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Planar Dimer TilingsOlivier Bodini and Thomas FerniqueLIRMM, 161 rue Ada 34392 Montpellier Cedex 5 - Fran
e,{bodini,fernique}�lirmm.frAbstra
t. Domino tilings of �nite domains of the plane are used tomodel dimer systems in statisti
al physi
s. In this paper, we study dimertilings, whi
h generalize domino tilings and are indeed equivalent to per-fe
t mat
hings of planar graphs. We use height fun
tions, a notion previ-ously introdu
ed by Thurston in [10℄ for domino tilings, to prove that adimer tiling of a given domain 
an be 
omputed using any Single-Sour
e-Shortest-Paths algorithm on a planar graph. We also endow the set ofdimers tilings of a given domain with a stru
ture of distributive latti
eand show that it 
an be e�e
tively visited by a simple algorithmi
aloperation 
alled �ip.1 Dimer tilingsA 
ell is a 
losed polygonal set of R
2 and a domain is a �nite set of 
ells withdisjoint interiors. Two 
ells of a domain are said adja
ent if they share at leastone boundary edge. A domain C is said tileable if all its 
ells 
an be grouped twoby two, two grouped 
ells being adja
ent. If it exists, su
h a grouping is 
alled adimer tiling of C. Noti
e that a tileable domain 
an admit many dimer tilings:we denote by ∆(C) the set of dimer tilings of C. Fig. 1 illustrates these notions.

Fig. 1. A domain of 16 
ells (left) and a dimer tiling of it, the grouped 
ells beingrepresented by a single polygon (right).Dimer tilings arise for example in statisti
al physi
s to model the behavior ofdimer systems: 
ells are squares and thus dimer are re
tangles, 
alled dominoes



2(see e.g. [5, 6℄). In this 
ontext, it is parti
ularly interesting to endow the setof dimer tilings of a domain with a stru
ture suitable for performing randomsampling.Dimer tilings are also 
onne
ted with perfe
t mat
hings of planar graphs. In-deed, we 
an asso
iate to a set of 
ells C an undire
ted planar graph denoted by
A(C): to ea
h 
ell of C 
orresponds a vertex of A(C), two of them being 
onne
tedby an edge if the 
orresponding 
ells are adja
ent. Then, there is a natural bije
-tion between the perfe
t mat
hings of A(C) and the dimer tilings of C (see Fig. 2).

Fig. 2. Left, the planar graph 
orresponding to the set of 
ells of Fig. 1. Right, theperfe
t mat
hing of this graph 
orresponding to the dimer tiling of Fig. 1.In this paper, we mainly fo
us on the two following problems: the �rst wantto 
ompute a dimer tiling while the se
ond want to provide a way to move onthe set of dimer tilings of a �xed domain. This paper is organized as follows. InSe
tion 2, we asso
iate to a domain a weighted dire
ted graph and de�ne heightfun
tion over the verti
es of this graph. Su
h an approa
h has been �rstly usedin [10℄ to 
ompute in linear time a dimer tiling of a simply 
onne
ted domainmade of square 
ells, and then extended in [1℄ to regular 
ells (all with the samenumber of edges). We extend here these results to domain with holes made ofnon-regular 
ells. First, we show in Se
tion 3 and 4 that the 
omputation of adimer tiling of a bipartite domain (or, equivalently, of a perfe
t mat
hing of abipartite planar graph) 
an be redu
ed to a single-sour
e-shortest-paths problemon a planer graph. This yields in parti
ular aO(n ln(n)3)-algorithm to 
ompute adimer tiling of a domain whi
h is, 
ontrarily to [10, 1℄, neither ne
essarily simply
onne
ted nor made of regular 
ells. Se
ond, we endow in Se
tion 5 the set ofdimer tilings of a domain with a stru
ture of distributive latti
e and de�nes asimple e�e
tive operation, 
alled �ip, whi
h allows to visit it. This 
an be usedfor example to perform random sampling on the set of dimer tilings.



