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ABSTRACT

This paper is devoted to a study on the way generalized substitutions - a multi-
dimensional extension of substitutions - act on multi-dimensional Sturmian sequences.
We give a sufficient condition under which these multi-dimensional Sturmian sequences
are obtained by iterated compositions of generalized substitutions. This condition relies
on Brun expansions - a multi-dimensional extension of continued fraction expansions.

Keywords: Multi-dimensional Sturmian Sequence; Generalized Substitution; Multi-
dimensional Continued Fractions; Brun Expansion; Substitutive Sequence.

1. Introduction

The general purpose of this paper is to contribute to the extension of the theory
of Sturmian sequences in a multi-dimensional framework. Here, we are particularly
interested in the links between substitutions and continued fraction expansions. We
will first review, in the one-dimensional case, some basic notations, definitions and
results, whose multi-dimensional extension will then be studied in this paper.

1.1. Sturmian Sequences

Let A be an alphabet, i.e. a finite set of symbols. A word (resp. sequence) over
A is a finite (resp. infinite) concatenation of letters of A. For example, 121211
is a word of length 6 over {1,2}. A sequence w is ultimately periodic if it can be
written w = wvv...v... for two words v and v, and aperiodic otherwise. A factor
of a sequence w is a word which occurs in w. For example, the factors of length
2 of 121211 are exactly 12, 21 and 11. The complexity function p,, of w is then
defined as follows: p, (k) is the number of different factors of length k of w . It is
known that a sequence w is ultimately periodic if and only if p,(k) < k for some

*fernique@lirmm.fr



k. Hence, a sequence w with complexity p,, (k) = k + 1 for all k is aperiodic, and
no aperiodic sequence with lower complexity exists. These sequences are so-called
Sturmian sequences.

Sturmian sequences have been widely studied for their interactions with com-
plexity theory, discrete geometry, dynamical systems, number theory, quasicrystals
and tilings (see [32] and the references inside). There are many other equivalent
definitions of Sturmian sequences. The reader is referred to Chap.2 of [27] or Chap.6
of [32] for a complete and detailed presentation. We here just review two of them:

e a cutting sequence is the discretization of a real line y = azx + p; « is called
the slope of the sequence and p its intercept. Sturmian sequences correspond
to irrational slopes;

e a rotation sequence encodes the trajectory of an element p of the unit circle
under the action of a rotation R, of angle . The circle is split into two in-
tervals, and the k-th letter of the rotation sequence depends on which interval
contains RE (p). Sturmian sequences correspond to irrational angles.

1.2. Substitutions and Continued Fractions

A substitution (or morphism) o over an alphabet A maps each letter of A onto
a non-empty words over A. This definition is extended to words and sequences over
A according to the rule o(uv) = o(u)o(v). Then, starting from an initial word g,
a substitution o allows one to generate sequences 0™ (uq), for n > 0. In particular,
if ug is a prefix of o(ug) and if the length of ¢™(ug) tends to infinity with n, one
can define:
u= lim o(up)".

n—oo

Such a sequence u satisfies o(u) = u and it is said to be invariant. One then
defines the substitutive sequences as images by morphisms of the free monoid of
invariant sequences. They are algorithmically easily generated and have a strongly
ordered structure, although not necessarily periodic. For example, the substitution
o0:1+— 12,2+ 1 yields a sequence (¢"(1)),, of unbounded length words such that
o™ (1) is a prefix of ¢"*1(1). Thus, infinitely many applications of & on the letter 1
lead to an invariant sequence:

1—12—121 — 12112 — --- — 121121211211212112- - -

Sturmian sequences and substitutions are strongly linked via continued fraction
expansions. Indeed, if u is a Sturmian sequence of slope a and intercept p = 0, and
if [a] = [ao, a1, ...] denotes the continued fraction expansion of «, then it is known
that:

1. u is S-adic, i.e. there are two substitutions oo, o1 and a sequence (ug)y of
Sturmian sequences such that (see e.g. [7]):

__ _ap ay az af .
vk >0, u=o0y"00{" oog?o---oak 1 o(uk);



2. w is substitutive if and only if [o] is ultimately periodic (see e.g. [10, 18, 43]).

Note that the case of a non-zero intercept p admits a similar characterization (see
e.g. [8, 10]).

1.3. Toward a Multi-dimensional Extension

In this paper, we would like to extend what we recalled above to a multi-
dimensional case. The first step is to define a notion of multi-dimensional Stur-
mian sequence. In fact, such a notion already exists and has been defined in the
2-dimensional case in [41] by discretizations of real planes. This discretization cor-
responds, in discrete geometry, to the notion of standard arithmetic plane (see [33]).
An equivalent definition by rotations has also been given (see [11, 12]). We recall
in the multi-dimensional case both definitions in Section 2, where we also discuss
the problem of a definition in terms of aperiodic sequence of minimal complexity.

Defining a notion of multi-dimensional substitution is more difficult. In the
one-dimensional case of sequences, the definition of a substitution o is extended
from letters to sequences according to the rule o(uv) = o(u)o(v). But there is
no canonical extension of such a rule in the multi-dimensional case. Thus, various
notions of substitution have been proposed (see e.g. [5, 6, 23, 35]). Here we use
the notion of generalized substitution introduced in [6]. Generalized substitutions
are obtained by duality from classic substitutions, and it is proven in [23] that they
are a particular case of local rules substitutions introduced in [5, 23]. In Section
3, we recall the definition of generalized substitutions. We show precisely the way
they act over multi-dimensional Sturmian sequences (Theorem 1). We also provide
a way to effectively generate multi-dimensional sequences (Theorem 2).

