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Abstract

In all-optical networks, several communications can be transmitted
through the same fiber link provided that they use different wavelengths.
The MINIMUM ALL-OPTICAL ROUTING problem (given a list of pairs
of nodes standing for as many point to point communication requests, as-
sign to each request a route along with a wavelength so as to minimize the
overall number of assigned wavelengths) has been paid a lot of attention
and is known to be N’P—hard. Rings, trees and meshes have thus been
investigated as specific networks, but leading to just as many NP-hard
problems.

This paper investigates row-column routings in meshes (paths are
allowed one turn only). We first show the MINIMUM LOAD ROW-
COLUMN ROUTING problem to be NP-hard but 2-APX (more gen-
erally, the MINIMUM LOAD k-CHOICES ROUTING problem is N'P-
hard but k-APX), then that the MINIMUM ROW-COLUMN PATHS
COLOURING problem is 4-APX (more generally, any d-segmentable
routing of load L in a hypermesh of dimension d can be coloured with
2d(L — 1) + 1 colours at most). From there, we prove the MINIMUM
ALL-OPTICAL ROW-COLUMN ROUTING problem to be APX.

keywords: minimum load routing, minimum path colouring, all-optical
networks, mesh, row-column routing, approximation algorithms

1 Introduction

In optical networks, links are optical fibers. Each time a message reaches a
router, it is converted from optical to electronic state and back again to optical
state. These electronic switchings are considered as bottlenecks for the network.

Contrary to optical networks which use expensive optoelectronic conversions,
all-optical networks allocate a physical path in the network to each communica-
tion request, as for usual circuit switching; when each router is set up, messages
can stay in their optical state from start to end. The all-optical network com-
munication nodes we are interested in are Wavelength Routing Optical Cross-
connect (WR-OXC) with Optical Add/Drop Multiplexer (OADM) (see for in-
stance [1]). An example of such a router is depicted in figure 1.

Wavelength Division Multiplexing (WDM) is a technique (see for instance
[2]) that proposes to take advantage of the huge optical fiber bandwidth by
allocating a unique frequency to each communication. Several communications
can simultaneously use the same fiber as long as their wavelengths are different.

In this context, networks can be viewed as graphs, whether directed or not,
and communication requests in the network as pairs of nodes of the graph.
A communication instance can then be defined as a graph together with a
family of pairs of nodes (pairs may be repeated in the given family of requests).
Given some communication instance, a routing for this instance can be defined
as a family of paths in the graph yielded by linking the two nodes of each
request by a path in the graph!, and an all-optical routing for this instance

IWhen two different requests are made of the same pair of nodes, they may be assigned
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Figure 1: As an example, a router WR-OXC with OADM dedicated to directed
communications.

is a routing for this instance where each routing path is assigned a colour? in
such a way that no two paths using a common edge bear the same colour.

As wavelengths are usually a critical resource, the minimum all-optical
routing problem is the optimization problem defined as: given some commu-
nication instance, compute an all-optical routing for this instance which mini-
mizes the overall number of colours used to label the routing paths. An optimal
solution to a minimum all-optical routing problem will be called a minimal
all-optical routing (see figure 2 for an example).

The minimum all-optical routing problem is NP-hard in general, whether
graphs are directed [3] or not [4, 5, 3]. Moreover, restricted to directed graphs,
the problem is known to be No-APX? [1, corollary 3.1.5]. Therefore some topolo-
gies have been selected to be paid specific attention.

When networks are linear (i.e. the graph is a path), the problem is equiv-

different paths in the graph.

2When k colours are used to label the routing paths, it is not uncommon to use integers 1
to k as colours, though basically the set of colours is not an ordered set (on the other hand,
referring to the i*" colour becomes handy when expressing some algorithm making use of
colours).