32 General settings2.1 Weight and height fun
tionA dire
ted graph is denoted by G = (V,E), V (resp. E) being the set of verti
es(resp. edges) of G.A dire
ted path is a sequen
e e1, . . . , ep of edges su
h that ei points to thevertex ei+1 starts from, and a 
ir
uit is a dire
ted path whose last edge pointsto the vertex the �rst edge of this path start from.A weight fun
tion over G is a map w : E → R, extended to a set of edges X(in parti
ular a dire
ted path or a 
ir
uit) by:
w(X) =

∑

e∈X

w(e).Then, the height fun
tion asso
iated to the weight fun
tion w and to the vertex
v∗ ∈ V is the map from V to R ∪ {−∞} denoted by hw,v∗ and de�ned by:

∀v ∈ V, hw,v∗(v) = inf{w(p) | p is a path from v∗ to v}.2.2 The graph of a bipartite domainLet C be a domain as de�ned in Se
tion 1. We suppose that C is bipartite: wesplit it into two sets Cb and Cw (resp. the bla
k 
ells and the white ones), su
hthat two adja
ent 
ells never belong to the same set (that is, are of di�erent
olors). Then, given an orientation of the plane, we de�ne the dire
ted graph
G(C) as follows (see Fig. 3):� to ea
h vertex of C 
orresponds a vertex of G(C);� to an edge shared by two adja
ent 
ells of C (and thus of di�erent 
olors)
orresponds in G(C) an edge dire
ted so that the bla
k 
ell is on its left;� to an edge on the boundary of the domain (and thus belongs to only one
ell) 
orrespond in G(C) a bidire
ted edge.In parti
ular, to ea
h 
ell of C naturally 
orresponds a 
ir
uit of G(C), 
alled
ell-
ir
uit in all what follows.From now on and up to the end of the paper, C stands for a set of 
ellswhose union is a bipartite 
onne
ted domain, and v∗ stands for a �xedvertex of the outer boundary of G(C).On
e v∗ is �xed, we will simply denote by hw the height fun
tion hw,v∗asso
iated to the weight fun
tion w. Then, the idea of the paper is to de�neparti
ular weight fun
tions on the graph G(C), su
h that height fun
tions 
anbe used to 
ompute the ones whi
h 
orrespond to dimer tilings of C.
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Fig. 3. The orientations of bla
k and white 
ells of the bipartite domain of Fig. 1(left). The 
orresponding dire
ted graph, whose bidire
ted edges 
orrespond to theboundaries of the domain, the vertex v
∗ being on the outer boundary (right).3 Counters and dimer tilingsWe de�ne here 
ounters and use them to give a 
hara
terization of tileabledomains. The results provided here are then used in the next se
tion to 
omputee�e
tively a dimer tiling.De�nition 1. A 
ounter over G(C) is a weight fun
tion δ su
h that δ(e) = 0 forany bidire
ted edge e and δ(c) = 1 for any 
ell-
ir
uit c. A 
ounter is moreoversaid binary if δ(e) ∈ {0, 1} for any edge e.Clearly, a binary 
ounter weights exa
tly one edge of a 
ell-
ir
uit by 1, theother ones having weight 0. Hen
e, grouping two 
ells whi
h share an edge ofweight 1 yields a dimer tiling (see Fig. 4). Conversely, it is straightforward tosimilarly derive a binary 
ounter from a dimer tiling. Thus, we use indi�erentlythe terms dimer tiling or binary 
ounter in all that follows.
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Fig. 4. A 
ounter (left) and the binary 
ounter 
orresponding to the dimer tiling of Fig.1 (right). For the sake of 
larity, the weights 0 of bidire
ted edges are not represented.



5Let us now 
onsider two 
ounters δ and δ′, and let c be a 
ir
uit of G(C).One easily proves by indu
tion on the size of c that δ(c) = δ′(c). In parti
ular, if
C is tileable then one 
an 
onsider δ′ to be a binary 
ounter: one has δ′(c) ∈ N,and this yields δ(c) ∈ N. Thus:Proposition 1. If C is tileable, then δ(c) ∈ N for any 
ounter δ.Conversely, suppose that for any 
ounter δ′ and any 
ir
uit c, δ′(c) ∈ N. Insu
h a 
ase, we 
an de�ne the notion of δ-shortest path from a vertex v to avertex v′: it is a path p (not ne
essarily unique) whi
h satis�es

δ(p) = min{δ(p′) | p′is a path from v to v′}.Then one has the following properties:Proposition 2. If δ and δ′ are 
ounters over G(C), then any δ-shortest path isalso a δ′-shortest path.Proposition 3. If δ and δ′ are 
ounters over G(C), then hδ = h′δ yields δ = δ′.We then prove:Theorem 1. Let δ be a 
ounter over G(C) and set for an edge e from v to v′:
δ⊥(e) = δ(e) − (hδ(v