Finally, Section 4 investigates links between generalized substitutions and multi-
dimensional Sturmian sequences. More precisely, we would like to characterize
multi-dimensional Sturmian sequences which are S-adic or substitutive, naturally
generalizing the corresponding notions for one-dimensional sequences. We prove in
Section 4.2 that any multi-dimensional Sturmian sequence is S-adic. In Section
4.3, we prove that a multi-dimensional Sturmian sequence is substitutive if the
vector of its parameters (which generalizes the slope of a Sturmian sequence) has
an eventually periodic Brun expansion (Theorem 4). The Brun expansion is a multi-
dimensional continued fraction expansion which is recalled in Section 4.1. Note that
it is only a sufficient condition. We end the paper by discussing the difficulty of
completing this characterization.

2. Multi-dimensional Sturmian Sequences

2.1. Aperiodic Sequences of Minimal Complexity

In this section, we would like to extend, in the multi-dimensional case, the defi-



nition of Sturmian sequences as aperiodic sequences of minimal complexity.

The first step consists in defining multi-dimensional sequences. It is natural to
define an n-dimensional sequence over the alphabet A as an infinite array in AZ".
For n = 1, we do not exactly obtain classic sequences, but rather a two-sided ver-
sion of them, i.e. with letters indexed by Z instead of N. This however does not
matter since the results for one-sided sequences can be easily and similarly stated
for two-sided sequences (see [17]).

The second step has to do with the notion of periodicity. Generalizing the
one-dimensional case, a non-zero vector t € Z" is a vector of periodicity for the
n-dimensional sequence w if u(z +t) = u(t) for all x € Z", where u(y) denotes the
letter of u at position y. But now u can have up to n linearly independent vectors of
periodicity- this leads to a notion of r-periodicity, with r being the maximal num-
ber of linearly independent vectors of periodicity. Aperiodicity then corresponds to
0-periodicity.

The last step would be to define multi-dimensional Sturmian sequences as aperi-
odic multi-dimensional sequences of minimal complexity. It seems natural to define
on N” the complexity function p, of an n-dimensional sequence u by the number
pu(ki, ..., ky) of rectangular factors of size k1 X ... X k,, which occur in u. Forn =1,
we retrieve the classic complexity function, and let us recall that, in this case, u is
aperiodic if and only if p, (k) > k+1 for all k. For n = 2, let us recall a conjecture of
M. Nivat ([30]): if the 2-dimensional sequence w is aperiodic, then p, (k, k') > kk'+1
for all k, k’. This conjecture has been proven in the particular case k = 2 or k' = 2
in [39], and for all k, k" in the slightly weaker version p,(k, k") > kl—’g + 1 in [34].
However, it is, conversely, not hard to find a periodic 2-dimensional sequence u with
complexity p,(k, k') > kk’ + 1. This conjecture thus will never be a sufficient part
of a complete characterization of the aperiodicity of multi-dimensional sequences.

In order to get around this problem, a first way could be to define the complexity
by replacing the rectangular shapes of factors with some other shapes. In this way,
various shapes of factors are considered in [16]. In particular, those obtained by
discretization of real convex sets seem promising. A second way could be to charac-
terize the aperiodicity within only a subset of multi-dimensional sequences. Indeed,
in the one-dimensional case, Sturmian sequences turn out to be all uniformly recur-
rent, i.e. such that a factor which occurs somewhere reoccurs at a bounded distance
from every point. But it is worth noticing that aperiodic 2-dimensional sequences of
rectangular complexity kk’ 4+ 1 are not uniformly recurrent, although they would be
sequences of minimal complexity among aperiodic sequences, according to the con-
jecture of M. Nivat (see [15]). It thus seems reasonable to characterize aperiodicity
within the set of uniformly recurrent multi-dimensional sequences. In this way, it is
proven in [12] that among uniformly recurrent 2-dimensional sequences, those with
rectangular complexity kk’ + k (or kk’ + k') are aperiodic, and no aperiodic ones



of lower complexity are known. One thus can hope for a complete characterization,
although additional restrictions on the considered set of sequences would possibly
be required. It is also worth noticing that the aperiodic 2-dimensional sequences of
[12] were obtained from a 2-dimensional version of the multi-dimensional sequences
defined in the next section.

2.2. Hyperplane Sequences

In the one-dimensional case, Sturmian sequences can be described as cutting se-
quences, i.e. as discretizations of real lines of the plane. Here we consider discretiza-
tions of (n — 1)-dimensional real hyperplanes of R which yield (n — 1)-dimensional
sequences over {1,...,n}.

The basic tools for our discretization are the faces of the unit hypercubes of R™:
Definition 1 The face (Z,4*) is the subset of R defined by:

(&%) = {F+ &+ Y _Né, 0< X <1}
J#i
The set of faces is denoted by F.

0 0 0 X j
0

&

&

Figure 1: From left to right, the faces (0,1%), (0,2*), (0,3*) and (&,2*) (in R?).

We use these faces to discretize the real hyperplane:
Pa,p,={Z € R" | (Z,d) + p =0},

where (Z, ) denotes the canonical inner product of Z and .

Definition 2 Let & € R} \{0} and p € R. The stepped hyperplanes 8§p and S;p
are the sets of faces defined by:

Sx, =A@ ") | (Z,d) +p <0< (T+&;,d) +p},

Sz, =@ ") [ {Z,0) +p <0 <(T+&,0a)+p}.

Note that S;fp = Sgp for almost all p € R. In what follows, we write Sy , for
both S;fp or Sajzp when it does not matter.