3For more about approximation theory, the reader can be referred to [6]. For short, given
some N P-minimization problem and some real number d, a polynomial algorithm A is said to
be a d-approzimation algorithm for the problem, and the problem is then said to be d-APX

(or simply APX if the exact value of d is not under consideration), when, given any instance

AW)
oPT(I)
algorithm A, and OPT(I) is the cost of an optimal solution (OPT(I) is always assumed to
be strictly positive). If no such d exists, then the problem is said to be No-APX.

I of the problem, one has

< d, where A(I) is the cost of the solution computed by



2 requests

[ J
v [ J
2 requests
2 [ ]
\4,’
y
6 requests
(a)

Figure 2: Figure (a) shows a communication instance I. Figure (b) and (c) show
all-optical routing R, and R, resp. which are solutions to I. R, is a minimal
all-optical routing for I, but R, is not (R, resp. R., makes use of 6 colours,
resp. 5). On the other hand, Ry is a minimum load routing for I while R, is not
(Rp makes every link support 4 colours, R, makes link zy support 5 colours).

alent to the interval graph vertex colouring problem, known to be in P (see
for instance |7, p. 176]). It is again N'P—hard when networks are rings (i.e.
when graphs are cycles), whether directed or not [8], but is shown to be 2-APX
([9, 10], see also [8]).

Restricted to undirected stars (i.e. graphs made of edges which all together
share a common end-point), the minimum all-optical routing problem is N'P-
hard but 4/3-APX [11]. If restricted to directed stars, the problem is in P and
the same holds for spiders (i.e. graphs made of paths which together share a
common end-point) [1, 12].

For trees of rings (Trees of rings can be defined inductively. A cycle is a
tree of rings. If A and B are two trees of rings, identifying some vertex x of
A with some vertex y of B yields a tree of rings.), whether directed or not,
the problem is NP-hard but APX in the undirected case [9] as well as in the
directed case [13].

Indeed, when all-optical networks are concerned, meshes (graphs with a grid
pattern, see figure 3 and definition below) have been considered as real compet-
itive solutions among current metropolitan topologies [1, 14, 15]. Good results
corroborate this idea for deflecting routing methods [14], while trees can be dis-
connected by a single link failure, meshes need up to four links to fail (in most
cases) at an expense of no more than twice as many links. Furthermore, meshes
have already been used in the past to build parallel computers : 2D meshes for
Intel Paragon, Intel Delta, Symult 2010 or IBM Victor multiprocessors, and 3D
meshes for Wavetracer computer Zaphir or J-Machine (MIT).

Restricted to meshes, the minimum all-optical routing problem is still A"P-
hard [4]. To our knowledge, it is not known whether it is APX (at least, if it is
d—APX, then one must have d > 2 [4]), and the best result is a poly(Inln N) ap-
proximation algorithm on meshes of N x N nodes. Turning to particular routings
commonly used in meshes therefore seems worthwhile (see for example [16, 17]),



Figure 3: A routing in M5, mesh made of 6 paths, from which 5 are RC-paths,
from which 1 is a row-path.

and this paper is devoted to the all-optical routing problem in meshes when
restricted to "row-column" routings ("RC-routings" for short, also known as
"XY routings" or "E-cube routings"), which we now define in a formal way.

Thereafter, all graphs we consider are undirected graphs: a graph G is an
ordered pair (V, E) where E, the set of edges of G, is a set of pairs of elements
of V, the set of vertices of G. When needed, V(G) (resp. E(G)) denotes the
set of vertices (resp. the set of edges) of G.

Given integer i, P; denotes the graph such that V(P;;)) = {0,1,...,4 — 1,4}
and E(Py) = {{0,1},{1,2},...,{i — 1,i}}. A path is a graph isomorphic? to
By for some integer i.

A subgraph of a graph G is a graph H such that V(H) CV(G) and E(H)
CE(G). A path of a graph is any of its subgraphs which is a path.

The cartesian product of two graphs G and G’ is the graph whose vertices
are the ordered pairs (x,2’) where x is a vertex of G and 2’ a vertex of G’ and
such that there is an edge from (z,z’) to (y,v’) if and only if x = y and {2/, y'}
is an edge of G', or 2’ =y and {z,y} is an edge of G.