′) − hδ(v)).Then, δ⊥ is the binary 
ounter su
h that hδ⊥(v) = 0 for any vertex v.Thus, Th. 1 and Prop. 1 yield that C is tileable if and only δ(c) ∈ N for any
ounter δ over G(C) and any 
ir
uit c of G(C). This provide a 
hara
terizationof tileable bipartite domains that we use in the following se
tion.4 Computing a binary 
ounterThe previous se
tion has de�ned 
ounters and binary 
ounters. We are espe-
ially interested in binary 
ounters sin
e they 
orrespond to dimer tilings. Here,we �rst show how to 
ompute a 
ounter in linear time, and we then use Th. 1to derive a binary 
ounter from it.The �rst step to 
ompute 
ounter 
onsists in 
onstru
ting a parti
ular weightedtree. Let A(C) be the undire
ted graph asso
iated to C as explained in the intro-du
tion. Sin
e the domain is bipartite and 
onne
ted, so is A(C). Let us assign
olor bla
k or white to the verti
es of A(C), so that two linked verti
es havedi�erent 
olors. Let then T be a spanning tree of A(C). If we remove from Tan edge e between a bla
k vertex b and a white vertex w, this splits T into twotrees: we denote by Te,b the one whi
h 
ontains the vertex b and we set:
dT (e) = #{bla
k verti
es in Te,b} − #{white verti
es in Te,b}.It de�nes a fun
tion dT from the edges of T to Z (see Fig. 5). One 
he
ks:



6Proposition 4. Let v be a vertex of T and e1, . . . , ek be the edges of T 
ontain-ing v. If the domain has as mu
h bla
k as white 
ells, then one has:
k∑

i=1

dT (ei) = 1.Noti
e that a tileable bipartite domain has ne
essarily as mu
h bla
k as white
ells sin
e ea
h bla
k 
ell is grouped with a white 
ell. Simple examples showthat the 
onverse is however false.The se
ond step to 
ompute 
ounter 
onsists in deriving from the fun
tion
dT a 
ounter δT over G(C). We pro
eed as follows. We set δT (e) = 0 for anybidire
ted edge (that is, an edge of the boundaries of the domain). Otherwise,a dire
ted edge e 
orresponds to an edge shared by two 
ells of C, say Cb and
Cw, whi
h 
orrespond in the graph A(C) respe
tively to two verti
es b and w,
onne
ted by an undire
ted edge e′ of A(C); we set δT (e) = dT (e′) if e′ belongsto the tree T , δT (e) = 0 else (see Fig. 5). Prop. 4 then yields that δT (c) = 1 forany 
ell-
ir
uit c. Thus, δT is a 
ounter.
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Fig. 5. Left, a spanning tree T over A(C) and the weights dT . Right, the 
orrespondingweight fun
tion δT over G(C): it is a 
ounter.Let us study the 
omplexity of the 
onstru
tion of this 
ounter. Let n bethe number of 
ells of the domain C, or equivalently, the number of verti
es of
A(C). Constru
ting a spanning tree T 
an be done in linear time by a greedyalgorithm. Then, the weight fun
tion dT 
an be 
omputed re
ursively in lineartime, starting from the leaves of T . Deriving δT from dT 
an be performed inlinear time sin
e, the graph G(C) being planar, it has O(n) edges. Thus, the
ounter δT 
an be 
omputed in linear time.Then, Th. 1 allows to derive the binary 
ounter δ⊥ from the height fun
tion of
δT , whi
h 
an be 
omputed by any single-sour
e-shortest-paths algorithm on the



7planar graph G(C) weighted by δT , the sour
e being the vertex v∗. In parti
ular,[3℄ provides a O(n ln(n)3)-algorithm to do this. Finally one has:Theorem 2. A dimer tiling of a bipartite tileable domain 
an be 
onstru
ted bya O(n ln(n)3)-algorithm.The previous algorithm 
an also be used to dete
t the 
ase no dimer tiling exist:� if the bipartite domain is not balan
ed (hen
e not tileable), then the 
on-stru
tion of the weight fun
tion dT leads to a vertex su
h that the sum ofthe weights of its adja
ent edges is not equal to 1;� otherwise, δT is a 
ounter, and C non-tileable yields the existen
e of a 
ir
uit
c su
h that δT (c) /∈ N, more pre
isely δT (c) < 0 sin
e δT (c) ∈ Z by 
onstru
-tion. Thus, shortest paths are not de�ned, and the algorithm of [3℄ dete
tsit (as most of the shortest paths algorithms).Noti
e that our algorithm has a 
omplexity similar to the O(n ln(n)) algo-rithm of [9℄, whi
h deals with the 
ase of square 
ells and domain with a boundednumber of holes.5 Random samplingIn this se
tion, we suppose that there exists at least one binary 
ounter over