Let us encode stepped hyperplanes into (n — 1)-dimensional sequences over the
alphabet {1,...,n}. We first define a bijection between the faces of a given stepped
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Figure 2: Stepped hyperplanes in the n = 2 (left) and n = 3 (right) cases.

hyperplane and the points of the (n — 1)-dimensional lattice Z"~*. This bijection
is already stated in [3, 5, 11] in the case of n = 3. We here provide a new proof for
any n.

Informally, this bijection consists of two steps. First, a proper vertex is associ-
ated with each face of a stepped hyperplane, i.e. a point of Z™ which belongs to
no other face of the stepped hyperplane. Then we use the orthogonal projection
onto the real hyperplane normal to the vector (1,...,1)- the faces are mapped onto
three types of lozenges, identical up to rotation, and it turns out that the proper ver-
tices of the faces are mapped onto an n—1 dimensional lattice. Fig.3 illustrates this.

w
»—\mpw‘

P lw |k |w|N
PN [P
Plw ||k N

PNk |0~
N

Figure 3: From left to right (for n = 3): a proper vertex corresponds to each
face (at its black corner); the type 1,...,n of a vertex depends on the type of
its corresponding face; the projection onto the hyperplane normal to the vector

(1,...,1) maps the vertices to an (n — 1)-dimensional lattice; we thus obtain an
(n — 1)-dimensional sequence over {1,...,n}.
Formally:



Proposition 1 Let v:F — Z" and 7 : Z"™ — Z"! be the maps defined by:

—

(@i )=F+e&1+...+€ and w(r1,...,2n) = (T1 — Tpy. oy, Tpo1 — Tn).

Then, T o v maps bijectively the faces of a given stepped hyperplane onto Z™ 1.

Proof. We prove this for S;fp, with the proof for S;p being similar. We
denote by V;p € Z™ the set of vertices of S;fp, i.e. the points of Z™ which can be
written @'+ >, €; for (7,i*) € S(;fp and I C {1,...,n} with ¢ € I.

We first prove that v maps bijectively the faces of 8§7p onto V:ip. It is clear that
v(Sé»tp) C V(;p. Let then (#,4*) and (%, j*) be two faces of Sé’tp such that v(Z,*) =
u(y,j*). Ifi < j,then Z=y+é&1+...+€. So (Z,d) = (J+€p1+...+€&,d) >
(§ + €;,d). Since (¥,j*) € S(}Zp, (§+ €;,a) + p > 0 and thus (Z,a) + p > 0. But
(Z,i%) € Soi;p yields (Z, @)+ p < 0: i < j is impossible. Similarly, ¢ > j is impossible.
Hence i = j, and & = ¢ follows. Thus, v is one-to-one from Saizr,p to Vol:p.
Conversely, let i € V(;p. Let (Z,i*) € S;{p and I C {1,...,n}, i € I, such that
Y=7T+) €. Letusdefine f : ks (F+ ), ,€ —€1 —...—€,a) +p. One
has:

fO) = ({F+é,a) +p=0,  fln) <({Ta@)+p<0,  [flk+1) < [f(k)

So, let kg such that f(ko—1) > 0 and f(ko) <0, and set §op = §—€1—...— €}, One
has (g, @) +p = f(ko) < 0 and (Yo +€ky, @) +p = f(ko—1) > 0, i.e. (Yo, ks) € S};p.

Since v(¥o, k§) = y, this proves that v is onto on V;p.

Let us prove now that 7 bijectively maps the vertices of V;p onto Z"'. Let & =
(a1,..., ). Tt is clear that W(V;p) C Z" 1. Then let ¥ = (y1,...,Yn_1) € Z"7 1,

and prove that there is a unique ¥ = (z1,...,2,) € Vgp such that 7(¥) = ¥.
Suppose that & satisfies 7(Z) = 7, and let (2/,i*) € ng'p be the face such that
v(@,i*) =x, ie. T=a' —& —...— &. One has (2/,a@) + p < 0 < (# + &, @) + p,

hence 0 < (z/, @) + p + c; < a;. Thus:

%

n
OSZLL'J‘CY]‘ —ZO&j'i‘p'i‘Oéi < .
j=1

Jj=1

Then, n(Z) = ¢, that is, x; = y; + =, for j < n, yields:

n—1 n [ n
0< Zyjoej—l—xnz%- +p< Zoej < Zaj,
j=1 j=1 j=1 j=1
and performing the division by 2?21 a; > 0, we obtain:

—1
Z?:1 Yjay +p

Z?:l Qj

0< +x, <1.



Since x,, € Z, the previous inequalities completely characterize z,. Hence & is

unique, if it exists. And it does exist, since setting x,, as above and x; = y; + x,

fori=1...n—1yields = (z1,...,2,) € V(;p and (%) = ¢. O
We then use this bijection to map a face orthogonal to €; onto a letter ¢ indexed

by Z"~1:

Definition 3 A hyperplane sequence is a (n — 1)-dimensional sequence over the

alphabet {1,...,n} which is image of a stepped hyperplane by the map:

' F -  Zix {1,...,n}
O @i e (mou(d,it),d).

Note that not all the (n — 1)-dimensional sequences over {1,...,n} are hyper-
plane sequences, some of them cannot be obtained as images by ¢ of a stepped
hyperplane.

112)1(2(1/23|1(2|1/2|3|1|3
3/1|3(1|2/1|2/3/1|2|1|2|1]|2
2111231121123 |1|3|1|2]|1
112|1(2|3/1|3|1/2|1]2|3|1]|2
3/1|2(1}2/1|2/3/1|2]1|2|3|1
213|1(3|1/2|1/2/3|1]2|1|2]|1
112|1(2|3/1|2/1/2|3]1|3|1]|2
3/11|]2(1}2/3|13/1|2]1|2|3]|1

Figure 4: A 2-dimensional hyperplane sequence. Note that it seems to be strongly
regular although not periodic.