Given integers i and j, Mj;, ;) denotes the cartesian product of P and P;.
A mesh is a graph isomorphic to Mj;, ;) for some integers i and j. See fig-
ure 3 where M5, is given a planar representation which suggests the following
definitions.

In a mesh, a row path (resp. a column path) is a path whose every edge

is of the form {(p, q), (p,¢+1)} (vesp. {(p, ¢), (p+1,9)}) for some integers p

4Two graphs are isomorphic when renaming their vertices can yield the same graph.



and ¢, and a row-column path (RC-path, for short) is a path which is the
union of a row path and a column path of the mesh (see figure 3). Note that
row paths and column paths are considered as special instances of RC-paths
(formally, a path of length 0 can be viewed both as a row path and a column
path). Given some communication instance whose network is a mesh, a row-
column routing (RC-routing, for short) for this instance is a routing made of
RC-paths only.

Given some integer k, let the k-all-optical RC-routing problem be the
decision problem defined as: given some communication instance in a mesh,
is there an all-optical RC-routing for this instance (i.e. an all-optical routing
which is a RC-routing) and which uses k colours at most? For any integer k, we
prove that the k-all-optical RC-routing problem is N"P-complete. This implies
that the minimum all-optical RC-routing problem (the restriction of the
minimum all-optical routing problem to meshes and RC-routings) is N'P-hard.
It turns out that this last result must have been known (for instance a proof
can be derived from [18] where communication instances on rings are mapped
on meshes), though it seems not to have been published as such.

None the less, we give a genuine proof and, as the minimum all-optical RC-
routing problem is therefore N"P-hard, we prove it to be APX by providing
an 8-APX algorithm which, given some instance I of the minimum all-optical
RC-routing problem, works through two main steps:

e step 1: compute some RC-routing R for |

e step 2: assign colours to the paths of R to make it an all-optical routing
for I

The APX result stems from APX results with regard to each of these two
steps which we now look at in detail, as step 1 computes a so-called minimum
load RC-routing and step 2 addresses the so-called minimum RC-path colouring
problem when taking into account the routing load.

Given some communication instance and some routing for this instance, the
load of an edge is the number of routing paths which this edge belongs to,
and the load of the routing is the maximum load of an edge with regard to
this routing (see figure 2 for an example).

The L—-load routing problem is then the decision problem consisting of,
given some communication instance and some positive integer L, answering the
question: is there a routing for the instance whose load is at most L? The
minimum load routing problem is then associated optimization problem
defined as: given some communication instance, compute a routing for this
instance which minimizes the routing load. A solution to a minimum load
routing problem will be called a minimum load routing.

The minimum load routing problem has already been paid some attention.
On the one hand, the load of a minimum load routing is clearly at most the
number of colours used in a minimal all-optical routing, while their difference
cannot be bounded by a constant in general [19, 20], and on the other hand, one
can see that if network nodes are converters, that is if any path can change its



colour at any node, minimizing the overall number of colours used in a routing
for this instance reduces to computing a minimum load routing.

The 1-load routing problem is known to be N'P-complete in meshes [4],
yielding that the minimum load routing problem is A"P-hard, and thus, if APX,
no better than 2-APX. Still it is not known, to our knowledge, whether the
minimum load routing problem is APX or not (though, in the directed case
there is no clog(log(n))-approximation algorithm for this problem unless NPC
D— TIM E(nCUcelloglog(m)))) [21]). As we are interested in RC-routings, we
specialize these problems to meshes in the L-load RC-routing problem and in
the minimum load RC-routing problem respectively, namely by restricting
routings to RC-routings. We first show that the 1-load RC-routing problem is in
P, due to the proof that the so-called 2-choice 1-load problem (see section 2) is in
P. We then prove the row-column L-load routing problems to be NP -complete
for L > 2, yielding the minimum load RC-routing problem to be NP-hard
and ensuring that the so-called k-choice minimum load routing problem also is
(where k > 2 is some positive integer, see section 2). The latter is then proved
to be k—APX, yielding that the minimum load RC-routing problem is in turn
2-APX (while not d-APX for any d < 2). This 2-APX result is used by step 1
(mentioned above) to compute R as an approximate minimum load RC-routing
for I.

