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Planar Dimer TilingsOlivier Bodini and Thomas FerniqueLIRMM, 161 rue Ada 34392 Montpellier Cedex 5 - Frane,{bodini,fernique}�lirmm.frAbstrat. Domino tilings of �nite domains of the plane are used tomodel dimer systems in statistial physis. In this paper, we study dimertilings, whih generalize domino tilings and are indeed equivalent to per-fet mathings of planar graphs. We use height funtions, a notion previ-ously introdued by Thurston in [10℄ for domino tilings, to prove that adimer tiling of a given domain an be omputed using any Single-Soure-Shortest-Paths algorithm on a planar graph. We also endow the set ofdimers tilings of a given domain with a struture of distributive lattieand show that it an be e�etively visited by a simple algorithmialoperation alled �ip.1 Dimer tilingsA ell is a losed polygonal set of R
2 and a domain is a �nite set of ells withdisjoint interiors. Two ells of a domain are said adjaent if they share at leastone boundary edge. A domain C is said tileable if all its ells an be grouped twoby two, two grouped ells being adjaent. If it exists, suh a grouping is alled adimer tiling of C. Notie that a tileable domain an admit many dimer tilings:we denote by ∆(C) the set of dimer tilings of C. Fig. 1 illustrates these notions.

Fig. 1. A domain of 16 ells (left) and a dimer tiling of it, the grouped ells beingrepresented by a single polygon (right).Dimer tilings arise for example in statistial physis to model the behavior ofdimer systems: ells are squares and thus dimer are retangles, alled dominoes



2(see e.g. [5, 6℄). In this ontext, it is partiularly interesting to endow the setof dimer tilings of a domain with a struture suitable for performing randomsampling.Dimer tilings are also onneted with perfet mathings of planar graphs. In-deed, we an assoiate to a set of ells C an undireted planar graph denoted by
A(C): to eah ell of C orresponds a vertex of A(C), two of them being onnetedby an edge if the orresponding ells are adjaent. Then, there is a natural bije-tion between the perfet mathings of A(C) and the dimer tilings of C (see Fig. 2).

Fig. 2. Left, the planar graph orresponding to the set of ells of Fig. 1. Right, theperfet mathing of this graph orresponding to the dimer tiling of Fig. 1.In this paper, we mainly fous on the two following problems: the �rst wantto ompute a dimer tiling while the seond want to provide a way to move onthe set of dimer tilings of a �xed domain. This paper is organized as follows. InSetion 2, we assoiate to a domain a weighted direted graph and de�ne heightfuntion over the verties of this graph. Suh an approah has been �rstly usedin [10℄ to ompute in linear time a dimer tiling of a simply onneted domainmade of square ells, and then extended in [1℄ to regular ells (all with the samenumber of edges). We extend here these results to domain with holes made ofnon-regular ells. First, we show in Setion 3 and 4 that the omputation of adimer tiling of a bipartite domain (or, equivalently, of a perfet mathing of abipartite planar graph) an be redued to a single-soure-shortest-paths problemon a planer graph. This yields in partiular aO(n ln(n)3)-algorithm to ompute adimer tiling of a domain whih is, ontrarily to [10, 1℄, neither neessarily simplyonneted nor made of regular ells. Seond, we endow in Setion 5 the set ofdimer tilings of a domain with a struture of distributive lattie and de�nes asimple e�etive operation, alled �ip, whih allows to visit it. This an be usedfor example to perform random sampling on the set of dimer tilings.



32 General settings2.1 Weight and height funtionA direted graph is denoted by G = (V,E), V (resp. E) being the set of verties(resp. edges) of G.A direted path is a sequene e1, . . . , ep of edges suh that ei points to thevertex ei+1 starts from, and a iruit is a direted path whose last edge pointsto the vertex the �rst edge of this path start from.A weight funtion over G is a map w : E → R, extended to a set of edges X(in partiular a direted path or a iruit) by:
w(X) =

∑

e∈X

w(e).Then, the height funtion assoiated to the weight funtion w and to the vertex
v∗ ∈ V is the map from V to R ∪ {−∞} denoted by hw,v∗ and de�ned by:

∀v ∈ V, hw,v∗(v) = inf{w(p) | p is a path from v∗ to v}.2.2 The graph of a bipartite domainLet C be a domain as de�ned in Setion 1. We suppose that C is bipartite: wesplit it into two sets Cb and Cw (resp. the blak ells and the white ones), suhthat two adjaent ells never belong to the same set (that is, are of di�erentolors). Then, given an orientation of the plane, we de�ne the direted graph
G(C) as follows (see Fig. 3):� to eah vertex of C orresponds a vertex of G(C);� to an edge shared by two adjaent ells of C (and thus of di�erent olors)orresponds in G(C) an edge direted so that the blak ell is on its left;� to an edge on the boundary of the domain (and thus belongs to only oneell) orrespond in G(C) a bidireted edge.In partiular, to eah ell of C naturally orresponds a iruit of G(C), alledell-iruit in all what follows.From now on and up to the end of the paper, C stands for a set of ellswhose union is a bipartite onneted domain, and v∗ stands for a �xedvertex of the outer boundary of G(C).One v∗ is �xed, we will simply denote by hw the height funtion hw,v∗assoiated to the weight funtion w. Then, the idea of the paper is to de�nepartiular weight funtions on the graph G(C), suh that height funtions anbe used to ompute the ones whih orrespond to dimer tilings of C.
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Fig. 3. The orientations of blak and white ells of the bipartite domain of Fig. 1(left). The orresponding direted graph, whose bidireted edges orrespond to theboundaries of the domain, the vertex v
∗ being on the outer boundary (right).3 Counters and dimer tilingsWe de�ne here ounters and use them to give a haraterization of tileabledomains. The results provided here are then used in the next setion to omputee�etively a dimer tiling.De�nition 1. A ounter over G(C) is a weight funtion δ suh that δ(e) = 0 forany bidireted edge e and δ(c) = 1 for any ell-iruit c. A ounter is moreoversaid binary if δ(e) ∈ {0, 1} for any edge e.Clearly, a binary ounter weights exatly one edge of a ell-iruit by 1, theother ones having weight 0. Hene, grouping two ells whih share an edge ofweight 1 yields a dimer tiling (see Fig. 4). Conversely, it is straightforward tosimilarly derive a binary ounter from a dimer tiling. Thus, we use indi�erentlythe terms dimer tiling or binary ounter in all that follows.
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Fig. 4. A ounter (left) and the binary ounter orresponding to the dimer tiling of Fig.1 (right). For the sake of larity, the weights 0 of bidireted edges are not represented.



5Let us now onsider two ounters δ and δ′, and let c be a iruit of G(C).One easily proves by indution on the size of c that δ(c) = δ′(c). In partiular, if
C is tileable then one an onsider δ′ to be a binary ounter: one has δ′(c) ∈ N,and this yields δ(c) ∈ N. Thus:Proposition 1. If C is tileable, then δ(c) ∈ N for any ounter δ.Conversely, suppose that for any ounter δ′ and any iruit c, δ′(c) ∈ N. Insuh a ase, we an de�ne the notion of δ-shortest path from a vertex v to avertex v′: it is a path p (not neessarily unique) whih satis�es

δ(p) = min{δ(p′) | p′is a path from v to v′}.Then one has the following properties:Proposition 2. If δ and δ′ are ounters over G(C), then any δ-shortest path isalso a δ′-shortest path.Proposition 3. If δ and δ′ are ounters over G(C), then hδ = h′δ yields δ = δ′.We then prove:Theorem 1. Let δ be a ounter over G(C) and set for an edge e from v to v′:
δ⊥(e) = δ(e) − (hδ(v

′) − hδ(v)).Then, δ⊥ is the binary ounter suh that hδ⊥(v) = 0 for any vertex v.Thus, Th. 1 and Prop. 1 yield that C is tileable if and only δ(c) ∈ N for anyounter δ over G(C) and any iruit c of G(C). This provide a haraterizationof tileable bipartite domains that we use in the following setion.4 Computing a binary ounterThe previous setion has de�ned ounters and binary ounters. We are espe-ially interested in binary ounters sine they orrespond to dimer tilings. Here,we �rst show how to ompute a ounter in linear time, and we then use Th. 1to derive a binary ounter from it.The �rst step to ompute ounter onsists in onstruting a partiular weightedtree. Let A(C) be the undireted graph assoiated to C as explained in the intro-dution. Sine the domain is bipartite and onneted, so is A(C). Let us assignolor blak or white to the verties of A(C), so that two linked verties havedi�erent olors. Let then T be a spanning tree of A(C). If we remove from Tan edge e between a blak vertex b and a white vertex w, this splits T into twotrees: we denote by Te,b the one whih ontains the vertex b and we set:
dT (e) = #{blak verties in Te,b} − #{white verties in Te,b}.It de�nes a funtion dT from the edges of T to Z (see Fig. 5). One heks:



6Proposition 4. Let v be a vertex of T and e1, . . . , ek be the edges of T ontain-ing v. If the domain has as muh blak as white ells, then one has:
k∑

i=1

dT (ei) = 1.Notie that a tileable bipartite domain has neessarily as muh blak as whiteells sine eah blak ell is grouped with a white ell. Simple examples showthat the onverse is however false.The seond step to ompute ounter onsists in deriving from the funtion
dT a ounter δT over G(C). We proeed as follows. We set δT (e) = 0 for anybidireted edge (that is, an edge of the boundaries of the domain). Otherwise,a direted edge e orresponds to an edge shared by two ells of C, say Cb and
Cw, whih orrespond in the graph A(C) respetively to two verties b and w,onneted by an undireted edge e′ of A(C); we set δT (e) = dT (e′) if e′ belongsto the tree T , δT (e) = 0 else (see Fig. 5). Prop. 4 then yields that δT (c) = 1 forany ell-iruit c. Thus, δT is a ounter.
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Fig. 5. Left, a spanning tree T over A(C) and the weights dT . Right, the orrespondingweight funtion δT over G(C): it is a ounter.Let us study the omplexity of the onstrution of this ounter. Let n bethe number of ells of the domain C, or equivalently, the number of verties of
A(C). Construting a spanning tree T an be done in linear time by a greedyalgorithm. Then, the weight funtion dT an be omputed reursively in lineartime, starting from the leaves of T . Deriving δT from dT an be performed inlinear time sine, the graph G(C) being planar, it has O(n) edges. Thus, theounter δT an be omputed in linear time.Then, Th. 1 allows to derive the binary ounter δ⊥ from the height funtion of
δT , whih an be omputed by any single-soure-shortest-paths algorithm on the



7planar graph G(C) weighted by δT , the soure being the vertex v∗. In partiular,[3℄ provides a O(n ln(n)3)-algorithm to do this. Finally one has:Theorem 2. A dimer tiling of a bipartite tileable domain an be onstruted bya O(n ln(n)3)-algorithm.The previous algorithm an also be used to detet the ase no dimer tiling exist:� if the bipartite domain is not balaned (hene not tileable), then the on-strution of the weight funtion dT leads to a vertex suh that the sum ofthe weights of its adjaent edges is not equal to 1;� otherwise, δT is a ounter, and C non-tileable yields the existene of a iruit
c suh that δT (c) /∈ N, more preisely δT (c) < 0 sine δT (c) ∈ Z by onstru-tion. Thus, shortest paths are not de�ned, and the algorithm of [3℄ detetsit (as most of the shortest paths algorithms).Notie that our algorithm has a omplexity similar to the O(n ln(n)) algo-rithm of [9℄, whih deals with the ase of square ells and domain with a boundednumber of holes.5 Random samplingIn this setion, we suppose that there exists at least one binary ounter over

G(C), that is, ∆(C) is not empty. We endow ∆(C) by a struture of distributivelattie whih an be visited using a simple operation alled �ip.5.1 FlipsDe�nition 2. Let δ be a binary ounter over G(C). A δ-nodule is a maximal1set of verties of G(C) suh that any two of them are linked by a direted path pwhih satis�es δ(p) = 0.Notie that if δ is a binary ounter, then a path p suh that δ(p) = 0 is alwaysa shortest path for δ. So it follows from Prop. 2 that two binary ounters de�nethe same nodules: we thus simply speak about nodules. Moreover, notie that
hδ is always onstant over the verties of a nodule: intuitively, a nodule an beseen as an expanded vertex.So we all inoming (resp. outoming) edge of a nodule a direted edge of G(C)whih links a vertex outside the nodule to a vertex inside of it (resp. inside tooutside). We also denote by A∗ the nodule whih ontains the vertex v∗, and wethen de�ne the following operation:De�nition 3. Let A be a nodule, A 6= A∗. Suppose that δ is a binary ountersuh that δ(e) is equal to 1 (resp. 0) for eah inoming edge of A and 0 (resp.
1) for eah outoming edge of A. We all dereasing �ip (resp. inreasing �ip)the operation whih exhanges the weights of the inoming and outoming edgesof A.1 for inlusion



