ε = 1 . . . n, the substitutions τε and σε arede�ned over {1, . . . , n + 1} by:
τε : i 7→







1 if i = ε + 1,
ε + 1 if i = 1,

i otherwise and σε : i 7→

{

1· i if i = ε + 1,
i otherwise,and an indu
tion easily proves:

σa,ε = σa
ε ◦ τε. (3)Moreover, σε and τε are also unimodular, so the generalized substitutions Θ∗

τε
and

Θ∗
σε

are de�ned, and one has:
Θ∗

σa,ε
= Θ∗

σa
ε◦τε

= Θ∗
τε

◦
(

Θ∗
σε

)a
.Thus, Eq.(2) 
an be rewritten using a �nite number of non-trivial generalized sub-stitutions as follows:

St(1,~α) = Θ∗
τε0

◦
(

Θ∗
σε0

)a0

◦ . . . ◦ Θ∗
τεk

◦
(

Θ∗
σεk

)ak (

St(1,T k+1(~α))

)

. (4)20



Generalizing the terminology for 
lassi
 substitutions on sequen
es (see e.g. [20,21, 32, 42℄), Eq.(4) is 
alled an S-adi
 expansion at order k of the stepped hyperplane
St(1,~α). Then, St(1,~α) is said to be S-adi
 if it has S-adi
 expansions at any order.This is parti
ularly the 
ase if ~α has irrational 
oordinates linearly independent over
Q, sin
e it then turns out that ~α has an in�nite Brun expansion. Note that this
ase 
orresponds to multi-dimensional Sturmian sequen
es (see De�nition 4).Example 3 Let us 
onsider the n = 1 
ase. One has:

τ1 :

{

1 7→ 2
2 7→ 1

and σ1 :

{

1 7→ 1
2 7→ 12

.One 
an 
he
k Eq.(3), for example, for a = 3 and ε = 1:
σ3

1 ◦ τ1(1) = σ3
1(2) = σ2

1(12) = σ(112) = 1112 = σ3,1(1),

σ3
1 ◦ τ1(2) = σ3

1(1) = 1 = σ3,1(2).Then, the asso
iated generalized substitutions Θ∗
τ1

and Θ∗
σ1

are de�ned by:
Θ∗

τ1
:

{

(~0, 1∗) 7→ {(~0, 2∗)}

(~0, 2∗) 7→ {(~0, 1∗)}
and Θ∗

σ1
:

{

(~0, 1∗) 7→ {(~0, 1∗), (~0, 2∗)}

(~0, 2∗) 7→ {(−~e1, 2
∗)}

.Figure 11 illustrates some appli
ations of these basi
 substitutions, i.e. the beginningof an expansion su
h as the one of Eq.(4).
e1

e2
e2

e1 e1

e2

e1

e2
e2

e1

Figure 11: Starting from a �nite set of fa
es of a stepped hyperplane, the generalizedsubstitutions Θ∗
τ1
, Θ∗

σ1
, Θ∗

σ1
and Θ∗

τ1
are su

essively applied (from left to right).All of these sets of fa
es belong to stepped hyperplanes.Example 4 Let us 
onsider the 
ase n = 2. One has:

τ1 :







1 7→ 2
2 7→ 1
3 7→ 3

, τ2 :







1 7→ 3
2 7→ 2
3 7→ 1

, σ1 :







1 7→ 1
2 7→ 12
3 7→ 3

, σ2 :







1 7→ 1
2 7→ 2
3 7→ 13

.Then, the asso
iated generalized substitutions Θ∗
τ1
, Θ∗

τ2
, Θ∗

σ1
and Θ∗

σ2
are de�nedby:

Θ∗
τ1

:







(~0, 1∗) 7→ {(~0, 2∗)}

(~0, 2∗) 7→ {(~0, 1∗)}

(~0, 3∗) 7→ {(~0, 3∗)}

, Θ∗
τ2

:







(~0, 1∗) 7→ {(~0, 3∗)}

(~0, 2∗) 7→ {(~0, 2∗)}

(~0, 3∗) 7→ {(~0, 1∗)}

,21



Θ∗
σ1

:







(~0, 1∗) 7→ {(~0, 1∗), (~0, 2∗)}

(~0, 2∗) 7→ {(−~e1, 2
∗)}

(~0, 3∗) 7→ {(~0, 3∗)}

, Θ∗
σ2

:







(~0, 1∗) 7→ {(~0, 1∗), (~0, 3∗)}

(~0, 2∗) 7→ {(~0, 2∗)}

(~0, 3∗) 7→ {(−~e1, 3
∗)}

.Figure 11 illustrates some appli
ations of these basi
 substitutions, i.e. the beginningof an expansion su
h as the one of Eq.(4).