Now we turn to the question of colouring paths of a given routing. More
precisely, for any interger k, let the path k-colouring problem be the decision
problem defined as: given some path family in a graph, is there an all-optical
routing whose paths are the given paths and which uses k colours at most? Is
known that, for & > 3, the path k-colouring problem is N'P-complete, and it
remains so when restricted to routings of load 2 in meshes [17]. Therefore, the
minimum path colouring problem (the optimization problem associated to
the path k-colouring problem) is AN"P-hard, and it has been shown to be No-
APX, even when restricted to routings of load 2 in meshes [17]. Restricting
in turn these two problems into the RC-path k-colouring problem and the
minimum RC-path colouring problem, respectively, by forcing the routings
to be RC-routings, it turns out that the minimum RC-path colouring problem is
still N'P-hard (see, for instance, [17]) but it is known that any RC-routing can
be coloured into an all-optical RC-routing using 8 x L colours at most, where L
is the routing load [22, 17, 23, 16].

Let d, n1, na, ... nq be non-negative integers and let M[,,, xn,x...xn, denote
the hypermesh where, with 0 < iy, ji < ny for all k € [1,d], nodes = = (i1, ...iq)
and y = (j1,...ja) are adjacent iff i, = jj for all & € [1,d] but one, say kx, for
which |ig. — jg«| = 1, the edge zy being called an edge of direction kx. A
mesh of dimension d is a graph M isomorphic to such a M, xn,x...xn,], and,
for k € [1,d], Ex(M) denotes the set of edges of M which are of direction k.

Let P be a path in some hypermesh M of dimension d. If for all i € [1,d)
the set F;(G) N E(P) induces a path in G, then P is said to be a direction-
segmentable path. A routing in a hypermesh whose every path is direction-
segmentable is a direction-segmentable routing.

Proving that any direction-segmentable routing in a hypermesh of dimension



d can be coloured in polynomial time using at most 2d(L — 1) 4 1 colours, where
L is the routing load, we show that any RC-routing can be coloured into an
all-optical RC-routing using 4 x L colours at most, i.e. the best upper bound
involving the routing load to our knowledge. This result is used in step 2
(mentioned above) to colour the paths of R and make it an all-optical RC-
routing for I.

The sequel is organized as follows.

e Section 2 is devoted to load routing problems, where the minimum load
RC-routing problem is proved to be 2-APX.

e Section 3 is devoted to the minimum path colouring problem in d-dimensional
meshes when restricted to some special paths, yielding the minimum RC-
path colouring problem to be 4-APX.

e Section 4 is devoted to the row-column all-optical routing problem, where
the minimum all-optical RC-routing problem is then proved to be 8~APX.

We conclude in section 5.

2 Load RC-routing problems

We investigate both decision and minimization load RC-routing problems.

2.1 The L-load RC-routing problem N'P-completeness

It turns out that the L-load RC-routing problem is in P when L = 1 and
otherwise N'P—complete.

Our proof refers to the celebrated SATISFTABILITY problem whose restric-
tion as 3-SAT is N'P-complete (for instance, see |24, p. 39, p. 48|) while its
2-SAT restriction is in P (for instance, see [25, p. 185]). Hereafter, we use sets
of clauses, sets of literals and boolean variables as in [24] rather than conjunctive
normal forms of boolean expressions as in [25].

211 L=1

We first enlarge the problem to all kinds of networks.
The 1-load 2-choice routing problem is the decision problem defined as
follows:

instance: a communication instance I and to each request {a,b} in I, the
assignment of two not necessarily distinct paths P$® and P joining a
and b in the I network

question: is there a routing of load 1 for I such that, for each request {a, b} of
I, the corresponding routing path is P$® or Pt ?

