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Planar Dimer Tilings

Olivier Bodini and Thomas Fernique

LIRMM, 161 rue Ada 34392 Montpellier Cedex 5 - France,
{bodini,fernique}@lirmm.fr

Abstract. Domino tilings of finite domains of the plane are used to
model dimer systems in statistical physics. In this paper, we study dimer
tilings, which generalize domino tilings and are indeed equivalent to per-
fect matchings of planar graphs. We use height functions, a notion previ-
ously introduced by Thurston in [10] for domino tilings, to prove that a
dimer tiling of a given domain can be computed using any Single-Source-
Shortest-Paths algorithm on a planar graph. We also endow the set of
dimers tilings of a given domain with a structure of distributive lattice
and show that it can be effectively visited by a simple algorithmical
operation called flip.

1 Dimer tilings

A cell is a closed polygonal set of R? and a domain is a finite set of cells with
disjoint interiors. Two cells of a domain are said adjacent if they share at least
one boundary edge. A domain C is said tileable if all its cells can be grouped two
by two, two grouped cells being adjacent. If it exists, such a grouping is called a
dimer tiling of C. Notice that a tileable domain can admit many dimer tilings:
we denote by A(C) the set of dimer tilings of C. Fig. 1 illustrates these notions.

Fig.1. A domain of 16 cells (left) and a dimer tiling of it, the grouped cells being
represented by a single polygon (right).

Dimer tilings arise for example in statistical physics to model the behavior of
dimer systems: cells are squares and thus dimer are rectangles, called dominoes



(see e.g. [5,6]). In this context, it is particularly interesting to endow the set
of dimer tilings of a domain with a structure suitable for performing random
sampling.

Dimer tilings are also connected with perfect matchings of planar graphs. In-
deed, we can associate to a set of cells C an undirected planar graph denoted by
A(C): to each cell of C corresponds a vertex of A(C), two of them being connected
by an edge if the corresponding cells are adjacent. Then, there is a natural bijec-
tion between the perfect matchings of A(C) and the dimer tilings of C (see Fig. 2).

Fig. 2. Left, the planar graph corresponding to the set of cells of Fig. 1. Right, the
perfect matching of this graph corresponding to the dimer tiling of Fig. 1.

In this paper, we mainly focus on the two following problems: the first want
to compute a dimer tiling while the second want to provide a way to move on
the set of dimer tilings of a fixed domain. This paper is organized as follows. In
Section 2, we associate to a domain a weighted directed graph and define height
function over the vertices of this graph. Such an approach has been firstly used
in [10] to compute in linear time a dimer tiling of a simply connected domain
made of square cells, and then extended in [1] to regular cells (all with the same
number of edges). We extend here these results to domain with holes made of
non-regular cells. First, we show in Section 3 and 4 that the computation of a
dimer tiling of a bipartite domain (or, equivalently, of a perfect matching of a
bipartite planar graph) can be reduced to a single-source-shortest-paths problem
on a planer graph. This yields in particular a O(n In(n)3)-algorithm to compute a
dimer tiling of a domain which is, contrarily to [10, 1], neither necessarily simply
connected nor made of regular cells. Second, we endow in Section 5 the set of
dimer tilings of a domain with a structure of distributive lattice and defines a
simple effective operation, called flip, which allows to visit it. This can be used
for example to perform random sampling on the set of dimer tilings.



2 General settings

2.1 Weight and height function

A directed graph is denoted by G = (V, E), V (resp. E) being the set of vertices
(resp. edges) of G.

A directed path is a sequence ey, ..., e, of edges such that e; points to the
vertex e; 1 starts from, and a circuit is a directed path whose last edge points
to the vertex the first edge of this path start from.

A weight function over G is a map w : F — R, extended to a set of edges X
(in particular a directed path or a circuit) by:

w(X) = Z w(e).

ecX

Then, the height function associated to the weight function w and to the vertex
v* € V is the map from V to RU {—o0} denoted by h, ,+ and defined by:

Yo €V, hye(v) =inf{w(p) | p is a path from v* to v}.