Figure 12: Starting from a �nite set of fa
es of a stepped hyperplane, the generalizedsubstitutions Θ∗
σ1
, Θ∗

σ2
, Θ∗

τ2
and Θ∗

τ1
are su

essively applied (from left to right).All of these sets of fa
es belong to stepped hyperplanes. Note that these four stepsare a de
omposition of the last step of Fig.9.4.3. SubstitutivityIn this se
tion, we are interested in 
hara
terizations of the following steppedhyperplanes:De�nition 9 A stepped hyperplane is said to be invariant if it is invariant undera non-trivial generalized substitution. It is said to be substitutive if it is the imageby a generalized substitution of an invariant stepped hyperplane.This generalizes the notions of invariant and substitutive sequen
es in the one-dimensional 
ase. Su
h 
hara
terizations are parti
ularly interesting sin
e, a

ord-ing to Theorem 1, one 
an e�e
tively generate stepped hyperplanes whi
h are in-variant under a Pisot generalized substitution or image of su
h invariant steppedhyperplanes.In order to 
hara
terize substitutive 
hara
teristi
 stepped hyperplanes, let usstate the following propostion:Proposition 3 Let ~α ∈ Rn

+. If the 
hara
teristi
 stepped hyperplane St(1,~α) issubstitutive, then the 
oordinates of ~α belong to a �eld extension Q(λ), with λ beingan algebrai
 number of degree n + 1 at most.Proof. Suppose that St(1,~α) is the image by Θ∗
σ′ of a stepped hyperplane St(1,~β)whi
h is invariant under Θ∗

σ. Theorem 1 implies that tM−1
σ

t(1, ~β) = λt(1, ~β), with
λ being an eigenvalue of M−1

σ . Sin
e M−1
σ is a matrix of size n + 1 with integer
oe�
ients, λ is an algebrai
 number of degree n + 1 at most and the 
oordinates22



of ~β thus belong to Q(λ). But Theorem 1 also yields tMσ′
t(1, ~β) = t(1, ~α), so the
oordinates of ~α also belong to Q(λ). �Let us also re
all this theorem put forward by Lagrange:Theorem 3 (Lagrange) The 
ontinued fra
tion expansion of α ∈ R is ultimatelyperiodi
 if and only if α belong to a �eld extension Q(λ), λ being an algebrai
 numberof degree 2 at most.We are now in a position to prove the following theorem:Theorem 4 If ~α ∈ [0, 1)n has an ultimately periodi
 Brun expansion, then the 
har-a
teristi
 stepped hyperplane St(1,~α) is substitutive. Moreover, the 
onverse holds for

n = 1.Proof. The su�
ient 
ondition results from Eq.(2) or Eq.(4). For n = 1, the
onverse follows from Proposition 3 and Theorem 3 (re
all that the Brun expansionsand 
ontinued fra
tion expansions are identi
al for n = 1). �Note that Theorem 4 yields a 
omplete 
hara
terization only for n = 1. This 
ase
orresponds to Sturmian sequen
es (the stepped hyperplanes are �stepped lines�),and we get an already known result (see Introdu
tion). For n > 1, a multi-dimensional extension of Theorem 3 would similarly yield a 
omplete 
hara
teri-zation. However, su
h an extension is thought to be a very hard problem.To get around this problem, we would like to prove, without relying on Proposi-tion 3, that substitutivity implies the periodi
ity of Brun expansions. A promisingway seems to be the following 
hara
terization whi
h relies on derived sequen
es(roughly speaking, a derived sequen
e en
odes the way the pre�x of a sequen
ereo

urs in this sequen
e):Theorem 5 ([19℄) A sequen
e is substitutive if and only if it has a �nite numberof derived sequen
es.Of 
ourse, we would here need a multi-dimensional generalization of this 
har-a
terization. It seems, however, easier than generalizing the theorem of Langrange(Theorem 3). In this dire
tion, one 
an mention [31, 37℄, where derived Voronoïtilings - a sort of generalization of derived sequen
es - are de�ned. In parti
ular,the pseudo-self-similar tilings are 
hara
terized in a way whi
h looks like a multi-dimensional extension of Theorem 5 (the reader is referred to [31, 36, 37, 38℄ formore details). In our 
ase, we would need to link derived Voronoï tilings (or someadaptation to multi-dimensional sequen
es) with Brun expansions. In this dire
-tion, it is worth noti
ing that links between derived sequen
es and 
lassi
 
ontinuedfra
tions have already been studied in [2, 10, 40℄.A
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