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International Journal of Foundations of Computer Siene© World Sienti� Publishing Company
MULTI-DIMENSIONAL STURMIAN SEQUENCESAND GENERALIZED SUBSTITUTIONSTHOMAS FERNIQUE ∗LIRMM, CNRS-UMR 5506 and Université Montpellier II,161 rue Ada 34392 Montpellier Cedex 5 - Frane.Reeived (reeived date)Revised (revised date)Communiated by Editor's nameABSTRACTThis paper is devoted to a study on the way generalized substitutions - a multi-dimensional extension of substitutions - at on multi-dimensional Sturmian sequenes.We give a su�ient ondition under whih these multi-dimensional Sturmian sequenesare obtained by iterated ompositions of generalized substitutions. This ondition relieson Brun expansions - a multi-dimensional extension of ontinued fration expansions.Keywords: Multi-dimensional Sturmian Sequene; Generalized Substitution; Multi-dimensional Continued Frations; Brun Expansion; Substitutive Sequene.1. IntrodutionThe general purpose of this paper is to ontribute to the extension of the theoryof Sturmian sequenes in a multi-dimensional framework. Here, we are partiularlyinterested in the links between substitutions and ontinued fration expansions. Wewill �rst review, in the one-dimensional ase, some basi notations, de�nitions andresults, whose multi-dimensional extension will then be studied in this paper.1.1. Sturmian SequenesLet A be an alphabet, i.e. a �nite set of symbols. A word (resp. sequene) over

A is a �nite (resp. in�nite) onatenation of letters of A. For example, 121211is a word of length 6 over {1, 2}. A sequene w is ultimately periodi if it an bewritten w = uvv . . . v . . . for two words u and v, and aperiodi otherwise. A fatorof a sequene w is a word whih ours in w. For example, the fators of length
2 of 121211 are exatly 12, 21 and 11. The omplexity funtion pw of w is thende�ned as follows: pw(k) is the number of di�erent fators of length k of w . It isknown that a sequene w is ultimately periodi if and only if pw(k) ≤ k for some
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k. Hene, a sequene w with omplexity pw(k) = k + 1 for all k is aperiodi, andno aperiodi sequene with lower omplexity exists. These sequenes are so-alledSturmian sequenes.Sturmian sequenes have been widely studied for their interations with om-plexity theory, disrete geometry, dynamial systems, number theory, quasirystalsand tilings (see [32℄ and the referenes inside). There are many other equivalentde�nitions of Sturmian sequenes. The reader is referred to Chap.2 of [27℄ or Chap.6of [32℄ for a omplete and detailed presentation. We here just review two of them:
• a utting sequene is the disretization of a real line y = αx + ρ; α is alledthe slope of the sequene and ρ its interept. Sturmian sequenes orrespondto irrational slopes;
• a rotation sequene enodes the trajetory of an element ρ of the unit irleunder the ation of a rotation Rα of angle α. The irle is split into two in-tervals, and the k-th letter of the rotation sequene depends on whih intervalontains Rk

α(ρ). Sturmian sequenes orrespond to irrational angles.1.2. Substitutions and Continued FrationsA substitution (or morphism) σ over an alphabet A maps eah letter of A ontoa non-empty words over A. This de�nition is extended to words and sequenes over
A aording to the rule σ(uv) = σ(u)σ(v). Then, starting from an initial word u0,a substitution σ allows one to generate sequenes σn(u0), for n ≥ 0. In partiular,if u0 is a pre�x of σ(u0) and if the length of σn(u0) tends to in�nity with n, onean de�ne:

u = lim
n→∞

σ(u0)
n.Suh a sequene u satis�es σ(u) = u and it is said to be invariant. One thende�nes the substitutive sequenes as images by morphisms of the free monoid ofinvariant sequenes. They are algorithmially easily generated and have a stronglyordered struture, although not neessarily periodi. For example, the substitution

σ : 1 7→ 12, 2 7→ 1 yields a sequene (σn(1))n of unbounded length words suh that
σn(1) is a pre�x of σn+1(1). Thus, in�nitely many appliations of σ on the letter 1lead to an invariant sequene:

1 → 12 → 121 → 12112 → · · · → 121121211211212112 · · ·Sturmian sequenes and substitutions are strongly linked via ontinued frationexpansions. Indeed, if u is a Sturmian sequene of slope α and interept ρ = 0, andif [α] = [a0, a1, . . .] denotes the ontinued fration expansion of α, then it is knownthat:1. u is S-adi, i.e. there are two substitutions σ0, σ1 and a sequene (uk)k ofSturmian sequenes suh that (see e.g. [7℄):
∀k ≥ 0, u = σa0

0 ◦ σa1
1 ◦ σa2

0 ◦ · · · ◦ σak

k mod 2(uk);2



2. u is substitutive if and only if [α] is ultimately periodi (see e.g. [10, 18, 43℄).Note that the ase of a non-zero interept ρ admits a similar haraterization (seee.g. [8, 10℄).1.3. Toward a Multi-dimensional ExtensionIn this paper, we would like to extend what we realled above to a multi-dimensional ase. The �rst step is to de�ne a notion of multi-dimensional Stur-mian sequene. In fat, suh a notion already exists and has been de�ned in the
2-dimensional ase in [41℄ by disretizations of real planes. This disretization or-responds, in disrete geometry, to the notion of standard arithmeti plane (see [33℄).An equivalent de�nition by rotations has also been given (see [11, 12℄). We reallin the multi-dimensional ase both de�nitions in Setion 2, where we also disussthe problem of a de�nition in terms of aperiodi sequene of minimal omplexity.De�ning a notion of multi-dimensional substitution is more di�ult. In theone-dimensional ase of sequenes, the de�nition of a substitution σ is extendedfrom letters to sequenes aording to the rule σ(uv) = σ(u)σ(v). But there isno anonial extension of suh a rule in the multi-dimensional ase. Thus, variousnotions of substitution have been proposed (see e.g. [5, 6, 23, 35℄). Here we usethe notion of generalized substitution introdued in [6℄. Generalized substitutionsare obtained by duality from lassi substitutions, and it is proven in [23℄ that theyare a partiular ase of loal rules substitutions introdued in [5, 23℄. In Setion3, we reall the de�nition of generalized substitutions. We show preisely the waythey at over multi-dimensional Sturmian sequenes (Theorem 1). We also providea way to e�etively generate multi-dimensional sequenes (Theorem 2).Finally, Setion 4 investigates links between generalized substitutions and multi-dimensional Sturmian sequenes. More preisely, we would like to haraterizemulti-dimensional Sturmian sequenes whih are S-adi or substitutive, naturallygeneralizing the orresponding notions for one-dimensional sequenes. We prove inSetion 4.2 that any multi-dimensional Sturmian sequene is S-adi. In Setion4.3, we prove that a multi-dimensional Sturmian sequene is substitutive if thevetor of its parameters (whih generalizes the slope of a Sturmian sequene) hasan eventually periodi Brun expansion (Theorem 4). The Brun expansion is a multi-dimensional ontinued fration expansion whih is realled in Setion 4.1. Note thatit is only a su�ient ondition. We end the paper by disussing the di�ulty ofompleting this haraterization.2. Multi-dimensional Sturmian Sequenes2.1. Aperiodi Sequenes of Minimal ComplexityIn this setion, we would like to extend, in the multi-dimensional ase, the de�-3