2.2 The graph of a bipartite domain

Let C be a domain as defined in Section 1. We suppose that C is bipartite: we
split it into two sets Cp and C,, (resp. the black cells and the white ones), such
that two adjacent cells never belong to the same set (that is, are of different
colors). Then, given an orientation of the plane, we define the directed graph
G(C) as follows (see Fig. 3):

— to each vertex of C corresponds a vertex of G(C);

— to an edge shared by two adjacent cells of C (and thus of different colors)
corresponds in G(C) an edge directed so that the black cell is on its left;
to an edge on the boundary of the domain (and thus belongs to only one
cell) correspond in G(C) a bidirected edge.

In particular, to each cell of C naturally corresponds a circuit of G(C), called
cell-circuit in all what follows.

From now on and up to the end of the paper, C stands for a set of cells
whose union is a bipartite connected domain, and v* stands for a fixed
vertex of the outer boundary of G(C).

Once v* is fixed, we will simply denote by h, the height function hy, .-
associated to the weight function w. Then, the idea of the paper is to define
particular weight functions on the graph G(C), such that height functions can
be used to compute the ones which correspond to dimer tilings of C.
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Fig. 3. The orientations of black and white cells of the bipartite domain of Fig. 1

(left). The corresponding directed graph, whose bidirected edges correspond to the
boundaries of the domain, the vertex v* being on the outer boundary (right).

3 Counters and dimer tilings

We define here counters and use them to give a characterization of tileable
domains. The results provided here are then used in the next section to compute
effectively a dimer tiling.

Definition 1. A counter over G(C) is a weight function § such that 6(e) =0 for
any bidirected edge e and §(c) = 1 for any cell-circuit c. A counter is moreover
said binary if é(e) € {0,1} for any edge e.

Clearly, a binary counter weights exactly one edge of a cell-circuit by 1, the
other ones having weight 0. Hence, grouping two cells which share an edge of
weight 1 yields a dimer tiling (see Fig. 4). Conversely, it is straightforward to
similarly derive a binary counter from a dimer tiling. Thus, we use indifferently
the terms dimer tiling or binary counter in all that follows.
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Fig. 4. A counter (left) and the binary counter corresponding to the dimer tiling of Fig.
1 (right). For the sake of clarity, the weights 0 of bidirected edges are not represented.



Let us now consider two counters § and ¢, and let ¢ be a circuit of G(C).
One easily proves by induction on the size of ¢ that §(c) = ¢’(¢). In particular, if
C is tileable then one can consider §’ to be a binary counter: one has 6'(c) € N,
and this yields é(c) € N. Thus:

Proposition 1. If C is tileable, then §(c) € N for any counter §.

Conversely, suppose that for any counter ¢’ and any circuit ¢, ¢'(¢) € N. In
such a case, we can define the notion of d-shortest path from a vertex v to a
vertex v': it is a path p (not necessarily unique) which satisfies

§(p) = min{d(p’) | p'is a path from v to v'}.
Then one has the following properties:

Proposition 2. If § and §' are counters over G(C), then any 6-shortest path is
also a §'-shortest path.

Proposition 3. If § and &' are counters over G(C), then hs = hf yields § = §'.
We then prove:

Theorem 1. Let § be a counter over G(C) and set for an edge e from v tov':

d1(e) =d(e) = (hs(v') — hs(v)).
Then, &, is the binary counter such that hs, (v) =0 for any vertex v.

Thus, Th. 1 and Prop. 1 yield that C is tileable if and only §(c) € N for any
counter ¢ over G(C) and any circuit ¢ of G(C). This provide a characterization
of tileable bipartite domains that we use in the following section.

4 Computing a binary counter

The previous section has defined counters and binary counters. We are espe-
cially interested in binary counters since they correspond to dimer tilings. Here,
we first show how to compute a counter in linear time, and we then use Th. 1
to derive a binary counter from it.