G(C), that is, ∆(C) is not empty. We endow ∆(C) by a stru
ture of distributivelatti
e whi
h 
an be visited using a simple operation 
alled �ip.5.1 FlipsDe�nition 2. Let δ be a binary 
ounter over G(C). A δ-nodule is a maximal1set of verti
es of G(C) su
h that any two of them are linked by a dire
ted path pwhi
h satis�es δ(p) = 0.Noti
e that if δ is a binary 
ounter, then a path p su
h that δ(p) = 0 is alwaysa shortest path for δ. So it follows from Prop. 2 that two binary 
ounters de�nethe same nodules: we thus simply speak about nodules. Moreover, noti
e that
hδ is always 
onstant over the verti
es of a nodule: intuitively, a nodule 
an beseen as an expanded vertex.So we 
all in
oming (resp. out
oming) edge of a nodule a dire
ted edge of G(C)whi
h links a vertex outside the nodule to a vertex inside of it (resp. inside tooutside). We also denote by A∗ the nodule whi
h 
ontains the vertex v∗, and wethen de�ne the following operation:De�nition 3. Let A be a nodule, A 6= A∗. Suppose that δ is a binary 
ountersu
h that δ(e) is equal to 1 (resp. 0) for ea
h in
oming edge of A and 0 (resp.
1) for ea
h out
oming edge of A. We 
all de
reasing �ip (resp. in
reasing �ip)the operation whi
h ex
hanges the weights of the in
oming and out
oming edgesof A.1 for in
lusion



8 One easily 
he
ks that a �ip on a nodule A transforms a binary 
ounter δinto a binary 
ounter, say δ′ (see Fig. 6). Moreover, if it is an in
reasing �ip(resp. de
reasing), then hδ′(v) = hδ(v) + 1 (resp. hδ′(v) = hδ(v) − 1) if v ∈ Aand hδ′(v) = hδ(v) otherwise: �ips a
t on heights in a very simple way.
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1Fig. 6. The seven verti
es whi
h belong to the bidire
ted edges around the hole forma nodule. A (de
reasing) �ip on this nodule transforms the binary 
ounter on the leftinto the one on the right. It 
orresponds on Fig. 7 to the �ip from the upper dimertiling to the one immediatly below.5.2 A distributive latti
eWe de�ne two operations ∨ and ∧ over the set ∆(C) of dimer tilings of C:Proposition 5. Let δ and δ′ be two binary 
ounters over G(C). Then the heightfun
tions min(hδ, hδ′) and max(hδ, hδ′) are height fun
tions of binary 
ountersover G(C), respe
tively denoted by δ ∧ δ′ and δ ∨ δ′:
hδ∧δ′ = min(hδ, hδ′) and hδ∨δ′ = max(hδ, hδ′).It is then easy to 
he
k that (∆(C),∧,∨) is a distributive latti
e. We denoteby � the asso
iated partial order:

δ � δ′ ⇔ δ = δ ∧ δ′ ⇔ hδ ≤ hδ′ .Noti
e that it is not di�
ult to endow a �nite set with a stru
ture of distributivelatti
e. The interest of this spe
i�
 de�nition follows from its link with the �ips.Re
all �rst that, given δ and δ′ in ∆(C), one says that δ′ 
overs δ for the partialorder � if δ ≺ δ′ and if, for any δ′′ ∈ ∆(C), δ ≺ δ′′ yields δ′ � δ′′. Then one has:Theorem 3. A binary 
ounter δ′ 
overs a binary 
ounter δ if and only if δ 
anbe obtained performing a de
reasing �ip on δ′.In other words, the Hasse's diagram of the distributive latti
e (∆(C),∧,∨)(two elements are linked if and only if one 
overs the other) is isomorphi
 to the
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Fig. 7. The distributive latti
e of all the dimer tilings of a domain. The dimer tiling δ⊥de�ned in Th. 1 is the bottom of this latti
e. The �ips allow to move between linkedtilings. Noti
e that, ex
epted the upper �ip whi
h is performed on the nodule shownFig. 6, all the other �ips are performed on nodules redu
ed to a single vertex.



