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Abstract. It is known that any two rhombus tilings of a polygon are
flip-accessible, i.e. linked by a finite sequence of local transformations
called flips. This paper consider flip-accessibility for rhombus tilings of
the whole plane, asking whether any two of them are linked by a possibly
infinite sequence of flips. The answer turning out to depend on tilings, a
characterization of flip-accessibility is provided. This yields, for example,
that any tiling by Penrose tiles is flip-accessible from a Penrose tiling.

Introduction

A rhombus tiling of D C R? is a set of rhombus-shaped compact sets, namely
rhombus tiles, whose interiors are disjoint, which meet edge-to-edge and whose
union is D. Fig. 1 depicts celebrated rhombus tilings of D = R? (see also [6]).
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Fig. 1. Rauzy-dual, Ammann-Beenker and Penrose rhombus tilings (from left to right).



Then, the flip is a well-known local transformation over rhombus tilings which
just exchanges three rhombus tiles sharing a vertex (see e.g. [1,2,5,9,11,15], and
also Fig. 2). Flips rise the question of flip-accessibility: can a given rhombus tiling
be transformed into another one by performing a sequence of flips?

Fig. 2. A flip is an exchange of three rhombus tiles sharing a vertex.

A motivation for studying flip-accessibility for rhombus tilings comes from
statistical physics. Indeed, rhombus tilings appeared to be a suitable model for
the structure of recently discovered quasicrystalline alloys (see [14]). Moreover,
elementary transformations of real quasicrystal, called phasons, seem being ef-
ficiently modeled by flips (see [10]). This led to study flip dynamics, thus the
preliminary question of flip-accessibility.

In the case of rhombus tilings of a polygon, it is proven in [9] that any two
rhombus tilings are linked by a finite sequence of flips. In other words, rhom-
bus tilings of a polygon are all mutually flip-accessible. Many results concerning
flip dynamics, in particular random sampling, have been obtained (see e.g. [5,
11]). The case of rhombus tilings of the whole plane is more complicated. First,
note that it is natural to consider flip-accessibility in terms of possibly infinite
sequences of flips. Then, even with this definition, tilings turn out to be not
always flip-accessible. Thus, answering the question of flip-accessibility amounts
to characterize flip-accessibility between pairs of tilings.

The paper is organized as follows. In Section 1, we more formally define rhom-
bus tilings of the whole plane and the corresponding notion of flip-accessibility.
We also show that rhombus tilings are naturally associated with a useful higher-
dimensional notion, namely stepped surfaces. Section 2 then states the main
result of this paper, that is, a characterization of flip-accessibility in terms of
shadows (Theorem 1). As a corollary, we show that there is a large class of
rhombus tilings, namely the canonical projection tilings, from which any other
rhombus tiling over the same set of rhombus tiles is flip-accessible. The last sec-
tion is devoted to the proof of this characterization. In particular, we rely on the
de Bruijn lines of [3] to introduce de Bruijn cones, a tool which could be used
for achieving efficient algorithms in the finite case.

1 General settings

Let us first define rhombus tilings of the whole plane. Let v1,...,v4 be d > 3

non-colinear unit vectors of R2. Rhombus tiles are the (%) compact sets of non-



empty interior defined for 1 < i < j < d by:
T%j = {)\’Uz +M’Uj, 0 S /\7 12 S 1}

Then, for x € @©;Zv;, we denote by x + T;; the rhombus tile obtained by trans-
lating T3; by «. Note that there is no loss of generality by considering rhombus
tiles translated in @;Zwv; (instead of the whole R?) because we are here interested
in flip-accessibility; this restriction will be useful in Prop. 1, below. Let us now
define rhombus tilings of the whole plane:

Definition 1. A d — 2 rhombus tiling is a set 7 of translated rhombus tiles of
disjoint interiors, meeting edge-to-edge* and whose union is the whole plane R2.

For example, Fig. 1 depicts d — 2 rhombus tilings for, respectively, d = 3,4, 5.

Let us now define flip-accessibility for d — 2 rhombus tilings. Introduced in
[15] for finite domino or lozenge tilings, flips are similarly defined for rhombus
tilings (see Fig. 3).