The first step to compute counter consists in constructing a particular weighted
tree. Let A(C) be the undirected graph associated to C as explained in the intro-
duction. Since the domain is bipartite and connected, so is A(C). Let us assign
color black or white to the vertices of A(C), so that two linked vertices have
different colors. Let then T be a spanning tree of A(C). If we remove from T
an edge e between a black vertex b and a white vertex w, this splits T" into two
trees: we denote by T, ; the one which contains the vertex b and we set:

dr(e) = #{black vertices in T, ;} — #{white vertices in T, ;}.

It defines a function dr from the edges of T to Z (see Fig. 5). One checks:



Proposition 4. Let v be a vertex of T and ey, ..., e be the edges of T contain-
ing v. If the domain has as much black as white cells, then one has:

Notice that a tileable bipartite domain has necessarily as much black as white
cells since each black cell is grouped with a white cell. Simple examples show
that the converse is however false.

The second step to compute counter consists in deriving from the function
dr a counter dp over G(C). We proceed as follows. We set dp(e) = 0 for any
bidirected edge (that is, an edge of the boundaries of the domain). Otherwise,
a directed edge e corresponds to an edge shared by two cells of C, say C} and
Cy, which correspond in the graph A(C) respectively to two vertices b and w,
connected by an undirected edge ¢’ of A(C); we set dp(e) = dr(e’) if ¢’ belongs
to the tree T, d7(e) = 0 else (see Fig. 5). Prop. 4 then yields that dr(c) =1 for
any cell-circuit c¢. Thus, §7 is a counter.
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/1
%\/

Fig. 5. Left, a spanning tree T over A(C) and the weights dr. Right, the corresponding
weight function d7 over G(C): it is a counter.

Let us study the complexity of the construction of this counter. Let n be
the number of cells of the domain C, or equivalently, the number of vertices of
A(C). Constructing a spanning tree T' can be done in linear time by a greedy
algorithm. Then, the weight function dr can be computed recursively in linear
time, starting from the leaves of T. Deriving d7 from dr can be performed in
linear time since, the graph G(C) being planar, it has O(n) edges. Thus, the
counter d7 can be computed in linear time.

Then, Th. 1 allows to derive the binary counter § | from the height function of
o7, which can be computed by any single-source-shortest-paths algorithm on the



planar graph G(C) weighted by 07, the source being the vertex v*. In particular,
[3] provides a O(nIn(n)3)-algorithm to do this. Finally one has:

Theorem 2. A dimer tiling of a bipartite tileable domain can be constructed by
a O(nln(n)?)-algorithm.

The previous algorithm can also be used to detect the case no dimer tiling exist:

— if the bipartite domain is not balanced (hence not tileable), then the con-
struction of the weight function dr leads to a vertex such that the sum of
the weights of its adjacent edges is not equal to 1;
otherwise, dr is a counter, and C non-tileable yields the existence of a circuit
¢ such that ér(c) ¢ N, more precisely dr(c) < 0 since d7(c) € Z by construc-
tion. Thus, shortest paths are not defined, and the algorithm of [3] detects
it (as most of the shortest paths algorithms).

Notice that our algorithm has a complexity similar to the O(nln(n)) algo-
rithm of [9], which deals with the case of square cells and domain with a bounded
number of holes.

5 Random sampling

In this section, we suppose that there exists at least one binary counter over
G(C), that is, A(C) is not empty. We endow A(C) by a structure of distributive
lattice which can be visited using a simple operation called flip.

5.1 Flips

Definition 2. Let § be a binary counter over G(C). A d-nodule is a mazimal'
set of vertices of G(C) such that any two of them are linked by a directed path p
which satisfies §(p) = 0.