8 One easily heks that a �ip on a nodule A transforms a binary ounter δinto a binary ounter, say δ′ (see Fig. 6). Moreover, if it is an inreasing �ip(resp. dereasing), then hδ′(v) = hδ(v) + 1 (resp. hδ′(v) = hδ(v) − 1) if v ∈ Aand hδ′(v) = hδ(v) otherwise: �ips at on heights in a very simple way.
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δ � δ′ ⇔ δ = δ ∧ δ′ ⇔ hδ ≤ hδ′ .Notie that it is not di�ult to endow a �nite set with a struture of distributivelattie. The interest of this spei� de�nition follows from its link with the �ips.Reall �rst that, given δ and δ′ in ∆(C), one says that δ′ overs δ for the partialorder � if δ ≺ δ′ and if, for any δ′′ ∈ ∆(C), δ ≺ δ′′ yields δ′ � δ′′. Then one has:Theorem 3. A binary ounter δ′ overs a binary ounter δ if and only if δ anbe obtained performing a dereasing �ip on δ′.In other words, the Hasse's diagram of the distributive lattie (∆(C),∧,∨)(two elements are linked if and only if one overs the other) is isomorphi to the
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Fig. 7. The distributive lattie of all the dimer tilings of a domain. The dimer tiling δ⊥de�ned in Th. 1 is the bottom of this lattie. The �ips allow to move between linkedtilings. Notie that, exepted the upper �ip whih is performed on the nodule shownFig. 6, all the other �ips are performed on nodules redued to a single vertex.



10undireted graph whose verties orrespond to dimer tilings, eah of them linkedto the ones it is overed by. Figure 7 illustrates this.Suh a struture of distributive lattie, together with the e�etive operation�ip, an then be used to generate randomly a dimer tiling of a given domain (see[8℄). In [4℄, we also use this lattie and the �ips to generate all the |∆(C)| dimertilings of C with less than 2|∆(C)| �ips. Sine a �ip an be easily performed inlinear time, it leads to an algorithm in O(n|∆(C)|). It thus improves the O(n2)algorithm of [2℄ whih is moreover restrited to the ase of square ells.Referenes1. O. Bodini, M. Latapy, Generalized Tilings with Height Funtions. Mor�smos 7(2003).2. S. Desreux, M. Matamala, I. Rapaport, E. Remila, Domino tiling and relatedmodels : spae of on�gurations of domains with holes. Theoret. Comput. Si.319 (2004), 83�101.3. J. Fakharoenphol, S. Rao, Planar graphs, negative weight edges, shortest paths,and near linear time. FOCS 2001, 232�241.4. T. Fernique, Pavages d'une polyellule. LIRMM Researh Report 04002 (2004),available at http://www.lirmm.fr/~fernique/info/memoire_mim3.ps.gz5. P. W. Kasteleyn, The statistis of dimers on a lattie. I. The number of dimerarrangements on a quadrati lattie. Physia 27 (1961), 1209�1225.6. R. Kenyon, The planar dimer model with boundary: a survey. Diretions in math-ematial quasirystals, M. Baake and R. Moody, eds. CRM monograph series(AMS, Providene, RI, 2000).7. J. Propp, Lattie struture of orientations of graphs. Preprint (1993), available athttp://www.math.wis.edu/ propp/orient.html.8. J. Propp, Generating random elements of �nite distributive latties. Preprint(1997), available at http://www.math.wis.edu/~propp/wilf.ps.gz.9. N. Thiant, An O(n log n)-algorithm for �nding a domino tiling of a plane piturewhose number of holes is bounded. Theoret. Comput. Si. 303 (2003), 353�374.10. W. P. Thurston, Conway's tiling group. Amerian Mathematial Monthly, 97(1990), 757�773.



11AppendixProof of Proposition 2:Let v and v′ be two verties. Let ψ and ψ′ be two ounters. Let c be a ψ-shortest path and c′ be a ψ′-shortest path, both linking v to v′. Let r be anypath from v′ to v. Prop. 1 applied to iruits c.r and c′.r yields ψ(c.r) = ψ′(c.r)and ψ(c.r) = ψ′(c.r). It follows that:
ψ(c′) − ψ(c) = ψ′(c′) − ψ′(c).But sine c is a ψ-shortest path, ψ(c′)−ψ(c) ≥ 0. Similarly, c′ being a ψ′-shortestpath, ψ′(c′) − ψ′(c) ≤ 0. Thus ψ(c′) − ψ(c) = ψ′(c′) − ψ′(c) = 0, that is, c is ashortest path for both ψ and ψ′ (and c′ too). �Proof of Proposition 3:Let ψ and ψ′ be two ounters suh that hψ = hψ′ . Let e = (v, v′) be an edge. If

e /∈ I, then ψ(e) = ψ(e′) = 0 by de�nition.Otherwise, let c be a shortest path from v∗ to v (for both ψ and ψ′ aordingto Prop. 2). Hene ψ(c) = hψ(v) = hψ′(v) = ψ′(c). Similarly, there exists a path
c′ from v∗ to v′ suh that ψ(c′) = ψ′(c′). Considering then a path r from v′ to
v∗ and applying Proposition 1 to iruits c.e.r and c′.r, one gets easily:

ψ(c.e) − ψ′(c.e) = ψ(c′) − ψ′(c′).Combined with ψ(c) = ψ′(c) and ψ(c′) = ψ′(c′), it yields ψ(e) = ψ′(e). �Proof of Theorem 1:It is easy to hek that δ⊥ is a ounter. Let us prove that it is a binary ounter.Let e = (v, v′) be an edge:� If there exists a ψ-shortest path p from v∗ to v′ suh that e is the last edgeof p, then hψ(v′) = hψ(v) + ψ(e), that is, δ⊥(e) = 0.� Otherwise, one has hψ(v′) < hψ(v) + ψ(e), that is, 0 < δ⊥(e). But the edge
e belongs to a iruit-ell c whose other edges form a path from v′ to v oflength 1 − ψ(e) (sine ψ(c) = 1). Hene hψ(v) ≤ hψ(v′) + 1 − ψ(e), that is,
δ⊥(e) ≤ 1. Thus 0 < δ⊥(e) ≤ 1: proving that δ(e) is entire will yield δ(e) = 1.Let a and b be ψ-shortest paths from v∗ to respetively v and v′ and r bea path from v′ to v∗. One has δ⊥(a) = ψ(a) − hψ(v), that is, sine a is a
ψ-shortest path, δ⊥(a) = 0. Similarly, δ⊥(b) = 0, and so:

δ⊥(a.e.r) = δ⊥(a) + δ⊥(e) + δ⊥(r)

= 0 + δ⊥(e) + δ⊥(r) + δ⊥(b)

= δ⊥(e) + δ⊥(b.r).Sine a.e.r and b.r are iruits, δ⊥(a.e.r) ∈ N and δ⊥(b.r) ∈ N aording toProp. 1, and thus δ⊥(e) ∈ N. Sine 0 < δ⊥(e) ≤ 1, it yields δ⊥(e) ∈ {0, 1}.



12It remains to prove that hδ⊥ = 0. Let v be a vertex and c be a δ⊥-shortest pathfrom v∗ to v. One omputes hδ⊥(v) = δ⊥(c) = ψ(c)− hψ(v). Sine, aording toProp. 2, c is a ψ-shortest path too, hψ(v) = ψ(c) and thus hδ⊥(v) = 0. �Proof of Proposition 5:Let h = max(hδ, hδ′). Let ψ be de�ned on an edge e = (v, v′) ∈ I by:
ψ(e) = δ⊥(e) + (h(v′) − h(v)) ,where δ⊥ is de�ned in Theorem 1. We prove that ψ is a binary ounter whoseheight funtion is h. The proof is similar for the min(hδ, hδ′) ase.Sine the sum (h(v′) − h(v)) vanishes when taken over the edges of a ell-iruit (term by term anellation), ψ is, as δ⊥, a ounter. Sine δ and δ′ takeonly entire values, so does h = max(hδ, hδ′), and thus ψ (δ⊥ being binary).Hene, proving that 0 ≤ ψ ≤ 1 will ensure that ψ is a binary ounter. Let

e = (v, v′) be an edge. Aording to Theorem 1, δ⊥(e) an be written in twoways: δ⊥(e) = δ(e) + hδ(v) − hδ(v
′) = δ′(e) + hδ′(v) − hδ′(v

′). This allows twodi�erent writings of ψ(e), and a ase-study then gives:
h(v) h(v′) ψ(e)
hδ(v) hδ(v