We first prove:



Theorem 1 The I1-load 2-choices routing problem is in P.

Proof. We reduce the 1-load 2-choice routing problem to 2-SAT.

Assume R = {r;|1 < i < n} is the set of requests of some instance I of a
1-load 2-choice routing problem such that P¢ and P} are the two paths assigned
to the request r; for 1 < i < n. Using R as a set of boolean variables, we define
C' as the set of 2-clauses which, in turn, are defined for each pair {7, } with
1 <i,7 < n, according to three possible events:

e {-r;,—r;} when P} and P/ share a common edge
e {r;,r;} when P} and PJ share a common edge
e {-r;,r;} when P} and P] share a common edge

Assume that S is a routing satisfying the set of requests R and let ¢ be
a truth assignment of R such that, for each request r for which Pgb # PP,
d(r) = true, resp. ¢(r) = false, if r is satisfied in S by path P{’, resp. by
path P (values of ¢(r) are indifferent for other requests r, if any). It can be
checked that ¢ satisfies C.

Conversely, let ¢ be a truth assignment of R which satisfies C, and define
the routing S in such a way that if ¢(r) = true, resp. ¢(r) = false, r is satisfied
in S by path P{’, resp. by path P. It can be checked that S is a routing
solution to the 2-choice 1-load routing instance.

Thus, there exists a solution to the 1-load 2-choice routing problem instance
if and only if there exists a solution to the 2-SAT problem instance associated
with C.

As 2-SAT is in P, we conclude from the fact that the set of clauses C' can
be computed in polynomial time. <

Noticing that there are at most two possible RC-paths joining any two ver-
tices in a mesh, the following straightforwardly stems from theorem 1:

Theorem 2 The I-load RC-routing problem is in P.

21.2 L>2

Reducing 3-SAT to the L-load RC-routing problem, we now solve the general
case.

Theorem 3 The L-load RC-routing problem is N'P-complete for L > 2.

Proof. We assume L = 2 (the proof is easily extended for L > 2 by solely
adding a convenient number of so-called "blocking requests" as defined below).

Clearly the problem is in A'P. Using a reduction of 3-SAT, we prove it to
be N'P-complete. Let C' be some instance of 3-SAT with C = {c1,c2,...cm }, &
set of 3-clauses over the set of boolean variables X = {x,z3,...2,}. We now
define an instance I of the 2-load RC-routing problem using the M2,)x (2m+1)]
mesh as the problem network (see fig. 4 for an example):
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Figure 4: Let C' = {Cl, CQ, C3, 04} with Cl = {:El, o, —“’Eg}, CQ = {:El, X3, —‘{E4},
C3 = {x9, 23, ~24} and Cy = {—x1, "x2,24}. Figure (a) shows the communi-
cation instance I associated with C and figure (b) shows a row-column 2-load
routing solution to /. The network in instance I is the mesh Mg, q). In figure
(a) each “horizontal” (resp. “vertical’) rectangle bears the two possible RC-
paths satisfying the communication request associated with one of the variables
x1,x2,x3 and x4 (resp. to one of the literals of clauses C1, Cy, C3 and Cjy, with
vertical rectangles being grouped according to the clause to which the literal
they stand for belongs). “Blocking requests” are depicted with dotted lines.

e to each variable x;, we assign the request r; = {(2i — 1,0), (2¢,2m + 1)}

e to each positive literal | € ¢;, with [ = x;, we assign the request r; ; =
{(0,25 — 1), (24,25)} together with a so-called "blocking request" blk; ; =

e to each negative literal | € c¢;, with [ = —x;, we assign the request
ri; = {(0,25 —1),(2i — 1,2j)} together with a so-called "blocking re-

quest" blk] ; = {(2i — 1,2j — 1), (2i — 1,25)}

Fact 1 If there exists some truth assignment ¢ satisfying C, then there exists
a 2-load RC-routing solution to I.