nition of Sturmian sequenes as aperiodi sequenes of minimal omplexity.The �rst step onsists in de�ning multi-dimensional sequenes. It is natural tode�ne an n-dimensional sequene over the alphabet A as an in�nite array in AZ
n .For n = 1, we do not exatly obtain lassi sequenes, but rather a two-sided ver-sion of them, i.e. with letters indexed by Z instead of N. This however does notmatter sine the results for one-sided sequenes an be easily and similarly statedfor two-sided sequenes (see [17℄).The seond step has to do with the notion of periodiity. Generalizing theone-dimensional ase, a non-zero vetor t ∈ Zn is a vetor of periodiity for the

n-dimensional sequene u if u(x + t) = u(t) for all x ∈ Zn, where u(y) denotes theletter of u at position y. But now u an have up to n linearly independent vetors ofperiodiity- this leads to a notion of r-periodiity, with r being the maximal num-ber of linearly independent vetors of periodiity. Aperiodiity then orresponds to
0-periodiity.The last step would be to de�ne multi-dimensional Sturmian sequenes as aperi-odi multi-dimensional sequenes of minimal omplexity. It seems natural to de�neon Nn the omplexity funtion pu of an n-dimensional sequene u by the number
pu(k1, . . . , kn) of retangular fators of size k1×. . .×kn whih our in u. For n = 1,we retrieve the lassi omplexity funtion, and let us reall that, in this ase, u isaperiodi if and only if pu(k) ≥ k+1 for all k. For n = 2, let us reall a onjeture ofM. Nivat ([30℄): if the 2-dimensional sequene u is aperiodi, then pu(k, k′) ≥ kk′+1for all k, k′. This onjeture has been proven in the partiular ase k = 2 or k′ = 2in [39℄, and for all k, k′ in the slightly weaker version pu(k, k′) ≥ kk′

16 + 1 in [34℄.However, it is, onversely, not hard to �nd a periodi 2-dimensional sequene u withomplexity pu(k, k′) ≥ kk′ + 1. This onjeture thus will never be a su�ient partof a omplete haraterization of the aperiodiity of multi-dimensional sequenes.In order to get around this problem, a �rst way ould be to de�ne the omplexityby replaing the retangular shapes of fators with some other shapes. In this way,various shapes of fators are onsidered in [16℄. In partiular, those obtained bydisretization of real onvex sets seem promising. A seond way ould be to hara-terize the aperiodiity within only a subset of multi-dimensional sequenes. Indeed,in the one-dimensional ase, Sturmian sequenes turn out to be all uniformly reur-rent, i.e. suh that a fator whih ours somewhere reours at a bounded distanefrom every point. But it is worth notiing that aperiodi 2-dimensional sequenes ofretangular omplexity kk′ +1 are not uniformly reurrent, although they would besequenes of minimal omplexity among aperiodi sequenes, aording to the on-jeture of M. Nivat (see [15℄). It thus seems reasonable to haraterize aperiodiitywithin the set of uniformly reurrent multi-dimensional sequenes. In this way, it isproven in [12℄ that among uniformly reurrent 2-dimensional sequenes, those withretangular omplexity kk′ + k (or kk′ + k′) are aperiodi, and no aperiodi ones4



of lower omplexity are known. One thus an hope for a omplete haraterization,although additional restritions on the onsidered set of sequenes would possiblybe required. It is also worth notiing that the aperiodi 2-dimensional sequenes of[12℄ were obtained from a 2-dimensional version of the multi-dimensional sequenesde�ned in the next setion.2.2. Hyperplane SequenesIn the one-dimensional ase, Sturmian sequenes an be desribed as utting se-quenes, i.e. as disretizations of real lines of the plane. Here we onsider disretiza-tions of (n− 1)-dimensional real hyperplanes of Rn whih yield (n− 1)-dimensionalsequenes over {1, . . . , n}.The basi tools for our disretization are the faes of the unit hyperubes of Rn:De�nition 1 The fae (~x, i∗) is the subset of Rn de�ned by:
(~x, i∗) = {~x + ~ei +

∑

j 6=i

λj~ej, 0 ≤ λj ≤ 1}.The set of faes is denoted by F .
e1

e2

e3

x0 0
0

0Figure 1: From left to right, the faes (~0, 1∗), (~0, 2∗), (~0, 3∗) and (~x, 2∗) (in R3).We use these faes to disretize the real hyperplane:
P~α,ρ = {~x ∈ Rn | 〈~x, ~α〉 + ρ = 0},where 〈~x, ~y〉 denotes the anonial inner produt of ~x and ~y.De�nition 2 Let ~α ∈ Rn
+\{0} and ρ ∈ R. The stepped hyperplanes S+

~α,ρ and S−
~α,ρare the sets of faes de�ned by:

S+
~α,ρ = {(~x, i∗) | 〈~x, ~α〉 + ρ < 0 ≤ 〈~x + ~ei, ~α〉 + ρ} ,

S−
~α,ρ = {(~x, i∗) | 〈~x, ~α〉 + ρ ≤ 0 < 〈~x + ~ei, ~α〉 + ρ} .Note that S+

~α,ρ = S−
~α,ρ for almost all ρ ∈ R. In what follows, we write S~α,ρ forboth S+

~α,ρ or S−
~α,ρ when it does not matter.Let us enode stepped hyperplanes into (n − 1)-dimensional sequenes over thealphabet {1, . . . , n}. We �rst de�ne a bijetion between the faes of a given stepped5



Figure 2: Stepped hyperplanes in the n = 2 (left) and n = 3 (right) ases.hyperplane and the points of the (n − 1)-dimensional lattie Zn−1. This bijetionis already stated in [3, 5, 11℄ in the ase of n = 3. We here provide a new proof forany n.Informally, this bijetion onsists of two steps. First, a proper vertex is assoi-ated with eah fae of a stepped hyperplane, i.e. a point of Zn whih belongs tono other fae of the stepped hyperplane. Then we use the orthogonal projetiononto the real hyperplane normal to the vetor (1, . . . , 1)- the faes are mapped ontothree types of lozenges, idential up to rotation, and it turns out that the proper ver-ties of the faes are mapped onto an n−1 dimensional lattie. Fig.3 illustrates this.
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Figure 3: From left to right (for n = 3): a proper vertex orresponds to eahfae (at its blak orner); the type 1, . . . , n of a vertex depends on the type ofits orresponding fae; the projetion onto the hyperplane normal to the vetor
t(1, . . . , 1) maps the verties to an (n − 1)-dimensional lattie; we thus obtain an
(n − 1)-dimensional sequene over {1, . . . , n}.Formally: 6