Fig. 3. A flip is a local exchange of three rhombus tiles sharing a vertex.

Clearly, performing a flip on a rhombus tiling yields a (new) rhombus tiling.
This also holds for a finite sequence of flips, but we need to be more precise
in the case of an infinite sequence of flips. Let us define the distance d(7,7")
between two tilings 7 and 7’ by:

d(Tv T/) = inf{2ir | QTB(O,T) = /T\/B(O,r)}a

where 7|g(o,) denotes the set of rhombus tiles in 7 which belong to the 2-
dimensional ball of center 0 and radius r. This allows us to indiscriminately
consider finite or infinite sequences of flips for defining flip-accessibility:

Definition 2. Let 7 and T’ be two rhombus tilings of the whole plane. If there
is a sequence (Tp,)n>0 of rhombus tilings such that Ty = T, T,+1 is obtained by
performing a flip on T, and d(7,,7T’) tends towards 0, then one says that T’ is
flip-accessible from 7, and one writes:

T s

4 that is, two intersecting tiles share either a point « or an edge {z + \v;, 0 < A < 1}



Last, let us show how rhombus tilings and flips can be seen from a higher-
dimensional viewpoint. This will be very useful in the following sections.

Let (ey,...,eq) be the canonical basis of R%. For 1 <i < j < d and = € Z%,
the unit face of type t;; located at x is the subset of R? defined by:

(a:,tij) = {$ + /\ei +uej, 0 S )\, 1% S 1}

Let then ¥ : R? — R? be the linear map defined by:

d
W(xl, ceey ZL'd) = ZSEZ’UZ
i=1

We are now in a position to introduce so-called stepped surfaces:

Definition 3. A d — 2 stepped surface is a set S of unit faces of R% such that
U is a homeomorphism from the union of these unit faces onto R2.

A stepped surface is thus a sort of fairly rugged subset of R homeomorphic to a
plane. Rhombus tilings and stepped surfaces turn out to be naturally connected:

Proposition 1. If S is a d — 2 stepped surface, then ¥(S) is a d — 2 rhombus
tiling. Conversely, if T is a d — 2 rhombus tiling, then there is a d — 2 stepped
surface S such that W(S) = T, and S is unique up to a translation in ker(¥)NZ2.

Proof. Let S be a stepped surface. First, ¥ clearly maps unit faces onto rhombus
tiles whose vertices belong to @®;Zv;. Then, note that unit faces are of disjoint
interiors and meet edge-to-edge: this still holds by applying the homeomorphism
w. Last, ¥ is onto R2. This shows that ¥(S) is a rhombus tiling of R2.
Conversely, let 7 be a rhombus tiling of R2. Let xg be a vertex of 7. Since
xo € @;Zv; (by definition), there is some yo € Z? such that ¥(yg) = ¢, and yo
is unique up to a translation in ker(¥) N Z<. One then define a function A from
the vertices of 7 to Z? as follows:

h(zo) =yo and «' =x+wv; = h(z') = h(x)+ e;.

Actually, h is nothing but a height function, and is thus consistent (see e.g. [4]).
Here, note that ¥ (h(x)) = « for any vertex x of 7, and let us define the following
set of unit faces:

S ={(h(x),t;j) | zc+T;; € T}.

It follows from the construction of S that the restriction of ¥ to the union of unit
faces of S, denoted by ¥, is a bijection onto R2. It is continuous as ¥ does, and
its inverse is also continuous since ¥|s is closed. Thus, ¥ is a homeomorphism
from S onto R2, that is, S is a stepped surface. Last, S is unique up to the initial
choice of yo, that is, up to a translation in ker(¥) N Z<. O

In other words, stepped surfaces are nothing but rhombus tilings seen from
a higher-dimensional viewpoint. Actually, this is just a generalization of ideas



introduced in [15] for finite domino or lozenge tilings. Note also that the case
d = 3 corresponds to the notion introduced in [8], where the 3-dimensional view-
point is very natural (see, for example, the leftmost tiling of Fig. 1).