′) δ(e)
hδ(v) hδ′(v

′) δ(e) ≤ ψ(e) ≤ δ′(e)
hδ′(v) hδ(v

′) δ′(e) ≤ ψ(e) ≤ δ(e)
hδ′(v) hδ′(v

′) δ′(e)Sine 0 ≤ δ(e), δ′(e) ≤ 1, one has 0 ≤ ψ(e) ≤ 1.It remains to verify that the height funtion of ψ is h. Let v be a vertexand c a shortest path from v∗ to v. c being a shortest path for ψ, hψ(v) =
ψ(c) = δ⊥(c) + h(v) − h(v∗) = δ⊥(c) + h(v). c being a shortest path for δ⊥,
δ⊥(c) = hδ⊥(v) = 0 (reall that hδ⊥ is onstant and equal to zero). It followsthat hψ(v) = h(v), and thus the result. �Proof of Theorem 3:Let δ and δ′ be two binary ounters suh that δ � δ′ and δ 6= δ′. Among thenodules A suh that hδ(A) < hδ′(A)}, let A0 be one with hδ′(A0) maximum. If
A0 has an inoming edge e0 suh that δ′(e0) = 0, let A1 be the nodule e0 omesfrom. One has: hδ′(A0) ≤ hδ′(A1) + δ′(e0) = hδ′(A1). Iterating this proess, weobtain a sequene of nodules A0, A1, . . . , Ak, . . . suh that hδ′(Ai) ≤ hδ′(Ai+1)and there is an edge ei from Ai+1 to Ai with δ′(ei) = 0. If in this sequene
Aj = Ai for some i < j, then the union of Ai, Ai+1, . . . , Aj would itself be anodule (thanks to the edges ei, ei+1, . . . , ej−1): maximality of nodules for inlu-sion avoids this. Hene the proess is �nite: let Ak be the last nodule obtained.
Ak 6= A∗ sine 0 ≤ hδ(A0) < hδ′(A0) ≤ hδ′(Ak), and eah inoming edge of Akis valued to 1 by δ′: we thus an do a dereasing �ip on Ak (see Fig. 8).
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A0

A1
A k−1

Ak

0

1

0
0

0 1

1Fig. 8. Searh, bakward from A0, of a nodule to do a dereasing �ip.Let δ′′ the binary ounter obtained by performing this dereasing �ip on Ak.We prove that δ � δ′′, that is, hδ(Ak) ≤ hδ′′ (Ak) sine the �ip modi�es only theheight of Ak. More preisely, sine hδ′′(Ak) = hδ′(Ak) − 1, it su�es to provethat hδ(Ak) < hδ′(Ak). We already know that hδ(Ak) ≤ hδ′(Ak). Suppose that
hδ(Ak) = hδ′(Ak) to obtain a ontradition.We �rst prove that there exists i0, 0 ≤ i0 ≤ k suh that hδ(Ai0 ) = hδ′(Ai0 ) =
hδ′(A0). One has hδ(A0) < hδ′(A0) ≤ hδ′(Ak) = hδ(Ak). If hδ′(Ak) = hδ′(A0),
i0 = k suits. Otherwise, let i0 be the greatest index suh that hδ′(Ai0 ) = hδ′(A0).By this hoie, hδ′(Ai0+1) > hδ′(Ai0 ) = hδ′(A0). Thus hδ(Ai0+1) < hδ′(Ai0+1)is impossible, sine A0 is of maximum δ′-height among the nodules A suhthat hδ(A) < hδ′(A). Hene hδ(Ai0+1) ≥ hδ′(Ai0+1), and sine δ � δ′ it yields
hδ(Ai0+1) = hδ′(Ai0+1). But it is easily seen that two nodules linked by an edgehave heights that di�er by 0 or 1: applied to nodules Ai0 and Ai0+1 (linked by
ei0), knowing that hδ(Ai0+1) = hδ′(Ai0+1) and hδ(Ai0) ≤ hδ′(Ai0 ) (sine δ � δ′),this proves hδ(Ai0) = hδ′(Ai0 ), that is, i0 suits.Let us then prove that the existene of suh an index i0 leads to a ontra-dition. Let c be a shortest path from v∗ to Ai0 . The edges e0, . . . , ei0−1 ensurethat there exists a path ci0 from Ai0 to A0 suh that δ′(ci0) = 0 (Figure 9).Then
δ′(c.ci0 ) = δ′(c) = hδ′(Ai0 ) = hδ′(A0). Thus c.ci0 is a shortest path from v∗ to
A0. In partiular, hδ(A0) = δ(c.ci0 ) ≥ δ(c). But c being a shortest path from
v∗ to Ai0 , one has δ(c) = hδ(Ai0) = h′δ(A0) (the last equality oming from thehoie of i0). Hene hδ(A0) ≥ h′δ(A0). That ontradits that the fat that A0was hosen in {A | hδ(A) < hδ′(A)}, and thus ends the proof. �

A0

A1
i 0A

i 0
c

A*
cFig. 9. The path ci0

links Ai0
to A0 and is suh that δ

′(ci0
) = 0.