Proposition 1 Let v : F → Zn and π : Zn → Zn−1 be the maps de�ned by:
v(~x, i∗) = ~x + ~e1 + . . . + ~ei and π(x1, . . . , xn) = (x1 − xn, . . . , xn−1 − xn).Then, π ◦ v maps bijetively the faes of a given stepped hyperplane onto Zn−1.Proof. We prove this for S+

~α,ρ, with the proof for S−
~α,ρ being similar. Wedenote by V+

~α,ρ ∈ Zn the set of verties of S+
~α,ρ, i.e. the points of Zn whih an bewritten ~x +

∑

j∈I ~ej for (~x, i∗) ∈ S+
~α,ρ and I ⊂ {1, . . . , n} with i ∈ I.We �rst prove that v maps bijetively the faes of S+

~α,ρ onto V+
~α,ρ. It is lear that

v(S+
~α,ρ) ⊂ V+

~α,ρ. Let then (~x, i∗) and (~y, j∗) be two faes of S+
~α,ρ suh that v(~x, i∗) =

v(~y, j∗). If i < j, then ~x = ~y +~ei+1 + . . . +~ej. So 〈~x, ~α〉 = 〈~y +~ei+1 + . . . +~ej , ~α〉 ≥

〈~y + ~ej, ~α〉. Sine (~y, j∗) ∈ S+
~α,ρ, 〈~y + ~ej , ~α〉 + ρ ≥ 0 and thus 〈~x, ~α〉 + ρ ≥ 0. But

(~x, i∗) ∈ S+
~α,ρ yields 〈~x, ~α〉+ρ < 0: i < j is impossible. Similarly, i > j is impossible.Hene i = j, and ~x = ~y follows. Thus, v is one-to-one from S+

~α,ρ to V+
~α,ρ.Conversely, let ~y ∈ V+

~α,ρ. Let (~x, i∗) ∈ S+
~α,ρ and I ⊂ {1, . . . , n}, i ∈ I, suh that

~y = ~x +
∑

j∈I ~ej . Let us de�ne f : k 7→ 〈~x +
∑

j∈I ~ej − ~e1 − . . . − ~ek, ~α〉 + ρ. Onehas:
f(0) ≥ 〈~x + ~ei, ~α〉 + ρ ≥ 0, f(n) ≤ 〈~x, ~α〉 + ρ < 0, f(k + 1) ≤ f(k).So, let k0 suh that f(k0−1) ≥ 0 and f(k0) < 0, and set ~y0 = ~y−~e1− . . .−~ek0. Onehas 〈~y0, ~α〉+ρ = f(k0) < 0 and 〈~y0+~ek0 , ~α〉+ρ = f(k0−1) ≥ 0, i.e. (~y0, k

∗
0) ∈ S+

~α,ρ.Sine v(~y0, k
∗
0) = y, this proves that v is onto on V+

~α,ρ.Let us prove now that π bijetively maps the verties of V+
~α,ρ onto Zn−1. Let ~α =

(α1, . . . , αn). It is lear that π(V+
~α,ρ) ⊂ Zn−1. Then let ~y = (y1, . . . , yn−1) ∈ Zn−1,and prove that there is a unique ~x = (x1, . . . , xn) ∈ V+

~α,ρ suh that π(~x) = ~y.Suppose that ~x satis�es π(~x) = ~y, and let (~x′, i∗) ∈ S+
~α,ρ be the fae suh that

v(~x′, i∗) = x, i.e. ~x = ~x′ − ~e1 − . . . − ~ei. One has 〈~x′, ~α〉 + ρ < 0 ≤ 〈~x′ + ~ei, ~α〉 + ρ,hene 0 ≤ 〈~x′, ~α〉 + ρ + αi < αi. Thus:
0 ≤

n
∑

j=1

xjαj −

i
∑

j=1

αj + ρ + αi < αi.Then, π(~x) = ~y, that is, xj = yj + xn for j < n, yields:
0 ≤

n−1
∑

j=1

yjαj + xn

n
∑

j=1

αj + ρ <

i
∑

j=1

αj ≤

n
∑

j=1

αj ,and performing the division by ∑n
j=1 αj > 0, we obtain:

0 ≤

∑n−1
j=1 yjαj + ρ
∑n

j=1 αj

+ xn < 1.7



Sine xn ∈ Z, the previous inequalities ompletely haraterize xn. Hene ~x isunique, if it exists. And it does exist, sine setting xn as above and xi = yi + xnfor i = 1 . . . n − 1 yields ~x = (x1, . . . , xn) ∈ V+
~α,ρ and π(~x) = ~y. �We then use this bijetion to map a fae orthogonal to ~ei onto a letter i indexedby Zn−1:De�nition 3 A hyperplane sequene is a (n − 1)-dimensional sequene over thealphabet {1, . . . , n} whih is image of a stepped hyperplane by the map:

φ :
F → Zn−1 × {1, . . . , n}

(~x, i∗) 7→ (π ◦ v(~x, i∗), i).Note that not all the (n − 1)-dimensional sequenes over {1, . . . , n} are hyper-plane sequenes, some of them annot be obtained as images by φ of a steppedhyperplane.
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Figure 4: A 2-dimensional hyperplane sequene. Note that it seems to be stronglyregular although not periodi.We �nally de�ne multi-dimensional Sturmian sequenes. Let us reall that alassi Sturmian sequene is a disretization of a line of diretion (1, α), with 1, αlinearly independent over Q. Thus we set:De�nition 4 An n-dimensional Sturmian sequene is the image by φ of a steppedhyperplane St(1,α1,...,αn),ρ, with 1, α1, . . . , αn linearly independent over Q.Then, aording to this de�nition, 1-dimensional Sturmian sequenes orrespondto lassi two-sided Sturmian sequenes.2.3. Rotation SequenesIn this setion, we de�ne rotation sequenes. They are (n − 1)-dimensional se-quenes over {1, . . . , n} obtained as the oding, relative to a partition into n intervalof [0, 1), of the ation of n − 1 rotations on an element ρ ∈ [0, 1). We prove that8



we exatly retrieve the hyperplane sequenes of the previous setion. Rotation se-quenes have been de�ned in [29℄ for n = 1 and in [11, 12℄ for n = 2, where theorrespondane with the hyperplane sequenes is also proven. Here we state andprove these results for any n.Let us �rst summarize basi de�nitions from Chap. 2 of [27℄. For 0 < α < 1,the rotation of angle α is the mapping Rα from [0, 1) into itself de�ned by:
Rα(z) = {z + α},where {z} denotes the frational part of z. It is onvenient to identify [0, 1) withthe torus R/Z, i.e. the unit irle. For 0 ≤ b < a < 1, the set [a, 1] ∪ [0, b) is thenonsidered as an interval and denoted by [a, b). Thus, for any subinterval I of [0, 1),the sets Rα(I) and R−1