The notion of flip is then defined over stepped surfaces so that if a stepped
surface S’ is obtained by performing a flip on a stepped surface S, then the
rhombus tiling ¥(S’) is obtained by performing a flip on the rhombus tiling
U(S) (it suffices to replace v; by e; on Fig. 3). If, moreover, one says that two
stepped surfaces S and S’ are at distance less than 27" if they share the same set
of unit faces within the d-dimensional ball B(0,r), then this leads to a notion
of flip-accessibility for stepped surfaces which satisfies:

Proposition 2. For two stepped surfaces S and S’, one has:
7(S) M w(S') & Jacker(@)NZd st S a+ 8,
where a + S’ denotes the stepped surface obtained by translating S’ by a.

Fig. 4 illustrates the notion of flip-accessibility. Note that, contrarily to the
case of rhombus tilings of a polygon, flip-accessibility does not always holds, and
is moreover even not symmetric.

2 Characterization by shadows

The aim of this section is to provide a characterization of flip-accessibility for
stepped surfaces (which can be then restated in terms of rhombus tilings accord-
ing to Prop. 1 and 2). Let us first define the following maps, for 1 <i < j < d:

R4 — R2
Tii
K (21,5 2d) — (%, 25)

In particular, m;; maps the unit face (x,ty;) onto a unit square if ¢ = k and
j =1, onto a unit segment if i = k or 7 = [ and onto a point otherwise. We then
use these maps to define the shadows of a stepped surface (see e.g. Fig. 4):

Definition 4. The shadows of a d — 2 stepped surface S are the (g) subsets of
R? defined, for 1 <i < j <d, by:
7Tij(8) = U Fij(lf,t).
(z,t)eS

A simple but fundamental property of shadows is that they are invariant by
performing a flip (this can be easily checked on Fig. 3). This also holds for finite
sequences of flips, but we have only a weaker property for infinite sequences:

Proposition 3. If a stepped surface S’ is flip-accessible from a stepped surface
S, then the shadows of 8" are included in the shadows of S:

ST S = i, V), mii(S) C iy (S).



Fig. 4. Four patches of 3 — 2 stepped surfaces and their shadows (see Def. 4, below).
Flip-accessibility is represented by arrows: the top two stepped surfaces are mutually
flip-accessible (by a finite sequence of flips), and the bottom two stepped surfaces
are flip-accessible from them (by an infinite sequence of flips rejecting the “corner” to
infinity in one of the two possible directions). The bottom two stepped surfaces are
sort of dead ends: no flip can be performed on them. It is worth noticing that a stepped
surface is flip-accessible from another one if and only if the shadows of the latter are
included in the shadows of the former (this illustrates Th. 1, below).

Proof. Let S,, be a sequence of stepped surfaces, obtained by performing flips
on S, which tends towards &’. Let z € m;;(S’): =z belongs to the projection
of a face (z,t) € §’. Let r € R such that (x,t) C B(0,7) and N € N such
that d(Sy,S’) < 27". In particular, (x,t) € Sy. Since Sy is obtained from
S by performing a finite number of flips, both have the same shadows. Thus,
z € mij(x,t) C m;(Sn) yields z € m;;(S). This proves m;;(S") C m;;(S). O

In the previous proposition, inclusions of shadows can be strict (see, for
example, Fig. 4). Actually, the main result of this paper is that the converse of
this proposition also holds:

Theorem 1. A stepped surface S’ is flip-accessible from a stepped surface S iff
the shadows of S’ are included in the shadows of S:

S flif S & Vi, V7, Fij(Sl) C 7TU(S)

Th. 1 is proven in the following section. Before this, let us provide an inter-
esting corollary. We need the following definition:



Definition 5. Let u and v be two vectors of R? with non-zero entries. The
d — 2 stepped plane P, , is defined as the set of all unit faces which lie (entirely)
in the following “slice” of RY:

Ru + Rov + [0,1]%.