We finally define multi-dimensional Sturmian sequences. Let us recall that a
classic Sturmian sequence is a discretization of a line of direction (1, «), with 1, «
linearly independent over Q. Thus we set:

Definition 4 An n-dimensional Sturmian sequence is the image by ¢ of a stepped
hyperplane St a,,....an),p» With 1,01, .., ay linearly independent over Q.

Then, according to this definition, 1-dimensional Sturmian sequences correspond

to classic two-sided Sturmian sequences.

2.3. Rotation Sequences

In this section, we define rotation sequences. They are (n — 1)-dimensional se-
quences over {1,...,n} obtained as the coding, relative to a partition into n interval
of [0,1), of the action of n — 1 rotations on an element p € [0,1). We prove that



we exactly retrieve the hyperplane sequences of the previous section. Rotation se-
quences have been defined in [29] for n = 1 and in [11, 12] for n = 2, where the
correspondance with the hyperplane sequences is also proven. Here we state and
prove these results for any n.

Let us first summarize basic definitions from Chap. 2 of [27]. For 0 < o < 1,
the rotation of angle « is the mapping R, from [0, 1) into itself defined by:

Ra(2) = {z+a},

where {z} denotes the fractional part of z. It is convenient to identify [0,1) with
the torus R/Z, i.e. the unit circle. For 0 < b < a < 1, the set [a, 1] U [0,b) is then
considered as an interval and denoted by [a, b). Thus, for any subinterval I of [0, 1),
the sets Ry (I) and R '(I) are always intervals (even when overlapping the point
0). We now define rotation sequences:

Definition 5 Let @ = (u,...,an) € R} such that 32 ,a; = 1 and p € [0,1).
The rotation sequences L{;p and Uy , are the (n — 1)-dimensional sequences over

{1,...,n} defined by:

UL (y1,....yn1) =i & RY o---oRU(p) € I},

Uz (W15 yn1) =i & RYLo---o Ry (p) €1,
where I;7 = djci@i t[0,04) and I;7 =37, o + (0,04

The following proposition shows that these rotation sequences and the hyper-
plane sequences of Definition 3 are in fact the same:

Proposition 2 For @ = (a1,...,a,) € RY such that 3, a; =1 and p € 0,1):
+ et - (e
L{&p = d)(S&,p) and Z/{a)p = ¢(8&)p).

Proof. We prove this for SC‘{p, with the proof for S(ip being similar. Let i €
Z"=1, denoted by ¥ = (y1,...,Yn_1), and i = gb(Sg)p)(gf). By Proposition 1, there
is a unique face (Z,i*) € S;{p such that 7o v(Z,¢*) = ¢. Writing & = (x1,...,2n),
this yields y; = z; +1 -z, for j <i and y; = z; — z,, for i < j < n, with z,, € Z.
One thus computes:

n—1 n
(Z,d) = E Yo — E aj + Tn E Q.
=1 i<i =1

Hence one has, modulo 1:
n—1
Dot (w,d) =Y yjay =Y aj+ @+, d),
j<i j=1 j<i
and (Z,d) + p < 0 < (T + €;,d) + p then yields, modulo 1:

n—1
Zaj < Zyjaj +tp< Zo‘jv
j=1

j<i j<i



. + N
that is, Uy (4) =i O
Such a definition by rotations is, for example, very convenient for studying
frequencies of factors (see [1, 11] in one- or two-dimensional cases).

3. Multi-dimensional Substitutions

3.1. Generalized Substitutions

We here briefly recall the definition of generalized substitutions. The reader is
referred to [6] or Chap.8 of [32] for a less succinct presentation.

Let us recall that the incidence matriz of a substitution o over {1,...,n} is
the n x n integer matrix whose coefficient at row ¢ and column j is the number
of occurences of the letter ¢ in the word o(j). A substitution o is then said to be
unimodular if det M, = +£1.

To a unimodular substitution is associated a map acting on the faces introduced
in Section 2.2 (Definition 1):

Definition 6 ([6]) Let o be a unimodular substitution over {1,...,n}. The gen-
eralized substitution ©% is defined on the face (Z,i*) of R™ by:

o;@i = | (M@ Fw).i7).
plo(i)=p-i-s
1<5<n

—

where f(u) is the vector of Z"™ whose i-th coordinate is the number of occurrences

—

of the letter i in the word w (in particular, f(o(i)) = M,€;). Note that since o
is unimodular, M;* also has integer coefficients, and thus ©%(%,i*) C F. This
definition is then extended to sets of faces by:

VECF, eyE) = |J e
(#,i*)eE

It is convenient to define an action of Z™ on the faces by:

T+ (,07) = (J+2,0).
Indeed, one then checks that ©%(Z,i*) = M & 4+ ©*(0,i*), so that the images by
O of the faces (0,i*) for 1 < i < n suffice to define ©% on the whole F.

Example 1 Let us consider the substitution o : 1+ 12,2 — 1. One has:

(11 4 (0 1
Mg—<10> and M —<1_1>,

and one computes (see also Fig.5):
0;(0,1) = {(0.1,(,2"},
92(67 2*) = {(_527 1*)} .

10



u € €

Figure 5: The action of the generalized substitution associated to o : 1 — 12,21
on the faces (0,1%) and (0,2%).