10undire
ted graph whose verti
es 
orrespond to dimer tilings, ea
h of them linkedto the ones it is 
overed by. Figure 7 illustrates this.Su
h a stru
ture of distributive latti
e, together with the e�e
tive operation�ip, 
an then be used to generate randomly a dimer tiling of a given domain (see[8℄). In [4℄, we also use this latti
e and the �ips to generate all the |∆(C)| dimertilings of C with less than 2|∆(C)| �ips. Sin
e a �ip 
an be easily performed inlinear time, it leads to an algorithm in O(n|∆(C)|). It thus improves the O(n2)algorithm of [2℄ whi
h is moreover restri
ted to the 
ase of square 
ells.Referen
es1. O. Bodini, M. Latapy, Generalized Tilings with Height Fun
tions. Mor�smos 7(2003).2. S. Desreux, M. Matamala, I. Rapaport, E. Remila, Domino tiling and relatedmodels : spa
e of 
on�gurations of domains with holes. Theoret. Comput. S
i.319 (2004), 83�101.3. J. Fak
haroenphol, S. Rao, Planar graphs, negative weight edges, shortest paths,and near linear time. FOCS 2001, 232�241.4. T. Fernique, Pavages d'une poly
ellule. LIRMM Resear
h Report 04002 (2004),available at http://www.lirmm.fr/~fernique/info/memoire_mim3.ps.gz5. P. W. Kasteleyn, The statisti
s of dimers on a latti
e. I. The number of dimerarrangements on a quadrati
 latti
e. Physi
a 27 (1961), 1209�1225.6. R. Kenyon, The planar dimer model with boundary: a survey. Dire
tions in math-emati
al quasi
rystals, M. Baake and R. Moody, eds. CRM monograph series(AMS, Providen
e, RI, 2000).7. J. Propp, Latti
e stru
ture of orientations of graphs. Preprint (1993), available athttp://www.math.wis
.edu/ propp/orient.html.8. J. Propp, Generating random elements of �nite distributive latti
es. Preprint(1997), available at http://www.math.wis
.edu/~propp/wilf.ps.gz.9. N. Thiant, An O(n log n)-algorithm for �nding a domino tiling of a plane pi
turewhose number of holes is bounded. Theoret. Comput. S
i. 303 (2003), 353�374.10. W. P. Thurston, Conway's tiling group. Ameri
an Mathemati
al Monthly, 97(1990), 757�773.



11AppendixProof of Proposition 2:Let v and v′ be two verti
es. Let ψ and ψ′ be two 
ounters. Let c be a ψ-shortest path and c′ be a ψ′-shortest path, both linking v to v′. Let r be anypath from v′ to v. Prop. 1 applied to 
ir
uits c.r and c′.r yields ψ(c.r) = ψ′(c.r)and ψ(c.r) = ψ′(c.r). It follows that:
ψ(c′) − ψ(c) = ψ′(c′) − ψ′(c).But sin
e c is a ψ-shortest path, ψ(c′)−ψ(c) ≥ 0. Similarly, c′ being a ψ′-shortestpath, ψ′(c′) − ψ′(c) ≤ 0. Thus ψ(c′) − ψ(c) = ψ′(c′) − ψ′(c) = 0, that is, c is ashortest path for both ψ and ψ′ (and c′ too). �Proof of Proposition 3:Let ψ and ψ′ be two 
ounters su
h that hψ = hψ′ . Let e = (v, v′) be an edge. If

e /∈ I, then ψ(e) = ψ(e′) = 0 by de�nition.Otherwise, let c be a shortest path from v∗ to v (for both ψ and ψ′ a

ordingto Prop. 2). Hen
e ψ(c) = hψ(v) = hψ′(v) = ψ′(c). Similarly, there exists a path
c′ from v∗ to v′ su
h that ψ(c′) = ψ′(c′). Considering then a path r from v′ to
v∗ and applying Proposition 1 to 
ir
uits c.e.r and c′.r, one gets easily:

ψ(c.e) − ψ′(c.e) = ψ(c′) − ψ′(c′).Combined with ψ(c) = ψ′(c) and ψ(c′) = ψ′(c′), it yields ψ(e) = ψ′(e). �Proof of Theorem 1:It is easy to 
he
k that δ⊥ is a 
ounter. Let us prove that it is a binary 
ounter.Let e = (v, v′) be an edge:� If there exists a ψ-shortest path p from v∗ to v′ su
h that e is the last edgeof p, then hψ(v′) = hψ(v) + ψ(e), that is, δ⊥(e) = 0.� Otherwise, one has hψ(v′) < hψ(v) + ψ(e), that is, 0 < δ⊥(e). But the edge
e belongs to a 
ir
uit-
ell c whose other edges form a path from v′ to v oflength 1 − ψ(e) (sin
e ψ(c) = 1). Hen
e hψ(v) ≤ hψ(v′) + 1 − ψ(e), that is,
δ⊥(e) ≤ 1. Thus 0 < δ⊥(e) ≤ 1: proving that δ(e) is entire will yield δ(e) = 1.Let a and b be ψ-shortest paths from v∗ to respe
tively v and v′ and r bea path from v′ to v∗. One has δ⊥(a) = ψ(a) − hψ(v), that is, sin
e a is a
ψ-shortest path, δ⊥(a) = 0. Similarly, δ⊥(b) = 0, and so:

δ⊥(a.e.r) = δ⊥(a) + δ⊥(e) + δ⊥(r)

= 0 + δ⊥(e) + δ⊥(r) + δ⊥(b)

= δ⊥(e) + δ⊥(b.r).Sin
e a.e.r and b.r are 
ir
uits, δ⊥(a.e.r) ∈ N and δ⊥(b.r) ∈ N a

ording toProp. 1, and thus δ⊥(e) ∈ N. Sin
e 0 < δ⊥(e) ≤ 1, it yields δ⊥(e) ∈ {0, 1}.



12It remains to prove that hδ⊥ = 0. Let v be a vertex and c be a δ⊥-shortest pathfrom v∗ to v. One 
omputes hδ⊥(v) = δ⊥(c) = ψ(c)− hψ(v). Sin
e, a

ording toProp. 2, c is a ψ-shortest path too, hψ(v) = ψ(c) and thus hδ⊥(v) = 0. �Proof of Proposition 5:Let h = max(hδ, hδ′). Let ψ be de�ned on an edge e = (v, v′) ∈ I by:
ψ(e) = δ⊥(e) + (h(v′) − h(v)) ,where δ⊥ is de�ned in Theorem 1. We prove that ψ is a binary 
ounter whoseheight fun
tion is h. The proof is similar for the min(hδ, hδ′) 
ase.Sin
e the sum (h(v′) − h(v)) vanishes when taken over the edges of a 
ell-
ir
uit (term by term 
an
ellation), ψ is, as δ⊥, a 
ounter. Sin
e δ and δ′ takeonly entire values, so does h = max(hδ, hδ′), and thus ψ (δ⊥ being binary).Hen
e, proving that 0 ≤ ψ ≤ 1 will ensure that ψ is a binary 
ounter. Let

e = (v, v′) be an edge. A

ording to Theorem 1, δ⊥(e) 
an be written in twoways: δ⊥(e) = δ(e) + hδ(v) − hδ(v
′) = δ′(e) + hδ′(v) − hδ′(v

′). This allows twodi�erent writings of ψ(e), and a 
ase-study then gives:
h(v) h(v′) ψ(e)
hδ(v) hδ(v