Roughly speaking, the stepped plane P, ., is an approximation by unit faces
of the real plane Ru + Rw (this corresponds to a viewpoint developed in discrete
geometry, see e.g. [12]). Actually, stepped planes are nothing but the stepped sur-
faces which are associated by Prop. 1 with so-called canonical projection tilings.
These are rhombus tilings obtained by the cut and project method (see [7,13]).
For example, the Rauzy-dual, Ammann-Beenker and Penrose tilings depicted on
Fig. 1 are canonical projection tilings associated with d — 2 stepped planes for,
respectively, d = 3,4,5 (see [6]).

Now, let us note that 7;;(Ru+Rv) = R2. This easily yields that m;; (P ») =
R?. In particular, the shadows of the stepped plane P, , contain the shadows of
any other stepped surface. We thus obtain as an immediate corollary of Th. 1:

Corollary 1. Any stepped surface is flip-accessible from a stepped plane.

In terms of rhombus tilings, this means that any rhombus tiling is flip-
accessible from a canonical projection tiling over the same set of rhombus tiles.

3 Proof of the characterization

This section provides a proof of the characterization stated in Theorem 1. The
necessary condition is proven by Prop. 3. Let thus S and S’ be two stepped
surfaces such that the shadows of S’ are included in the shadows of S, and let
us prove that &’ is flip-accessible from S.

Since the proof is not so short, it is worth giving a brief outline. The general
idea is to transform S into &’ by moving one by one unit faces. More precisely, for
(x,t;;) € &', inclusion of shadows ensure that there is a unit face (x,t;;) € S
such that g (Il?l,tij) = Tj (Il?,tij). We would like to move (Ilf,tij) to (w’,tij).
We proceed as follows. While there is k& such that z, < z, we choose such a
k and we define a set Fj(«,t;;) such that, by performing a finite number flips
over this set, we can translate (x,t;;) by e, (Lem. 1, 2 and 3). Similarly, we
can translate (x,t;;) by —ej for k such that z;, > ). Hence, we can move
(x,ti;) € Sto (x',t;;) € S’ by performing a finite number of flips. The last step
will be to show that we can, in this way, obtain unit faces of S’ over growing
balls centered in 0 (Lem. 4), that is, that S’ is flip-accessible from S (see Def. 2).

Let us now start the proof. We first define a useful tool:



Definition 6. Let S be a stepped surface, k € Z and 1 < i < d. If not empty,
the following set of unit faces defines the k-th de Bruijn section of type i of S:

Si,k = {((331, A axd);tij) eSs | T; = k/’}

It is easily seen that S; j is an infinite stripe of unit faces two by two adjacent
along vectors e;. Then, removing S; ;, naturally splits S into the two following
connected sets of unit faces (see Fig. 5):

ﬂfk = ((Il, . ,:Cd),t) eS | xri; > k} and Ti,_k = S\(Szyk U T:k)

Fig.5. A de Bruijn section S; 1, here represented by a broken line crossing its unit
faces, splits a stepped surface into two connected sets of unit faces, 77, and Tfk

Actually, de Bruijn sections turn out to be the set of unit faces associated by
Prop. 1 with the well-known de Bruijn lines introduced in [3]. In other words,
Si.k is a de Bruijn section of S iff ¥(S; ) is a de Bruijn line of the rhombus
tiling ¥(S). In particular, two de Bruijn sections share at most one face, as
well as de Bruijn lines. In such a case, they are said to intersect. Note that,
if (x,tx) = Sin N Sjm, then k =4, I = j, z; = n and z; = m. In particular,
only sections of different types can intersect, although they can also not intersect.

We use de Bruijn sections to define so-called de Bruijn triangles:

Definition 7. For (x = (z1,...,2q4),ti;) € S and 1 <k <d, k #1i, k # j, the
de Bruijn triangle Fy(x,t;;) is the set of unit faces of S defined by:

Fio(,tij) = (Siw; UT;L) N (Sja; UT 5 ) N (Skay UT L)

4,%4 Jrxj
where €; and €; respectively denote the signs of entries of vy in the basis (v;,v;).