Example 2 Let us consider the substitution o : 1 +— 12,2 — 13,3 +— 1. One has:

111 0 1 0
My,=|(1 0 0 and M;'=[0 0 1|,
010 1 -1 -1

and one computes (see also Fig.6):
0;(0,1) = {(0,1"),(0,2), (0,37},
05(0,27) = {(-e5,1")},
05(0,3%) = {(-e5,2%)}.

Note that two distinct faces can be mapped by a generalized substitution onto
the same face. It is certainly possible according to Definition 6, but we would like
to avoid this, in order to define a suitable notion of multi-dimensional substitution.

ol o

To this aim, in the following section we consider particular sets of faces, namely
stepped hyperplanes (Definition 2). We prove that distinct faces of such sets are
mapped by a generalized substitution onto distinct sets of faces.

3.2. Action on Stepped Hyperplanes

In [6], it is proven that if & is the left eigenvector of the incidence matrix M,
of a unimodular substitution o, then the generalized substitution O} maps distinct
faces of the stepped hyperplane Sg o onto disjoint sets of faces of Sg,9. We here
extend this result, proving that any stepped hyperplane Sg , is mapped without
overlaps onto the whole stepped hyperplane Stys_ s,,. In particular, distinct faces
of S5, are mapped onto distinct faces of Sipy, .-

Theorem 1 Let o be a unimodular substitution on {1,...,n}, M, denote its in-

cidence matriz and O} be the associated generalized substitution. Then, for & €
R2\{0} and p € R, one has:

0, (Sa,p) = Stm,a,p-

11
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Figure 6: The action of the generalized substitution associated with o : 1 — 12,2 —
13,3+ 1 on the faces (0,1%), (0,2*) and (0, 3*).

Proof. We prove this for S;p, with the proof for Sgp being similar. The proof

is in two steps: we first prove that a face of S;rp is mapped by ©} onto faces of

Sch,&,,ﬂ and then that a face of Sng&,p belongs to the image of exactly one face

+
of S&p'

—

Let (Z,1%) € Soi;p and (7, 7*) € ©%(x,i*). One can write § = M, *(Z — f(p)) with

o(j) = p-i-s. One then has:

(9, M)

and:

(7 + €, Myadi)



Thus, (Z,1*) € S;p yields (y,*M,a) + p < 0 and (§ + €;,'M,d) + p > 0, that is,
(¥,7%) € S:nga ,- This yields @;(S;{p) C Sj_Mo-d' -

Now, let (¥,j*) € S:nga,p' Note that (Z,4*) is such that (¥, j*) € ©%(Z,*) if
and only if one can write o(j) = p-i-s so that § = M, (& — f(p)). Thus, for
0(j) = i1---iq, the preimages by ©} of (¥, j*) are exactly the faces (&, %} )r=0..q
where T, = M,y + f(zl -+ +ir_1). Let us prove that exactly one of these preimages
belongs to Sg ,. Let h be the function defined for k = 0...¢ by h(k) = (&), d) + p.
Since (¥/,7*) € Stm, a,p, One has:

h(0) = (M,y,d) +p = <377tMcro_Z> +p <0,

h(q) = (Moij + f(0(4)), @) + p = (Mo + Mo, 8) + p = (i + &, Mo@) + p > 0.

Moreover, for k > 0:

—

h(k+1) = (Fxy1, &) + p = (@ + flix), @) + p > h(k).

Thus, there is a unique kg, 0 < ko < ¢, such that h(kg) < 0 < h(ko + 1), which
exactly means that (¥, , 45 ) is the unique preimage by ©} of (%,j*) which belongs
to S;'p. O

Figure 7 illustrates Theorem 1.

Figure 7: A stepped hyperplane Sg,,, (left) is mapped by the generalized substitution
©} onto the stepped hyperplane St 5, (right).

Note that although the proof Theorem 1 is rather technical, it is on the contrary

easy to check that:
M, 'Pa,p = Pinr,a,p;

where Pg , is the hyperplane introduced in Section 2.2 whose discretization is the
stepped hyperplane Sg ,. In other words, the generalized substitution ©}, acts as a
“discretization” of the linear map M !. This viewpoint can help to more intuitively
understand the way generalized substitutions act.
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Note also that two different substitutions can have the same incidence matri-

In this case, the associated generalized substitutions are different, but they

Ces.

act similarly on stepped hyperplanes according to Theorem 1. Indeed, they act in

the same way globally, i.e. on whole stepped hyperplanes, but not locally, i.e. on

subsets of faces (see Fig.8).

w
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1 — 12,2 — 32,3 — 231.

3 — 123 and ¢’

1 — 12,2 — 23,

Figure 8: Let o :

, (right) act differently on

left) and ©%

(

However, it is worth noting that both obtained

*
o

Although M, = M,/, one can see that ©

the same initial set of faces.

sets of
faces are included in the same stepped hyperplane (the origin is highlighted by the

black circle).

Finally, it is straightforward to restate Theorem 1 in terms of multi-dimensional

Propo-

sequences, thanks to the projection onto hyperplane sequences of Section 2.2 (

sition 1 and Definition 3).

generalized substitutions map hyperplane se-

)

Hence

onto hyperplane sequences (resp. Sturmian

)

Note that, among classic substitutions on words, only Sturmian mor-

quences (resp. Sturmian sequences

sequences).

It is

phisms map Sturmian words onto Sturmian words (see [9] or Chap.2 of [27]).

therefore natural to consider generalized substitutions as a multi-dimensional ex-
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tension of Sturmian morphisms rather than a general notion of multi-dimensional
substitution. Last, note that Sturmian morphisms do not act only over Sturmian
words but over all the two-letter words. It is thus natural to extend the action of
generalized substitutions beyond stepped hyperplanes. In this direction, the way
explored by [4] seems promising.