′) δ(e)
hδ(v) hδ′(v

′) δ(e) ≤ ψ(e) ≤ δ′(e)
hδ′(v) hδ(v

′) δ′(e) ≤ ψ(e) ≤ δ(e)
hδ′(v) hδ′(v

′) δ′(e)Sin
e 0 ≤ δ(e), δ′(e) ≤ 1, one has 0 ≤ ψ(e) ≤ 1.It remains to verify that the height fun
tion of ψ is h. Let v be a vertexand c a shortest path from v∗ to v. c being a shortest path for ψ, hψ(v) =
ψ(c) = δ⊥(c) + h(v) − h(v∗) = δ⊥(c) + h(v). c being a shortest path for δ⊥,
δ⊥(c) = hδ⊥(v) = 0 (re
all that hδ⊥ is 
onstant and equal to zero). It followsthat hψ(v) = h(v), and thus the result. �Proof of Theorem 3:Let δ and δ′ be two binary 
ounters su
h that δ � δ′ and δ 6= δ′. Among thenodules A su
h that hδ(A) < hδ′(A)}, let A0 be one with hδ′(A0) maximum. If
A0 has an in
oming edge e0 su
h that δ′(e0) = 0, let A1 be the nodule e0 
omesfrom. One has: hδ′(A0) ≤ hδ′(A1) + δ′(e0) = hδ′(A1). Iterating this pro
ess, weobtain a sequen
e of nodules A0, A1, . . . , Ak, . . . su
h that hδ′(Ai) ≤ hδ′(Ai+1)and there is an edge ei from Ai+1 to Ai with δ′(ei) = 0. If in this sequen
e
Aj = Ai for some i < j, then the union of Ai, Ai+1, . . . , Aj would itself be anodule (thanks to the edges ei, ei+1, . . . , ej−1): maximality of nodules for in
lu-sion avoids this. Hen
e the pro
ess is �nite: let Ak be the last nodule obtained.
Ak 6= A∗ sin
e 0 ≤ hδ(A0) < hδ′(A0) ≤ hδ′(Ak), and ea
h in
oming edge of Akis valued to 1 by δ′: we thus 
an do a de
reasing �ip on Ak (see Fig. 8).
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A0

A1
A k−1

Ak

0

1

0
0

0 1

1Fig. 8. Sear
h, ba
kward from A0, of a nodule to do a de
reasing �ip.Let δ′′ the binary 
ounter obtained by performing this de
reasing �ip on Ak.We prove that δ � δ′′, that is, hδ(Ak) ≤ hδ′′ (Ak) sin
e the �ip modi�es only theheight of Ak. More pre
isely, sin
e hδ′′(Ak) = hδ′(Ak) − 1, it su�
es to provethat hδ(Ak) < hδ′(Ak). We already know that hδ(Ak) ≤ hδ′(Ak). Suppose that
hδ(Ak) = hδ′(Ak) to obtain a 
ontradi
tion.We �rst prove that there exists i0, 0 ≤ i0 ≤ k su
h that hδ(Ai0 ) = hδ′(Ai0 ) =
hδ′(A0). One has hδ(A0) < hδ′(A0) ≤ hδ′(Ak) = hδ(Ak). If hδ′(Ak) = hδ′(A0),
i0 = k suits. Otherwise, let i0 be the greatest index su
h that hδ′(Ai0 ) = hδ′(A0).By this 
hoi
e, hδ′(Ai0+1) > hδ′(Ai0 ) = hδ′(A0). Thus hδ(Ai0+1) < hδ′(Ai0+1)is impossible, sin
e A0 is of maximum δ′-height among the nodules A su
hthat hδ(A) < hδ′(A). Hen
e hδ(Ai0+1) ≥ hδ′(Ai0+1), and sin
e δ � δ′ it yields
hδ(Ai0+1) = hδ′(Ai0+1). But it is easily seen that two nodules linked by an edgehave heights that di�er by 0 or 1: applied to nodules Ai0 and Ai0+1 (linked by
ei0), knowing that hδ(Ai0+1) = hδ′(Ai0+1) and hδ(Ai0) ≤ hδ′(Ai0 ) (sin
e δ � δ′),this proves hδ(Ai0) = hδ′(Ai0 ), that is, i0 suits.Let us then prove that the existen
e of su
h an index i0 leads to a 
ontra-di
tion. Let c be a shortest path from v∗ to Ai0 . The edges e0, . . . , ei0−1 ensurethat there exists a path ci0 from Ai0 to A0 su
h that δ′(ci0) = 0 (Figure 9).Then
δ′(c.ci0 ) = δ′(c) = hδ′(Ai0 ) = hδ′(A0). Thus c.ci0 is a shortest path from v∗ to
A0. In parti
ular, hδ(A0) = δ(c.ci0 ) ≥ δ(c). But c being a shortest path from
v∗ to Ai0 , one has δ(c) = hδ(Ai0) = h′δ(A0) (the last equality 
oming from the
hoi
e of i0). Hen
e hδ(A0) ≥ h′δ(A0). That 
ontradi
ts that the fa
t that A0was 
hosen in {A | hδ(A) < hδ′(A)}, and thus ends the proof. �

A0

A1
i 0A

i 0
c

A*
cFig. 9. The path ci0

links Ai0
to A0 and is su
h that δ

′(ci0
) = 0.