Roughly speaking, Fj(x,t;;) is the triangle defined by the three “lines” S; ,,,
Sjz; and Sk ., (see Fig. 6, left). Note that it could be infinite, since the de
Bruijn sections S; ., or S, do not necessarily intersect Sk .. We will later



avoid this case (Lem. 3). Intuitively, for translating (,t;;) by e, we first need
to translate by ey the unit faces in Fy(x,t;;). However, moving a unit face of
Fy(x, t;;) requires, in turn, to move some others unit faces before. Therefore, we
extend de Bruijn triangles by so-called de Bruijn cones (see also Fig. 6, right):

Definition 8. With the convention F(AU B) = Fi,(A) U Fi.(B), we define:
Fp(z.tiy) = (. tiy)  and  F(x,ty) = F(F (2, 6y)).
Then, the de Bruijn cone Fy(x,t;;) is defined by:
Fy(x,tij) = | Fi (. tiy).

n>0

Fig. 6. A de Bruijn triangle Fj(x,t;;) (the shaded unit faces, left) and its closure, the
de Bruijn cone Fj;(x,1;;) (right). Recall that one has always (x,1:5) = Siz; N Sjz;-

Let us now show that (x, ¢;;) can be translated by performing flips over F}' (x, t;;):

Lemma 1. If F}(x,t;;) is finite, then one can translate (x,t;;) by er by per-
forming card(F} (x,t;;)\Sk 2, ) flips over Fj}(x,t;;).

Proof. Def. 8 yields, for any unit faces (y,t) and (y',t'):

(y,t) e Fr(y', 1) = Fi(y,t) C F(y',t).

This naturally leads to define the following partial order over F}!(x,t;;):

V(y,t), (y/at/) € Fl;k(matij)v (yat) = (y/at/) < Flz(yat) - F]:(y/,t/).

Let us now consider a unit face (y,t) € Fj (x,t;j)\ Sk, which is minimal for this
order. It is not hard to check that F}(y,t) is a set of three unit faces on which
a flip can be performed (see, for example, Fig. 6, right). By performing this flip,
(y,t) is translated by ey, so that the obtained face does no more belongs to
F¥(x,t;;), which thus decreased (Fig. 7, left). This can be inductively repeated,
up to translate by ey the unit face which was originally maximal in F}¥(«, t;;),
that is, (x,t;;) itself (Fig. 7, right). Since there is one flip performed for each
translated unit face, there is a total of card(F} (x, t;;)\ Sk, ) flips performed. O
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Fig. 7. Three flips have been performed on the minimal elements of the de Bruijn cone
of Fig. 6 (left). This can be repeated, reducing the de Bruijn cone up to only three unit
faces (right), on which performing a flip will translate the unit face (x,¢;;) by ey.

Although the definition of de Bruijn cones by transitive closure suffices to
prove the previous lemma, the following stronger property actually holds:

Lemma 2. One has F}(z,t;;) = F2(x,t;5).

Proof. Let (y,t) € F¢(x,t;;). If Fi,(y,t) is not included in F?(x,t;;), then a
case study (relying on the fact that two de Bruijn sections intersect at most
once) shows that one of the two de Bruijn sections containing (y,t), say Sk’.y,,,
necessarily intersects Fj(x,t;;). Let thus (y',t') € Sy, N Fx(x,t:;). One has
Fy(y,t) C Fyp(y',t'), and (y',t') € Fy(zx,t;;) yields Fy(y',t') C F§(z,ti;).
Hence, Fy(y,t) C FZ(z,t;;). Since this holds for any (y,t) € FZ(x,t;;), this
proves F2(x,t;;) C FZ(z,t;;). The result follows. O

We are now in a position to prove that one can choose kg such that £y (x,ti5)
is finite and (=, t;;) should be translated by ey, (the condition kg € D below).
Lem. 1 then yields that (x,%;;) can be effectively translated by ey, .

Lemma 3. Let (2/,t;;) € S’ and (x,t;;) € S such that m;;(x’, ti;) = mi;(x, tij5).
If D={k |z}, > xx} # 0, then there is ko € D such that I} (x,t;;) is finite.