Notice that if § is a binary counter, then a path p such that §(p) = 0 is always
a shortest path for §. So it follows from Prop. 2 that two binary counters define
the same nodules: we thus simply speak about nodules. Moreover, notice that
hs is always constant over the vertices of a nodule: intuitively, a nodule can be
seen as an expanded vertex.
So we call incoming (resp. outcoming) edge of a nodule a directed edge of G(C)
which links a vertex outside the nodule to a vertex inside of it (resp. inside to
outside). We also denote by A* the nodule which contains the vertex v*, and we
then define the following operation:

Definition 3. Let A be a nodule, A # A*. Suppose that § is a binary counter
such that 6(e) is equal to 1 (resp. 0) for each incoming edge of A and 0 (resp.
1) for each outcoming edge of A. We call decreasing flip (resp. increasing flip)
the operation which exchanges the weights of the incoming and outcoming edges

of A.

! for inclusion



One easily checks that a flip on a nodule A transforms a binary counter §
into a binary counter, say §' (see Fig. 6). Moreover, if it is an increasing flip
(resp. decreasing), then hs (v) = hs(v) + 1 (resp. hy(v) = hs(v) — 1) ifv € A
and hg (v) = hs(v) otherwise: flips act on heights in a very simple way.

Fig. 6. The seven vertices which belong to the bidirected edges around the hole form
a nodule. A (decreasing) flip on this nodule transforms the binary counter on the left
into the one on the right. It corresponds on Fig. 7 to the flip from the upper dimer
tiling to the one immediatly below.

5.2 A distributive lattice
We define two operations V and A over the set A(C) of dimer tilings of C:

Proposition 5. Let § and §' be two binary counters over G(C). Then the height
functions min(hs, hs') and max(hs, hs') are height functions of binary counters
over G(C), respectively denoted by § N&" and 6 V §':

h5A5/ = min(hg, hg/) and h5V5/ = max(h(;, hgr).

It is then easy to check that (A(C), A, V) is a distributive lattice. We denote
by =< the associated partial order:

§=0 & §=6N0 & hs<hg.

Notice that it is not difficult to endow a finite set with a structure of distributive
lattice. The interest of this specific definition follows from its link with the flips.
Recall first that, given § and ¢’ in A(C), one says that ¢’ covers ¢ for the partial
order = if § < ¢’ and if, for any 6” € A(C), § < ¢” yields 6’ < ¢§”. Then one has:

Theorem 3. A binary counter &' covers a binary counter § if and only if § can
be obtained performing a decreasing flip on §'.

In other words, the Hasse’s diagram of the distributive lattice (A(C), A, V)
(two elements are linked if and only if one covers the other) is isomorphic to the
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Fig. 7. The distributive lattice of all the dimer tilings of a domain. The dimer tiling 6
defined in Th. 1 is the bottom of this lattice. The flips allow to move between linked
tilings. Notice that, excepted the upper flip which is performed on the nodule shown
Fig. 6, all the other flips are performed on nodules reduced to a single vertex.
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undirected graph whose vertices correspond to dimer tilings, each of them linked
to the ones it is covered by. Figure 7 illustrates this.

Such a structure of distributive lattice, together with the effective operation

flip, can then be used to generate randomly a dimer tiling of a given domain (see
[8]). In [4], we also use this lattice and the flips to generate all the |A(C)| dimer
tilings of C with less than 2|A(C)| flips. Since a flip can be easily performed in
linear time, it leads to an algorithm in O(n|A(C)|). It thus improves the O(n?)
algorithm of [2] which is moreover restricted to the case of square cells.
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Appendix

Proof of Proposition 2:

Let v and v’ be two vertices. Let 1) and 9’ be two counters. Let ¢ be a -
shortest path and ¢ be a 9’-shortest path, both linking v to v'. Let r be any
path from v’ to v. Prop. 1 applied to circuits c.r and ¢'.r yields 1 (c.r) = ¢'(c.r)
and ¢(c.r) = ¢'(c.r). It follows that:

(') = (e) = (') = ' (c).