3.3. Effective Generation of Stepped Hyperplanes

Theorem 1 shows the way generalized substitutions act on stepped hyperplanes.
But these substitutions also allow one to generate effectively sequences. So we dis-
cuss here the possibility of obtaining a stepped hyperplane as the limit of successive
applications of a generalized substitution on a finite set of faces (see Fig.9).

e

Figure 9: From left to right, some iterations on a finite set of faces of the generalized
substitution associated with o : 1 +— 12,2 — 13,3 — 1 (described Fig.6). The origin
is highlighted by the black circle.

In what follows, we consider only characteristic stepped hyperplanes:
Definition 7 The stepped hyperplane Sz , is said to be characteristic if p = 0. For
the sake of simplicity, a characteristic stepped hyperplane Sz o is denoted by Ss.

Theorem 1 yields that generalized substitutions are permutations onto the set
of characteristic stepped hyperplanes. Moreover, we also consider here only Pisot
substitutions:

Definition 8 A substitution o on {1,...,n} with incidence matriz M, is Pisot if
M,y has a spectrum {\, 1, ..., pr}t such that 0 < |u;| <1< A, fori=1,... k.

In [14], it is proven that if o is a Pisot substitution, then M, (and hence ‘M,)
is irreducible and diagonalizable with simple eigenvalues. Thus, according to the
Perron-Frobenius theorem, ‘M, has a positive eigenvector @ associated with its
dominant eigenvalue A:

Myd = A
We will use the following lemma:
Lemma 1 Let o be a Pisot substitution. Let 0 < |u;|; < 1 < X\ be the eigenvalues
of M, and @ be a positive eigenvector of *M, associated with \. Then:

1. the eigenspace of M ' associated with the (u;l)i s the real hyperplane:
Pz ={Z € R" | (Z,a) = 0};

15



2. if p = max; |u;| < 1, then there is a positive real number ¢ such that:

o c
Yn €N, Vi € Pa |M;7E] 2 ||

Proof. Note that M; ! has eigenvalues A™! and p; ' fori =1,...,n — 1.

1. Let & be an eigenvector of M ! associated with z; . Since y; M 1% = & and
Ad = 'M,a, one has:

o 1o 1 M
<:I;7 CY> = </1’1Mcr 1:E7 _tMUa> = _l< ,Oé>,
A A
and since |5L| < 1, this implies (7, &) = 0, i.e. ¥ € Pg. Thus, the eigenspace
of M ! associated with the (127 !); is included in P5. With these spaces having
both dimension n — 1, this inclusion turns out to be an equality.

2. Fori=1,...,n—1, let e_i- be an eigenvector of M ! associated with ;Lfl. A
vector x € Py can be written ¥ = ). x;e. We set:

N@) = |ail.

K2

It defines a norm N over Pz. One has:

N(M;"f) = N <Z Ingne_é) = N <Z ;j—:lez> o Z

Zq

—| < —=N(2).
i

=

—_

A ? i

Then, the equivalence of the norms N(.) and .|| yields a > 0 such that
1|Z|| < N(&) < a||#| for all Z. One thus computes:

[ V)

1M "F| < aN(M; ") < —N(&) < — |,
0

=

and this yields the result with ¢ = a2.

O

The previous Lemma tells us that the real hyperplane Pg is invariant under the
linear map M !, and that this map is ezpansive on this real hyperplane. We have
already mentioned that it is worth considering the generalized substitution ©} and
the stepped hyperplane Sy as discretizations of, respectively, the linear map M !
and the real hyperplane Pgz. According to this viewpoint, the following theorem is
just a “discrete version” of Lemma 1:

Theorem 2 Let o be a Pisot unimodular substitution and & be a positive left eigen-
vector of M, associated with its dominant eigenvalue. Then, there is a finite set of
faces P C Sz such that:

lim (©%)" (P) = S5.

g
n—oo
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Proof. Let (%o,J5) € Sa. It follows from Theorem 1 that there are a unique
sequence (4, j)n>0 of faces of Sz and a unique sequence (p,)n>0 of words, with
pn being a prefix of o(j, ), such that:

Vn >0, ¢,= Mcr_l(gn-i-l - f(pn+l))'
In particular:
n
o =M, — > M * fpy).

k=1
Let us prove that there is C' > 0 such that if ||| > C, then ||#,|| < ||7o]| for some
n.
Let us first bound the quantity >, M " f(pr). Note that the sequence (pn)n>o0

ranges through a finite number of words. Thus, there is ' > 0 which bounds
(If (pn)1)n>0. Moreover, a classic result of linear algebra yields:

Vi e R, ||M;'Z|| < olz|,

where o = o(M ;1) > 1 is the spectral radius of M !. One computes:

Z;f

_n‘i ||

n+1_1

n k B 0
kz::l F_FT_]L .

Let us now examine ||M One can write g, = y_{; + y7’ with y_{; € Pz and
" € Ra- |ly;|| is the dlstance from ¢, to Pg, and (Yn,J;) € Sa yields that this
dlstance is bounded by max; ;. Thus, using Lemma 1 with yn € Pa:

1M "Gl = 1Myl = 1M,y

> —nny;n—H—
> (gl - 1) - H
> il - (5 + 5 ) maxa

So finally, if we set

n+1 _ 1 1
T(n) = jpLai— + (M—Cn + )\—n) max a;,
one has: .
5ol > ﬂ—nllﬂnll —T'(n).