Proof. We first prove that F(x,t,;) is finite for any k € D, and then that there

is ko € D such that F} (x,t;;) = F (x,t;;) is finite.

Let k € D. Note that Fi(x,t;) is finite iff both S; ;, and Sj ., intersect Sk s, .

Suppose that S; ,, does not intersect Si, 5, . Thus, S; », C T,; oy Then, since the

shadows of S’ are included in the shadows of S, there is (z,¢) € S such that

mik(x") € mik(2,t). This yields z; = 2} = x; and 2, = 2}, > zj. In particular,

z € Sig N kazk. Since this contradicts S; ., C T,;Ik_, we deduce that S; .,

intersects Sy ;.. Similarly, S; ., intersects S ., . The first result is proven.

Let us now choose kg € D being minimal in D for the following partial order:
n<m<<Tr cTF

m,Tm n,Tp "
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In other words, kg is chosen such that there is no section Sy, ., separating (x,t;;)
from S, ,, , that is, such that (@, ;) € T, and Sk, C Ty, . This yields
that a unit face (y,t) of F, (x, t;;) belongs to two de Bruijn sections which both
intersect Sk, z, . Thus, Fj(y,t) is finite. The second result follows. O

Note that the previous lemma only proves that there is kg € D such that one
can (and should) translate (z,¢;;) by ex,. Actually, one can easily check that, for
d =3, any k € D is convenient, whereas this is no more true for d > 3. Without
going into details, let us just say that it is strongly connected with the fact that
the set of d — 2 rhombus tilings of a polygon forms a distributive lattice for
d = 3, whereas not for d > 3 (see [5,11]).

So, following the outline given at the beginning of this section, we can now,
by performing flips, translate (z,t;;) by some ey, such that x> z1,. We can
repeat this up to have 2} < z;, for any k. The way we can translate by —ey, a
unit face (x,t;;) such that zj < wy, is similar. So, we are able to move (z,;;)
to (2’,t;;). The end of the proof relies on the following lemma:

Lemma 4. Let (2,t;;) € S’ and (x,t;;) € S such that m;; (2, t;;) = mi; (@, ti5).
If ), > xy, then Fi(xz,t;;) NS = 0.

Proof. (sketch) Writing down a detailed proof is rather technical and obfuscat-
ing, but the underlying geometrical idea is quite easy. Indeed, zj, > z}, yields
(z,tij) € Ty, and (2',t;;) € T,gj;k_, as depicted on Fig. 8. So, suppose that
there is a unit face (y,t) € Fy(x,t;;) N'S’. Such a face thus should have the
same position, in S and &', relatively to any de Bruijn section. For example, if
(y,t) belongs to T;7, NT;,, NT,, in S (as in the case of Fig. 8, left), then
it should belongs to 7,7 NT;% NT;7, in &' However, this last set turns out
to be empty (see Fig. 8, right). Thus, Fj(x,t;;) NS’ = 0. Suppose now that
(y,t) € F(z,t;;) NS'. There is (z,t.) € Fj(x,t;;) such that (y,t) € Fj(z,t.).
We prove Fj(z,t,) NS" = 0 as above, with (z,t,) instead of (x,t;;). 0

Fig. 8. If (z,t;;) must cross the section Sk ., to be transformed to (z',%:;), then any
unit face inside the triangle fol N foj N7, ,, must also cross one of the sections
Si,z;s Sjz; OF Sk, hence is moved.
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This lemma ensures that, once a unit face of S’ is obtained, it is no more

moved. We thus can get unit faces of S’ over growing balls, and Th. 1 follows. We
end the paper by summing up the whole proof by the following pseudo-algorithm:

for r=0 to
while SB(O,T) 7& S/B(O,r)
choose (z,1i;) in Sp(o,r)\Sp (o,

(@', tij) — Si o, NS]a, (mi5(S") € mi5(S))
while x # x’
choose k s.t. ), # x) and Fj(x,t;;) is finite (Lem. 3)
xy < x £ 1 by performing flips over F}(x, ;) (Lem. 1)
endwhile
endwhile (Lem. 4)
endfor
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