α (I) are always intervals (even when overlapping the point0). We now de�ne rotation sequenes :De�nition 5 Let ~α = (α1, . . . , αn) ∈ Rn
+ suh that ∑j αj = 1 and ρ ∈ [0, 1).The rotation sequenes U+

~α,ρ and U−
~α,ρ are the (n − 1)-dimensional sequenes over

{1, . . . , n} de�ned by:
U+

~α,ρ(y1, . . . , yn−1) = i ⇔ Ry1
α1

◦ · · · ◦ Ryn−1
αn−1

(ρ) ∈ I+
i ,

U−
~α,ρ(y1, . . . , yn−1) = i ⇔ Ry1

α1
◦ · · · ◦ Ryn−1

αn−1
(ρ) ∈ I−i ,where I+

i =
∑

j<i αj + [0, αi) and I−i =
∑

j<i αj + (0, αi].The following proposition shows that these rotation sequenes and the hyper-plane sequenes of De�nition 3 are in fat the same:Proposition 2 For ~α = (α1, . . . , αn) ∈ Rn
+ suh that ∑j αj = 1 and ρ ∈ [0, 1):

U+
~α,ρ = φ(S+

~α,ρ) and U−
~α,ρ = φ(S−

~α,ρ).Proof. We prove this for S+
~α,ρ, with the proof for S−

~α,ρ being similar. Let ~y ∈

Zn−1, denoted by ~y = (y1, . . . , yn−1), and i = φ(S+
~α,ρ)(~y). By Proposition 1, thereis a unique fae (~x, i∗) ∈ S+

~α,ρ suh that π ◦ v(~x, i∗) = ~y. Writing ~x = (x1, . . . , xn),this yields yj = xj + 1 − xn for j ≤ i and yj = xj − xn for i < j < n, with xn ∈ Z.One thus omputes:
〈~x, ~α〉 =

n−1
∑

j=1

yjαj −
∑

j≤i

αj + xn

n
∑

j=1

αj .Hene one has, modulo 1:
∑

j≤i

αj + 〈x, ~α〉 =

n−1
∑

j=1

yjαj =
∑

j<i

αj + 〈x + ~ei, ~α〉,and 〈~x, ~α〉 + ρ < 0 ≤ 〈~x + ~ei, ~α〉 + ρ then yields, modulo 1:
∑

j<i

αj ≤

n−1
∑

j=1

yjαj + ρ <
∑

j≤i

αj ,9



that is, U+
~α,ρ(~y) = i. �Suh a de�nition by rotations is, for example, very onvenient for studyingfrequenies of fators (see [1, 11℄ in one- or two-dimensional ases).3. Multi-dimensional Substitutions3.1. Generalized SubstitutionsWe here brie�y reall the de�nition of generalized substitutions. The reader isreferred to [6℄ or Chap.8 of [32℄ for a less suint presentation.Let us reall that the inidene matrix of a substitution σ over {1, . . . , n} isthe n × n integer matrix whose oe�ient at row i and olumn j is the numberof ourenes of the letter i in the word σ(j). A substitution σ is then said to beunimodular if detMσ = ±1.To a unimodular substitution is assoiated a map ating on the faes introduedin Setion 2.2 (De�nition 1):De�nition 6 ([6℄) Let σ be a unimodular substitution over {1, . . . , n}. The gen-eralized substitution Θ∗

σ is de�ned on the fae (~x, i∗) of Rn by:
Θ∗

σ(~x, i∗) =
⋃

p|σ(j)=p·i·s
1≤j≤n

(

M−1
σ (~x − ~f(p)), j∗

)

,where ~f(u) is the vetor of Zn whose i-th oordinate is the number of ourrenesof the letter i in the word u (in partiular, ~f(σ(i)) = Mσ~ei). Note that sine σis unimodular, M−1
σ also has integer oe�ients, and thus Θ∗

σ(~x, i∗) ⊂ F . Thisde�nition is then extended to sets of faes by:
∀E ⊂ F , Θ∗

σ(E) =
⋃

(~x,i∗)∈E

Θ∗
σ(~x, i∗).It is onvenient to de�ne an ation of Zn on the faes by:

~x + (~y, i∗) = (~y + ~x, i∗).Indeed, one then heks that Θ∗
σ(~x, i∗) = M−1

σ ~x + Θ∗
σ(~0, i∗), so that the images by

Θ∗
σ of the faes (~0, i∗) for 1 ≤ i ≤ n su�e to de�ne Θ∗

σ on the whole F .Example 1 Let us onsider the substitution σ : 1 7→ 12, 2 7→ 1. One has:
Mσ =

(

1 1
1 0

) and M−1
σ =

(

0 1
1 −1

)

,and one omputes (see also Fig.5):
Θ∗

σ(~0, 1∗) =
{

(~0, 1∗), (~0, 2∗)
}

,

Θ∗
σ(~0, 2∗) = {(−~e2, 1

∗)} .10



e2

e1

e2

e1

e2

e1

e2

e1Figure 5: The ation of the generalized substitution assoiated to σ : 1 7→ 12, 2 7→ 1on the faes (~0, 1∗) and (~0, 2∗).Example 2 Let us onsider the substitution σ : 1 7→ 12, 2 7→ 13, 3 7→ 1. One has:
Mσ =





1 1 1
1 0 0
0 1 0



 and M−1
σ =





0 1 0
0 0 1
1 −1 −1



 ,and one omputes (see also Fig.6):
Θ∗

σ(~0, 1∗) =
{

(~0, 1∗), (~0, 2∗), (~0, 3∗)
}

,

Θ∗
σ(~0, 2∗) = {(−~e3, 1

∗)} ,

Θ∗
σ(~0, 3∗) = {(−~e3, 2

∗)} .Note that two distint faes an be mapped by a generalized substitution ontothe same fae. It is ertainly possible aording to De�nition 6, but we would liketo avoid this, in order to de�ne a suitable notion of multi-dimensional substitution.To this aim, in the following setion we onsider partiular sets of faes, namelystepped hyperplanes (De�nition 2). We prove that distint faes of suh sets aremapped by a generalized substitution onto distint sets of faes.3.2. Ation on Stepped HyperplanesIn [6℄, it is proven that if ~α is the left eigenvetor of the inidene matrix Mσof a unimodular substitution σ, then the generalized substitution Θ∗
σ maps distintfaes of the stepped hyperplane S~α,0 onto disjoint sets of faes of S~α,0. We hereextend this result, proving that any stepped hyperplane S~α,ρ is mapped withoutoverlaps onto the whole stepped hyperplane StMσ~α,ρ. In partiular, distint faesof S~α,ρ are mapped onto distint faes of StMσ~α,ρ.Theorem 1 Let σ be a unimodular substitution on {1, . . . , n}, Mσ denote its in-idene matrix and Θ∗