Then let ng be such that —&- > 2, and set C' = T'(ng). This yields ||%n, || < ||%oll
for ||g]| > C. In other words, any face (%o, j}) of Sz such that ||go| > C is the
image, by iterated applications of ©}, of a face (/n,, j5,) With [|7, || < ||70]|. Hence,
the finite set of faces P = {(¢,j*) € Sa | |9l < C} suffices to generate the whole
stepped hyperplane Sg. O
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Note that the previous proof even provides a suitable set of faces which generates

1 21,2 —

Some faces near

the origin (black circle) turn out to be never obtained (gaps). However, according
to Theorem 2, there is a finite set of faces which suffices to generate the whole

stepped hyperplane. Right, the set of faces obtained after some iterations of O on

a sufficiently large initial set.

the stepped hyperplane. However, it is not so easy to compute this set, especially
because of the constant ¢ coming from Lemma 1. Figure 10 illustrates Theorem 2.

Figure 10: Let us consider the unimodular Pisot substitution o :
13,3 +— 1. Left, some iterations of ©% on a finite set of faces.

10ons

inued Fracti

1 Cont

1imensiona

4. Multi-d

4.1. Brun Ezpansions

There are various multi-dimensional generalizations of continued fractions (see

Here we describe the Brun algorithm, also called the

modified Jacobi-Perron algorithm (see [26]).

[13] for an overview).

e.g.

— X be defined by:

[0,1)™ and denote X\{0} by X*. Let T : X*

Let X

7 N
sl &
.uh.i
aa
7.
=&
_ 1
|
=&
s
[«]
sl

(

where 7 is the smallest index such that «;

-5 0m)

T(al, ..

and

Let also ¢ : X* — N*

maxaj.
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e: X —{1,...,n} be defined by:

1
alaq,...,an) = L J and e(oa,...,a,) =min{i | a; = maxa;}.
max o j

The Brun expansion of & € X* is the (possibly finite) sequence:

(ak, ex)rz0 = (a(TH(@)), e(TH(@)))r>0,
and one writes:
[Oﬂ = [(CL(),E()), (al,sl), .. ]

Let us give a matrix viewpoint. For @ € N and ¢ € {1,...,n}, one defines the
following (n 4+ 1) x (n 4+ 1) matrix:

I

where [, is the p x p identity matrix and all the unspecified coefficients are zeroes.
One checks for & € X*:

() Aa(@)e@ (LT (@) ="(1,a), (1)

where (1,%@) = (1,uq,...,uy) for @ = (uy,...,uy).
Finally, if the Brun expansion of & is greater than k in length, then the k-th con-
vergent of & is defined by:

[(a0,20), .- ., (ar, ex)] = (%%)

where:
t(Qaplu v 7pn) = Aao,ao te Aak7gkt(1, 0,... ,0)

Note that for n = 1, T is exactly the Gauss map. Sequence (a,, ), then turns out
to be the continued fraction expansion of «, and one has ¢, = 1 for all n. Eq.(1)

a 1 1 (1
“N1 o T ) \a )’
and one checks, for example:
ap 1 ar 1 az 1 1Y_ (¢ b _ 1
(o) (7o) (5 0)(0)-(3) @ fmr—=
a; + —
as

becomes:

For n > 1, map T applies the classic Gauss map on the greatest coordinate of &.
The result of the operation is then a(&), while (&) indicates the coordinates the
operation was performed on.
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There are several results concerning the convergence of this algorithm. For
n = 1, it is known that the sequence of the convergents of a tends to a with
an exponential rate. For n = 2, the exponential convergence is proven for almost
every & (see [24, 26, 28]). For n > 2, [25] provides a general method to prove the
convergence almost everywhere, which however has been used only for n < 3.

4.2. S-adicity

We here combine Theorem 1 and the Brun expansions to write any stepped
hyperplane as a continued composition of generalized substitutions. As in Section
3.3, we consider here only characteristic stepped hyperplanes (see Definition 7).

Let a € N*and e € {1,...,n}. The substitution o, is defined over {1,...,n+1}

by:
1 — 1% (e+1)
Oae - (e4+1) — 1
i — g

One checks that the incidence matrix of o, is Ay . Moreover o, is unimodular
since one computes det(A, ) = —1. One thus can combine Eq.(1) and Theorem 1
to obtain:

0% (St1(@)) = S,
In particular, if @ has a Brun expansion at least k in length, this yields:

or 0...007 (St(l,Tk+1(62))) = Sf(l,d’)- (2)

Tag,eq Tay,ey,

Note that the number of different substitutions in Eq.(2) is unbounded. Since
it is not very suitable for effective computations, let us rewrite this equation using
a finite number of substitutions. For ¢ = 1...n, the substitutions 7. and o. are
defined over {1,...,n + 1} by:

1 ifi=et1,

. e . 1.0 ifi=e+1
T =< e+l ifi=1, and O i . .+ ’
. . 1 otherwise,
i otherwise
and an induction easily proves:
Oae = 02 OTs. (3)

Moreover, 0. and 7. are also unimodular, so the generalized substitutions ©7 and
©;,_ are defined, and one has:

6* — (__)*

a
Oa,e oloTe

— 0 0(6:)"

Thus, Eq.(2) can be rewritten using a finite number of non-trivial generalized sub-
stitutions as follows:

Sam =05, 0(05,) 000 o0 )" (Sarr@y) . @
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Generalizing the terminology for classic substitutions on sequences (see e.g. [20,
21, 32, 42]), Eq.(4) is called an S-adic expansion at order k of the stepped hyperplane
St(1,a)- Then, Sty ) is said to be S-adic if it has S-adic expansions at any order.
This is particularly the case if @ has irrational coordinates linearly independent over
Q, since it then turns out that @ has an infinite Brun expansion. Note that this
case corresponds to multi-dimensional Sturmian sequences (see Definition 4).