But since c is a ¢-shortest path, 1 (¢’)—1(c¢) > 0. Similarly, ¢’ being a ¢’-shortest
path, ¥'(¢’) — ¢'(¢) < 0. Thus ¢¥(c') — ¥(c) = ' (¢) —'(c) = 0, that is, c is a
shortest path for both ¥ and v’ (and ¢’ too). O

Proof of Proposition 3:

Let 9 and 9’ be two counters such that hy = hys. Let e = (v,0’) be an edge. If
e ¢ I, then ¢ (e) = ¢(e’) = 0 by definition.

Otherwise, let ¢ be a shortest path from v* to v (for both ¢ and ¢’ according
to Prop. 2). Hence 9(c) = hy(v) = hy (v) = ¢’(c). Similarly, there exists a path
¢ from v* to v’ such that ¢(c¢’) = ¢'(¢). Considering then a path r from v to
v* and applying Proposition 1 to circuits c.e.r and ¢’.r, one gets easily:

P(ee) —¢'(ce) = () — /().
Combined with ¥(c) = ¢'(c) and ¥(c’) = (), it yields ¥(e) = ¢’ (e). O

Proof of Theorem 1:
It is easy to check that ¢, is a counter. Let us prove that it is a binary counter.
Let e = (v,v') be an edge:

If there exists a 1-shortest path p from v* to v’ such that e is the last edge
of p, then hy(v') = hy(v) + 1(e), that is, 6, (e) = 0.

Otherwise, one has hy(v') < hy(v) + 9¥(e), that is, 0 < §1 (e). But the edge
e belongs to a circuit-cell ¢ whose other edges form a path from v’ to v of
length 1 — 4)(e) (since ¢(c) = 1). Hence hy(v) < hy(v') +1 — 1(e), that is,
d1(e) <1.Thus 0 < §, (e) < 1: proving that d(e) is entire will yield §(e) = 1.
Let a and b be 1-shortest paths from v* to respectively v and v’ and r be
a path from v’ to v*. One has §, (a) = ¥(a) — hy(v), that is, since a is a
1-shortest path, §, (a) = 0. Similarly, ¢, (b) = 0, and so:

d1(a.er)=0,(a)+d.(e)+d.(r)
=0+ 51_(6) +6J_(7') + 5J_(b)
= 5l(6) + 5L(b7")

Since a.e.r and b.r are circuits, ¢, (a.e.r) € N and §, (b.r) € N according to
Prop. 1, and thus 6, (e) € N. Since 0 < §, (e) < 1, it yields §, (e) € {0,1}.
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It remains to prove that hs, = 0. Let v be a vertex and ¢ be a §, -shortest path
from v* to v. One computes hs, (v) = 6 (c) = ¢ (c) — hy(v). Since, according to
Prop. 2, cis a 1-shortest path too, hy(v) = ¥(c) and thus hs, (v) = 0. O

Proof of Proposition 5:
Let h = max(hs, hs). Let 1 be defined on an edge e = (v,v') € I by:

be) = di(e) + (h(v') = h(v)),

where ¢, is defined in Theorem 1. We prove that ) is a binary counter whose
height function is h. The proof is similar for the min(hs, hs) case.

Since the sum (h(v') — h(v)) vanishes when taken over the edges of a cell-
circuit (term by term cancellation), 1 is, as 1, a counter. Since § and §’ take
only entire values, so does h = max(hs, hs ), and thus ¢ (§, being binary).
Hence, proving that 0 < @ < 1 will ensure that ¢ is a binary counter. Let
e = (v,v') be an edge. According to Theorem 1, §, (¢) can be written in two
ways: 01 (e) = d(e) + hs(v) — hs(v') = 8’'(e) + hs (v) — he(v'). This allows two
different writings of ¥(e), and a case-study then gives:

h(v) | h(v) ¥(e)
hs(v) | hs(v') d(e)
ha(v) s (09 |5() < t(e) < &(e)
e (0)] () 0(€) < () < b(e)
hg (v)|hs (V' 8 (e)