σ be the assoiated generalized substitution. Then, for ~α ∈

Rn
+\{0} and ρ ∈ R, one has:

Θ∗
σ(S~α,ρ) = StMσ~α,ρ.11



e2 e2

e1 e1

e3 e3

e2 e2
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e3 e3

Figure 6: The ation of the generalized substitution assoiated with σ : 1 7→ 12, 2 7→
13, 3 7→ 1 on the faes (~0, 1∗), (~0, 2∗) and (~0, 3∗).Proof. We prove this for S+

~α,ρ, with the proof for S−
~α,ρ being similar. The proofis in two steps: we �rst prove that a fae of S+

~α,ρ is mapped by Θ∗
σ onto faes of

S+
tMσ~α,ρ, and then that a fae of S+

tMσ~α,ρ belongs to the image of exatly one faeof S+
~α,ρ.Let (~x, i∗) ∈ S+

~α,ρ and (~y, j∗) ∈ Θ∗
σ(x, i∗). One an write ~y = M−1

σ (~x − ~f(p)) with
σ(j) = p· i· s. One then has:

〈~y, tMσ~α〉 = 〈M−1
σ (~x − ~f(p)), tMσ~α〉

= 〈MσM−1
σ (~x − ~f(p)), ~α〉

= 〈~x − ~f(p), ~α〉

≤ 〈~x, ~α〉,and:
〈~y + ~ej ,

tMσ~α〉 = 〈M−1
σ (~x − ~f(p) + Mσ~ej),

tMσ~α〉

= 〈~x − ~f(p) + Mσ~ej , ~α〉

= 〈~x − ~f(p) + ~f(p· i· s), ~α〉

= 〈~x + ~ei + ~f(s), ~α〉

≥ 〈~x + ~ei, ~α〉.12



Thus, (~x, i∗) ∈ S+
~α,ρ yields 〈~y, tMσ~α〉 + ρ < 0 and 〈~y + ~ej,

tMσ~α〉 + ρ ≥ 0, that is,
(~y, j∗) ∈ S+

tMσ~α,ρ. This yields Θ∗
σ(S+

~α,ρ) ⊂ S+
tMσ~α,ρ.Now, let (~y, j∗) ∈ S+

tMσ~α,ρ. Note that (~x, i∗) is suh that (~y, j∗) ∈ Θ∗
σ(~x, i∗) ifand only if one an write σ(j) = p· i· s so that ~y = M−1

σ (~x − ~f(p)). Thus, for
σ(j) = i1 · · · iq, the preimages by Θ∗

σ of (~y, j∗) are exatly the faes (~xk, i∗k)k=0...qwhere ~xk = Mσ~y + ~f(i1 · · · ik−1). Let us prove that exatly one of these preimagesbelongs to S~α,ρ. Let h be the funtion de�ned for k = 0 . . . q by h(k) = 〈~xk, ~α〉+ ρ.Sine (~y, j∗) ∈ StMσ~α,ρ, one has:
h(0) = 〈Mσ~y, ~α〉 + ρ = 〈~y, tMσ~α〉 + ρ < 0,

h(q) = 〈Mσ~y + ~f(σ(j)), ~α〉 + ρ = 〈Mσ~y + Mσ~ej , ~α〉 + ρ = 〈~y + ~ej ,
tMσ~α〉 + ρ ≥ 0.Moreover, for k ≥ 0:

h(k + 1) = 〈~xk+1, ~α〉 + ρ = 〈~xk + ~f(ik), ~α〉 + ρ ≥ h(k).Thus, there is a unique k0, 0 ≤ k0 < q, suh that h(k0) < 0 ≤ h(k0 + 1), whihexatly means that (~xk0 , i
∗
k0

) is the unique preimage by Θ∗
σ of (~y, j∗) whih belongsto S+

~α,ρ. �Figure 7 illustrates Theorem 1.

Figure 7: A stepped hyperplane S~α,ρ (left) is mapped by the generalized substitution
Θ∗

σ onto the stepped hyperplane StMσ~α,ρ (right).Note that although the proof Theorem 1 is rather tehnial, it is on the ontraryeasy to hek that:
M−1

σ P~α,ρ = PtMσ~α,ρ,where P~α,ρ is the hyperplane introdued in Setion 2.2 whose disretization is thestepped hyperplane S~α,ρ. In other words, the generalized substitution Θ∗
σ ats as a�disretization� of the linear map M−1

σ . This viewpoint an help to more intuitivelyunderstand the way generalized substitutions at.13



Note also that two di�erent substitutions an have the same inidene matri-es. In this ase, the assoiated generalized substitutions are di�erent, but theyat similarly on stepped hyperplanes aording to Theorem 1. Indeed, they at inthe same way globally, i.e. on whole stepped hyperplanes, but not loally, i.e. onsubsets of faes (see Fig.8).

Figure 8: Let σ : 1 → 12, 2 → 23, 3 → 123 and σ′ : 1 → 12, 2 → 32, 3 → 231.Although Mσ = Mσ′ , one an see that Θ∗
σ (left) and Θ∗

σ′ (right) at di�erently onthe same initial set of faes. However, it is worth noting that both obtained sets offaes are inluded in the same stepped hyperplane (the origin is highlighted by theblak irle).Finally, it is straightforward to restate Theorem 1 in terms of multi-dimensionalsequenes, thanks to the projetion onto hyperplane sequenes of Setion 2.2 (Propo-sition 1 and De�nition 3). Hene, generalized substitutions map hyperplane se-quenes (resp. Sturmian sequenes) onto hyperplane sequenes (resp. Sturmiansequenes). Note that, among lassi substitutions on words, only Sturmian mor-phisms map Sturmian words onto Sturmian words (see [9℄ or Chap.2 of [27℄). It istherefore natural to onsider generalized substitutions as a multi-dimensional ex-14



tension of Sturmian morphisms rather than a general notion of multi-dimensionalsubstitution. Last, note that Sturmian morphisms do not at only over Sturmianwords but over all the two-letter words. It is thus natural to extend the ation ofgeneralized substitutions beyond stepped hyperplanes. In this diretion, the wayexplored by [4℄ seems promising.3.3. E�etive Generation of Stepped HyperplanesTheorem 1 shows the way generalized substitutions at on stepped hyperplanes.But these substitutions also allow one to generate e�etively sequenes. So we dis-uss here the possibility of obtaining a stepped hyperplane as the limit of suessiveappliations of a generalized substitution on a �nite set of faes (see Fig.9).
Figure 9: From left to right, some iterations on a �nite set of faes of the generalizedsubstitution assoiated with σ : 1 7→ 12, 2 7→ 13, 3 7→ 1 (desribed Fig.6). The originis highlighted by the blak irle.In what follows, we onsider only harateristi stepped hyperplanes:De�nition 7 The stepped hyperplane S~α,ρ is said to be harateristi if ρ = 0. Forthe sake of simpliity, a harateristi stepped hyperplane S~α,0 is denoted by S~α.Theorem 1 yields that generalized substitutions are permutations onto the setof harateristi stepped hyperplanes. Moreover, we also onsider here only Pisotsubstitutions:De�nition 8 A substitution σ on {1, . . . , n} with inidene matrix Mσ is Pisot if
Mσ has a spetrum {λ, µ1, . . . , µk} suh that 0 < |µi| < 1 < λ, for i = 1, . . . , k.In [14℄, it is proven that if σ is a Pisot substitution, then Mσ (and hene tMσ)is irreduible and diagonalizable with simple eigenvalues. Thus, aording to thePerron-Frobenius theorem, tMσ has a positive eigenvetor ~α assoiated with itsdominant eigenvalue λ:

tMσ~α = λ~α.We will use the following lemma:Lemma 1 Let σ be a Pisot substitution. Let 0 < |µi|i < 1 < λ be the eigenvaluesof Mσ and ~α be a positive eigenvetor of tMσ assoiated with λ. Then:1. the eigenspae of M−1
σ assoiated with the (µ−1

i )i is the real hyperplane:
P~α = {~x ∈ Rn | 〈~x, ~α〉 = 0};15



2. if µ = maxi |µi| < 1, then there is a positive real number c suh that:
∀n ∈ N, ∀~x ∈ P~α, ‖M−n

σ ~x‖ ≥
c

µn
‖~x‖.Proof. Note that M−1

σ has eigenvalues λ−1 and µ−1
i for i = 1, . . . , n − 1.1. Let ~x be an eigenvetor of M−1

σ assoiated with µ−1
i . Sine µiM

−1
σ ~x = ~x and

λ~α = tMσ~α, one has:
〈~x, ~α〉 = 〈µiM

−1
σ ~x,

1

λ
tMσ~α〉 =

µi

λ
〈~x, ~α〉,and sine |µi

λ
| < 1, this implies 〈~x, ~α〉 = 0, i.e. ~x ∈ P~α. Thus, the eigenspaeof M−1

σ assoiated with the (µ−1
i )i is inluded in P~α. With these spaes havingboth dimension n − 1, this inlusion turns out to be an equality.2. For i = 1, . . . , n − 1, let ~e′i be an eigenvetor of M−1

σ assoiated with µ−1
i . Avetor x ∈ P~α an be written ~x =

∑

i xi
~e′i. We set:

N(~x) =
∑

i

|xi|.It de�nes a norm N over P~α. One has:
N(M−n

σ ~x) = N

(

∑

i

xiM
−n
σ

~e′i

)

= N

(

∑

i

xi

µn
i

~e′i

)

=
∑

i

∣

∣

∣

∣

xi

µn
i

∣

∣

∣

∣

≤
1

µn
N(~x).Then, the equivalene of the norms N(.) and ‖.‖ yields a > 0 suh that

1
a
‖~x‖ ≤ N(~x) ≤ a‖~x‖ for all ~x. One thus omputes:

‖M−n
σ ~x‖ ≤ aN(M−n

σ ~x) ≤
a

µn
N(~x) ≤

a2

µn
‖~x‖,and this yields the result with c = a2.

�The previous Lemma tells us that the real hyperplane P~α is invariant under thelinear map M−1
σ , and that this map is expansive on this real hyperplane. We havealready mentioned that it is worth onsidering the generalized substitution Θ∗

σ andthe stepped hyperplane S~α as disretizations of, respetively, the linear map M−1
σand the real hyperplane P~α. Aording to this viewpoint, the following theorem isjust a �disrete version� of Lemma 1:Theorem 2 Let σ be a Pisot unimodular substitution and ~α be a positive left eigen-vetor of Mσ assoiated with its dominant eigenvalue. Then, there is a �nite set offaes P ⊂ S~α suh that:

lim
n→∞

(Θ∗
σ)n (P ) = S~α.16



Proof. Let (~y0, j
∗
0 ) ∈ S~α. It follows from Theorem 1 that there are a uniquesequene (~yn, j∗n)n≥0 of faes of S~α and a unique sequene (pn)n≥0 of words, with

pn being a pre�x of σ(jn), suh that:
∀n ≥ 0, ~yn = M−1

σ (~yn+1 − ~f(pn+1)).In partiular:
~y0 = M−n

σ ~yn −

n
∑

k=1

M−k
σ

~f(pk).Let us prove that there is C > 0 suh that if ‖~y0‖ ≥ C, then ‖~yn‖ < ‖~y0‖ for some
n.Let us �rst bound the quantity ∑k M−k

σ
~f(pk). Note that the sequene (pn)n≥0ranges through a �nite number of words. Thus, there is F > 0 whih bounds

(‖~f(pn)‖)n≥0. Moreover, a lassi result of linear algebra yields:
∀~x ∈ Rn, ‖M−1

σ ~x‖ ≤ ̺‖x‖,where ̺ = ̺(M−1
σ ) > 1 is the spetral radius of M−1

σ . One omputes:
∥

∥

∥

∥

∥

n
∑

k=1

M−k
σ

~f(pk)

∥

∥

∥

∥

∥

≤

n
∑

k=1

̺kF = F
̺n+1 − 1

̺ − 1
.Let us now examine ‖M−n

σ ~yn‖. One an write ~yn = ~y′
n + ~y′′

n with ~y′
n ∈ P~α and

~y′′
n ∈ R~α- ‖y′′

n‖ is the distane from ~yn to P~α, and (~yn, j∗n) ∈ S~α yields that thisdistane is bounded by maxi αi. Thus, using Lemma 1 with ~y′
n ∈ P~α:

‖M−n
σ ~yn‖ ≥ ‖M−n

σ
~y′
n‖ − ‖M−n

σ
~y′′
n‖

≥
c

µn
‖ ~y′

n‖ −

∥

∥

∥

∥

1

λn
~y′′
n

∥

∥

∥

∥

≥
c

µn
(‖~yn‖ − ‖ ~y′′

n‖) −

∥

∥

∥

∥

1

λn
~y′′
n

∥

∥

∥

∥

≥
c

µn
‖~yn‖ −

(

c

µn
+

1

λn

)

max
i

αi.So �nally, if we set
T (n) = F

̺n+1 − 1

̺ − 1
+

(

c

µn
+

1

λn

)

max
i

αi,one has:
‖~y0‖ ≥

c

µn
‖~yn‖ − T (n).Then let n0 be suh that c

µn0
> 2, and set C = T (n0). This yields ‖~yn0‖ < ‖~y0‖for ‖~y0‖ ≥ C. In other words, any fae (~y0, j

∗
0 ) of S~α suh that ‖~y0‖ ≥ C is theimage, by iterated appliations of Θ∗

σ, of a fae (~yn0 , j
∗
n0

) with ‖~yn0‖ < ‖~y0‖. Hene,the �nite set of faes P = {(~y, j∗) ∈ S~α | ‖~y‖ ≤ C} su�es to generate the wholestepped hyperplane S~α. �17



Note that the previous proof even provides a suitable set of faes whih generatesthe stepped hyperplane. However, it is not so easy to ompute this set, espeiallybeause of the onstant c oming from Lemma 1. Figure 10 illustrates Theorem 2.