Example 3 Let us consider the n =1 case. One has:

) 1—2 d ) 1—1
T 91 an o1 9512

One can check Eq.(8), for example, for a =3 and ¢ = 1:
o} or (1) = 03(2) = 07(12) = 0(112) = 1112 = 031 (1),
o} ot (2) =0} (1) =1=031(2).
Then, the associated generalized substitutions ©F and ©}  are defined by:
R () T R (CSWN e}
1 (@, 2* 0,1 (0,2%) — {(—&1,2%)}

Figure 11 illustrates some applications of these basic substitutions, i.e. the beginning
of an expansion such as the one of Eq.(4).

Figure 11: Starting from a finite set of faces of a stepped hyperplane, the generalized
substitutions ©3 , ©% , ©; and O are successively applied (from left to right).

All of these sets of faces belong to stepped hyperplanes.

Example 4 Let us consider the case n = 2. One has:

1—2 1—3 1—1 1—1
T 2—1 , 7 2—2 , o1 : 2—12 | o9 : 22
3—3 3—1 3—3 3—13
Then, the associated generalized substitutions ©F , ©F,, ©5 and O}, are defined
by:
0,1~ {(@2) 0,1~ {03}
0r + { 0.2 {01} . 03, : { (0.2~ {(@.29)
(0,37) = {(0,37)} (0,37) = {(0,17)}
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(0.1%) = {(@.17),(0.2%)) (0.1%) = {(@.1), (0.3%))
0; : 4 (02) - {(-a.2)) .85, { (0.2~ {(02))
(0.3%) — {(@.37)} (0.3%) = {(~21.37)}

Figure 11 illustrates some applications of these basic substitutions, i.e. the beginning
of an expansion such as the one of Eq.(4).

W F

Figure 12: Starting from a finite set of faces of a stepped hyperplane, the generalized
substitutions ©} , ©% , ©F and O are successively applied (from left to right).

All of these sets of faces belong to stepped hyperplanes. Note that these four steps
are a decomposition of the last step of Fig.9.

4.8. Substitutivity

In this section, we are interested in characterizations of the following stepped
hyperplanes:

Definition 9 A stepped hyperplane is said to be invariant if it is invariant under
a non-trivial generalized substitution. It is said to be substitutive if it is the image
by a generalized substitution of an invariant stepped hyperplane.

This generalizes the notions of invariant and substitutive sequences in the one-
dimensional case. Such characterizations are particularly interesting since, accord-
ing to Theorem 1, one can effectively generate stepped hyperplanes which are in-
variant under a Pisot generalized substitution or image of such invariant stepped
hyperplanes.

In order to characterize substitutive characteristic stepped hyperplanes, let us
state the following propostion:
Proposition 3 Let a@ € RY. If the characteristic stepped hyperplane S:(1 &) is
substitutive, then the coordinates of & belong to a field extension Q(\), with A being
an algebraic number of degree n + 1 at most.

Proof. Suppose that S:(; 4) is the image by ©7, of a stepped hyperplane St(l 3)

which is invariant under ©%. Theorem 1 implies that M (1, ) = X{(1, §), with
A being an eigenvalue of M 1. Since M ! is a matrix of size n + 1 with integer
coefficients, \ is an algebraic number of degree n + 1 at most and the coordinates
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of 3 thus belong to Q(A). But Theorem 1 also yields *M,.(1, 3) = t(1,), so the

coordinates of & also belong to Q(\). O
Let us also recall this theorem put forward by Lagrange:

Theorem 3 (Lagrange) The continued fraction expansion of o € R is ultimately
periodic if and only if a belong to a field extension Q(X), A being an algebraic number
of degree 2 at most.

We are now in a position to prove the following theorem:

Theorem 4 If& € [0,1)™ has an ultimately periodic Brun expansion, then the char-
acteristic stepped hyperplane S:(y &) is substitutive. Moreover, the converse holds for
n=1.

Proof. The sufficient condition results from Eq.(2) or Eq.(4). For n =1, the
converse follows from Proposition 3 and Theorem 3 (recall that the Brun expansions
and continued fraction expansions are identical for n = 1). O

Note that Theorem 4 yields a complete characterization only for n = 1. This case
corresponds to Sturmian sequences (the stepped hyperplanes are “stepped lines”),
and we get an already known result (see Introduction). For n > 1, a multi-
dimensional extension of Theorem 3 would similarly yield a complete characteri-
zation. However, such an extension is thought to be a very hard problem.

To get around this problem, we would like to prove, without relying on Proposi-
tion 3, that substitutivity implies the periodicity of Brun expansions. A promising
way seems to be the following characterization which relies on derived sequences
(roughly speaking, a derived sequence encodes the way the prefix of a sequence
reoccurs in this sequence):

Theorem 5 ([19]) A sequence is substitutive if and only if it has a finite number
of derived sequences.

Of course, we would here need a multi-dimensional generalization of this char-
acterization. It seems, however, easier than generalizing the theorem of Langrange
(Theorem 3). In this direction, one can mention [31, 37], where derived Voronoi
tilings - a sort of generalization of derived sequences - are defined. In particular,
the pseudo-self-similar tilings are characterized in a way which looks like a multi-
dimensional extension of Theorem 5 (the reader is referred to [31, 36, 37, 38| for
more details). In our case, we would need to link derived Voronofi tilings (or some
adaptation to multi-dimensional sequences) with Brun expansions. In this direc-
tion, it is worth noticing that links between derived sequences and classic continued
fractions have already been studied in [2, 10, 40].
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