It remains to verify that the height function of v is h. Let v be a vertex
and ¢ a shortest path from v* to v. ¢ being a shortest path for ¢, hy(v) =
P(c) = d1(c) + h(v) — h(v*) = d1(c) + h(v). ¢ being a shortest path for d,
01(c) = hs, (v) = 0 (recall that hs, is constant and equal to zero). It follows
that hy(v) = h(v), and thus the result. O

Proof of Theorem 3:

Let § and ¢’ be two binary counters such that § < ¢’ and § # ¢’. Among the
nodules A such that hs(A) < he'(A)}, let Ag be one with hs (Ag) maximum. If
Ap has an incoming edge e such that §’(eg) = 0, let A; be the nodule ey comes
from. One has: hs(Ag) < hs' (A1) + 6 (eg) = hs(Ar). Tterating this process, we
obtain a sequence of nodules Ag, Ay, ..., Ag,... such that hs (A;) < hs(Ait1)
and there is an edge e; from A;11 to A; with ¢’(e;) = 0. If in this sequence
A; = A, for some i < j, then the union of A;, Aj4q,..., A; would itself be a
nodule (thanks to the edges e;, e;41,...,e;j-1): maximality of nodules for inclu-
sion avoids this. Hence the process is finite: let A be the last nodule obtained.
Ayj, # A* since 0 < hs(Ao) < hs(Ao) < hs(Ak), and each incoming edge of A
is valued to 1 by ¢’: we thus can do a decreasing flip on Ay (see Fig. 8).



13

Ay

Ao

Fig. 8. Search, backward from A, of a nodule to do a decreasing flip.

Let ¢” the binary counter obtained by performing this decreasing flip on Ay.
We prove that 6 < §”, that is, hs(Ag) < hsv (Ax) since the flip modifies only the
height of Aj. More precisely, since hsr(Ag) = hs (Ax) — 1, it suffices to prove
that hs(Ag) < hs (Ag). We already know that hs(Ag) < hs (Ag). Suppose that
hs(Ax) = he(Ak) to obtain a contradiction.

We first prove that there exists ig, 0 < i9 < k such that hs(A;,) = he'(Aiy) =
h5/ (AO) One has h(;(Ao) < h5/ (AO) S h5/ (Ak) = h(;(Ak). If h5/ (Ak) = h5/ (AO),
ip = k suits. Otherwise, let iy be the greatest index such that hs (A4;,) = hs (Ao).
By this choice, hs (Aio-i-l) > hg (Ai(,) = hs(Ap). Thus hé(Aio-i-l) < hg (Aio-i-l)
is impossible, since Ay is of maximum ¢’-height among the nodules A such
that hs(A) < hs(A). Hence hs(Aiy+1) > hs'(Aig+1), and since 6 = ¢ it yields
hs(Aig+1) = he'(Aip+1). But it is easily seen that two nodules linked by an edge
have heights that differ by 0 or 1: applied to nodules 4;, and A;,+1 (linked by
€i), knowing that hs(A;,+1) = hs (Aig+1) and hs(As,) < he(A;,) (since § < ¢')
this proves hs(A;,) = he'(Ai, ), that is, ig suits.

Let us then prove that the existence of such an index iy leads to a contra-
diction. Let ¢ be a shortest path from v* to A;,. The edges ey, ..., e;,—1 ensure
that there exists a path ¢;, from A4;, to Ag such that §’(¢;,) = 0 (Figure 9).Then
8'(c.ciy) = &'(¢) = hor(Aiy) = hs(Ap). Thus c.c;, is a shortest path from v* to
Ap. In particular, hs(Ag) = 0(c.c;y) > d(c). But ¢ being a shortest path from
v* to Aj,, one has §(c) = hs(Ai,) = hj5(Ao) (the last equality coming from the
choice of ig). Hence hs(Ag) > hj5(Ap). That contradicts that the fact that Ao
was chosen in {A | hs(A4) < hs(A)}, and thus ends the proof. O

Fig. 9. The path c;, links A4;, to A and is such that §'(c;,) = 0.