Figure 10: Let us onsider the unimodular Pisot substitution σ : 1 7→ 21, 2 7→
13, 3 7→ 1. Left, some iterations of Θ∗

σ on a �nite set of faes. Some faes nearthe origin (blak irle) turn out to be never obtained (gaps). However, aordingto Theorem 2, there is a �nite set of faes whih su�es to generate the wholestepped hyperplane. Right, the set of faes obtained after some iterations of Θ∗
σ ona su�iently large initial set.4. Multi-dimensional Continued Frations4.1. Brun ExpansionsThere are various multi-dimensional generalizations of ontinued frations (seee.g. [13℄ for an overview). Here we desribe the Brun algorithm, also alled themodi�ed Jaobi-Perron algorithm (see [26℄).Let X = [0, 1)n and denote X\{0} by X∗. Let T : X∗ → X be de�ned by:

T (α1, . . . , αn) =

(

α1

αi

, . . . ,
αi−1

αi

,
1

αi

−

⌊

1

αi

⌋

,
αi+1

αi

, . . . ,
αn

αi

)

,where i is the smallest index suh that αi = maxαj . Let also a : X∗ → N∗ and18



ε : X → {1, . . . , n} be de�ned by:
a(α1, . . . , αn) =

⌊

1

maxαj

⌋ and ε(α1, . . . , αn) = min{i | αi = max
j

αj}.The Brun expansion of ~α ∈ X∗ is the (possibly �nite) sequene:
(ak, εk)k≥0 = (a(T k(~α)), ε(T k(~α)))k≥0,and one writes:

[~α] = [(a0, ε0), (a1, ε1), . . .].Let us give a matrix viewpoint. For a ∈ N and ε ∈ {1, . . . , n}, one de�nes thefollowing (n + 1) × (n + 1) matrix:
Aa,ε =









a 1
Iε−1

1 0
In−ε









,where Ip is the p × p identity matrix and all the unspei�ed oe�ients are zeroes.One heks for ~α ∈ X∗:
αε(~α)Aa(~α),ε(~α)

t(1, T (~α)) = t(1, ~α), (1)where (1, ~u) = (1, u1, . . . , un) for ~u = (u1, . . . , un).Finally, if the Brun expansion of ~α is greater than k in length, then the k-th on-vergent of ~α is de�ned by:
[(a0, ε0), . . . , (ak, εk)] =

(

p1

q
, . . . ,

pn

q

)

,where:
t(q, p1, . . . , pn) = Aa0,ε0 · · ·Aak,εk

t(1, 0, . . . , 0).Note that for n = 1, T is exatly the Gauss map. Sequene (an)n then turns outto be the ontinued fration expansion of α, and one has εn = 1 for all n. Eq.(1)beomes:
α

(

a 1
1 0

)(

1
T (α)

)

=

(

1
α

)

,and one heks, for example:
(

a0 1
1 0

)(

a1 1
1 0

)(

a2 1
1 0

)(

1
0

)

=

(

q
p

)

⇔
p

q
= a0 +

1

a1 +
1

a2

.For n > 1, map T applies the lassi Gauss map on the greatest oordinate of ~α.The result of the operation is then a(~α), while ε(~α) indiates the oordinates theoperation was performed on. 19



There are several results onerning the onvergene of this algorithm. For
n = 1, it is known that the sequene of the onvergents of α tends to α withan exponential rate. For n = 2, the exponential onvergene is proven for almostevery ~α (see [24, 26, 28℄). For n > 2, [25℄ provides a general method to prove theonvergene almost everywhere, whih however has been used only for n ≤ 3.4.2. S-adiityWe here ombine Theorem 1 and the Brun expansions to write any steppedhyperplane as a ontinued omposition of generalized substitutions. As in Setion3.3, we onsider here only harateristi stepped hyperplanes (see De�nition 7).Let a ∈ N∗ and ε ∈ {1, . . . , n}. The substitution σa,ε is de�ned over {1, . . . , n+1}by:

σa,ε :







1 7→ 1a· (ε + 1)
(ε + 1) 7→ 1

i 7→ iOne heks that the inidene matrix of σa,ε is Aa,ε. Moreover σa,ε is unimodularsine one omputes det(Aa,ε) = −1. One thus an ombine Eq.(1) and Theorem 1to obtain:
Θ∗

σa(~α),ε(~α)

(

St(1,T (~α))

)

= St(1,~α).In partiular, if ~α has a Brun expansion at least k in length, this yields:
Θ∗

σa0,ε0
◦ . . . ◦ Θ∗

σak,εk

(

St(1,T k+1(~α))

)

= St(1,~α). (2)Note that the number of di�erent substitutions in Eq.(2) is unbounded. Sineit is not very suitable for e�etive omputations, let us rewrite this equation usinga �nite number of substitutions. For ε = 1 . . . n, the substitutions τε and σε arede�ned over {1, . . . , n + 1} by:
τε : i 7→







1 if i = ε + 1,
ε + 1 if i = 1,

i otherwise and σε : i 7→

{

1· i if i = ε + 1,
i otherwise,and an indution easily proves:

σa,ε = σa
ε ◦ τε. (3)Moreover, σε and τε are also unimodular, so the generalized substitutions Θ∗

τε
and

Θ∗
σε

are de�ned, and one has:
Θ∗

σa,ε
= Θ∗

σa
ε◦τε

= Θ∗
τε

◦
(

Θ∗
σε

)a
.Thus, Eq.(2) an be rewritten using a �nite number of non-trivial generalized sub-stitutions as follows:

St(1,~α) = Θ∗
τε0

◦
(

Θ∗
σε0

)a0

◦ . . . ◦ Θ∗
τεk

◦
(

Θ∗
σεk

)ak (

St(1,T k+1(~α))

)

. (4)20



Generalizing the terminology for lassi substitutions on sequenes (see e.g. [20,21, 32, 42℄), Eq.(4) is alled an S-adi expansion at order k of the stepped hyperplane
St(1,~α). Then, St(1,~α) is said to be S-adi if it has S-adi expansions at any order.This is partiularly the ase if ~α has irrational oordinates linearly independent over
Q, sine it then turns out that ~α has an in�nite Brun expansion. Note that thisase orresponds to multi-dimensional Sturmian sequenes (see De�nition 4).Example 3 Let us onsider the n = 1 ase. One has:

τ1 :

{

1 7→ 2
2 7→ 1

and σ1 :

{

1 7→ 1
2 7→ 12

.One an hek Eq.(3), for example, for a = 3 and ε = 1:
σ3

1 ◦ τ1(1) = σ3
1(2) = σ2

1(12) = σ(112) = 1112 = σ3,1(1),

σ3
1 ◦ τ1(2) = σ3

1(1) = 1 = σ3,1(2).Then, the assoiated generalized substitutions Θ∗
τ1

and Θ∗
σ1

are de�ned by:
Θ∗

τ1
:

{

(~0, 1∗) 7→ {(~0, 2∗)}

(~0, 2∗) 7→ {(~0, 1∗)}
and Θ∗

σ1
:

{

(~0, 1∗) 7→ {(~0, 1∗), (~0, 2∗)}

(~0, 2∗) 7→ {(−~e1, 2
∗)}

.Figure 11 illustrates some appliations of these basi substitutions, i.e. the beginningof an expansion suh as the one of Eq.(4).
e1

e2
e2

e1 e1

e2

e1

e2
e2

e1

Figure 11: Starting from a �nite set of faes of a stepped hyperplane, the generalizedsubstitutions Θ∗
τ1
, Θ∗

σ1
, Θ∗

σ1
and Θ∗

τ1
are suessively applied (from left to right).All of these sets of faes belong to stepped hyperplanes.Example 4 Let us onsider the ase n = 2. One has:

τ1 :







1 7→ 2
2 7→ 1
3 7→ 3

, τ2 :







1 7→ 3
2 7→ 2
3 7→ 1

, σ1 :







1 7→ 1
2 7→ 12
3 7→ 3

, σ2 :







1 7→ 1
2 7→ 2
3 7→ 13

.Then, the assoiated generalized substitutions Θ∗
τ1
, Θ∗

τ2
, Θ∗

σ1
and Θ∗

σ2
are de�nedby:

Θ∗
τ1

:







(~0, 1∗) 7→ {(~0, 2∗)}

(~0, 2∗) 7→ {(~0, 1∗)}

(~0, 3∗) 7→ {(~0, 3∗)}

, Θ∗
τ2

:







(~0, 1∗) 7→ {(~0, 3∗)}

(~0, 2∗) 7→ {(~0, 2∗)}

(~0, 3∗) 7→ {(~0, 1∗)}

,21



Θ∗
σ1

:







(~0, 1∗) 7→ {(~0, 1∗), (~0, 2∗)}

(~0, 2∗) 7→ {(−~e1, 2
∗)}

(~0, 3∗) 7→ {(~0, 3∗)}

, Θ∗
σ2

:







(~0, 1∗) 7→ {(~0, 1∗), (~0, 3∗)}

(~0, 2∗) 7→ {(~0, 2∗)}

(~0, 3∗) 7→ {(−~e1, 3
∗)}

.Figure 11 illustrates some appliations of these basi substitutions, i.e. the beginningof an expansion suh as the one of Eq.(4).

Figure 12: Starting from a �nite set of faes of a stepped hyperplane, the generalizedsubstitutions Θ∗
σ1
, Θ∗

σ2
, Θ∗

τ2
and Θ∗

τ1
are suessively applied (from left to right).All of these sets of faes belong to stepped hyperplanes. Note that these four stepsare a deomposition of the last step of Fig.9.4.3. SubstitutivityIn this setion, we are interested in haraterizations of the following steppedhyperplanes:De�nition 9 A stepped hyperplane is said to be invariant if it is invariant undera non-trivial generalized substitution. It is said to be substitutive if it is the imageby a generalized substitution of an invariant stepped hyperplane.This generalizes the notions of invariant and substitutive sequenes in the one-dimensional ase. Suh haraterizations are partiularly interesting sine, aord-ing to Theorem 1, one an e�etively generate stepped hyperplanes whih are in-variant under a Pisot generalized substitution or image of suh invariant steppedhyperplanes.In order to haraterize substitutive harateristi stepped hyperplanes, let usstate the following propostion:Proposition 3 Let ~α ∈ Rn

+. If the harateristi stepped hyperplane St(1,~α) issubstitutive, then the oordinates of ~α belong to a �eld extension Q(λ), with λ beingan algebrai number of degree n + 1 at most.Proof. Suppose that St(1,~α) is the image by Θ∗
σ′ of a stepped hyperplane St(1,~β)whih is invariant under Θ∗

σ. Theorem 1 implies that tM−1
σ

t(1, ~β) = λt(1, ~β), with
λ being an eigenvalue of M−1

σ . Sine M−1
σ is a matrix of size n + 1 with integeroe�ients, λ is an algebrai number of degree n + 1 at most and the oordinates22



of ~β thus belong to Q(λ). But Theorem 1 also yields tMσ′
t(1, ~β) = t(1, ~α), so theoordinates of ~α also belong to Q(λ). �Let us also reall this theorem put forward by Lagrange:Theorem 3 (Lagrange) The ontinued fration expansion of α ∈ R is ultimatelyperiodi if and only if α belong to a �eld extension Q(λ), λ being an algebrai numberof degree 2 at most.We are now in a position to prove the following theorem:Theorem 4 If ~α ∈ [0, 1)n has an ultimately periodi Brun expansion, then the har-ateristi stepped hyperplane St(1,~α) is substitutive. Moreover, the onverse holds for

n = 1.Proof. The su�ient ondition results from Eq.(2) or Eq.(4). For n = 1, theonverse follows from Proposition 3 and Theorem 3 (reall that the Brun expansionsand ontinued fration expansions are idential for n = 1). �Note that Theorem 4 yields a omplete haraterization only for n = 1. This aseorresponds to Sturmian sequenes (the stepped hyperplanes are �stepped lines�),and we get an already known result (see Introdution). For n > 1, a multi-dimensional extension of Theorem 3 would similarly yield a omplete harateri-zation. However, suh an extension is thought to be a very hard problem.To get around this problem, we would like to prove, without relying on Proposi-tion 3, that substitutivity implies the periodiity of Brun expansions. A promisingway seems to be the following haraterization whih relies on derived sequenes(roughly speaking, a derived sequene enodes the way the pre�x of a sequenereours in this sequene):Theorem 5 ([19℄) A sequene is substitutive if and only if it has a �nite numberof derived sequenes.Of ourse, we would here need a multi-dimensional generalization of this har-aterization. It seems, however, easier than generalizing the theorem of Langrange(Theorem 3). In this diretion, one an mention [31, 37℄, where derived Voronoïtilings - a sort of generalization of derived sequenes - are de�ned. In partiular,the pseudo-self-similar tilings are haraterized in a way whih looks like a multi-dimensional extension of Theorem 5 (the reader is referred to [31, 36, 37, 38℄ formore details). In our ase, we would need to link derived Voronoï tilings (or someadaptation to multi-dimensional sequenes) with Brun expansions. In this dire-tion, it is worth notiing that links between derived sequenes and lassi ontinuedfrations have already been studied in [2, 10, 40℄.AknowledgementsWe thank Pierre Arnoux and Valérie Berthé for many suggestions and orre-tions. We thank Clelia de Felie and Antonio Restivo for the opportunity of sub-mitting this extended version of [22℄ in the speial issue of DLT'05. We also thankthe anonymous referees for their useful omments.23
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