Assume that ¢ satisfies C, and to each request r of I, choose the path that
joins the two end-nodes of r in Mj(2y,)x (2m+1)] according to the following:

e for any i, 1 <1i < n, if p(x;) = true (resp. p(z;) = false), the path
selected for r; uses column 2m + 1 (resp. column 0);

e for any j, 1 < j < m, there exists at least one literal [ € c; such that
(1) = true; choose one such literal [ and, in order to join the two
end-nodes of its corresponding request, select the row-column path
using column 2j — 1, while paths selected with regard to the requests
which are associated with the two other literals of ¢; use column 2j;



e for any blocking request, the selected path is the only row-column
path joining its two nodes in the network (actually a row path).

It can be checked that the thus computed routing is indeed a 2-load RC-
routing solution to I.

Fact 2 If there exists a 2-load RC-routing solution R to I, then there exists
some truth assignment ¢ satisfying C'.

Assume that R is a 2-load RC-routing solution R to I, we construct a
truth assignment ¢ of C' as follows: for any i, 1 < i < n, if the path
selected for r; uses column 2m + 1 (resp. column 0), ¢(z;) = true (resp.
o(z;) = false). We now prove that ¢ satisfies C.

Consider clause ¢; for 1 < j < m. Associated with literals from c;, there
are three requests in I sharing vertex (0,25 — 1) as an end-node. The
three of them cannot be assigned a row-column path using row 0, for R is
a 2-load routing solution to I. Therefore, at least one of them uses column
2j — 1. Assume, with no loss of generality, that this path is associated
with literal x; (the case —x; would be treated in a similar way). Then,
by definition of I, this path uses row 2i, and, because of the associated
blocking request blk; ; = {(2¢,2j — 1),(2¢,27)} which also uses row 2i,
request 7; = {(2i — 1,0),(2¢,2m + 1)} has been assigned a path using a
different row, namely row 27 — 1, thus using column 2m + 1, which means
¢(x;) = true. Thus clause ¢; is satisfied, which ultimately leads us to
conclude that C itself is satisfied.

We conclude by considering that the instance I of L-load RC-routing prob-
lem associated with C' can be computed in polynomial time. <>

Clearly, theorem 3 yields the following;:
Theorem 4 The minimum load RC-routing problem is N'P-hard.

Therefore the question of an approximation algorithm is posed.

2.2 The minimum load RC-routing problem approxima-
tion

Again, we first investigate a more general problem, namely, with & being some
positive integer, the minimum load k-choice-routing problem, which we
define as follows:

instance: a communication instance I and to each request r = {a, b} in I, the
assignment of at most k paths joining a and b in the I network

solution: a routing for I such that each request r from [ is satisfied by a path
assigned to r

objective: minimize the load of the routing solution

10



When restricted to RC-paths to join two nodes in a mesh, routing problems
become 2-choice-routing problems. This makes the minimum load RC-routing
problem a special case of the minimum load k-choice-routing problem, and we
clearly may conclude from theorem 4:

Theorem 5 The minimum load k-choice-routing problem is N'P—hard.
We now show this more general problem to be APX.
Theorem 6 The minimum load k-choice-routing problem is k—APX.

Proof. Let I be some instance of the minimum load k-choice-routing prob-
lem. We restate the problem as a linear programming problem instance as
follows. Let R = {r;}1<i<n be the set of requests from I. To each request r; is
associated a set P; = {p},pj, ..., p}, } of k; feasible paths in the network G, with
ki < k. Selecting path p} to join end-nodes of request r; if and only if 2% = 1
yields a one-to-one mapping between routing solutions to I and solutions to the
integer linear programming instance defined as:

abe{0,1} foralli,j,1 <i<n1<j<k
ki
d al=1foralli,l<i<n
j=1
z > Z x; for every edge e of the network G
e€E(p})

objective: minimize z

For every edge e of the network G, let w(e) = ZeeE(pj.) {E;, let 77, denote
the optimal value of 7, and let 77, be the optimal value of m when relaxing,
for all ,5,1 <i<n,1<j<k;, integer condition arz € {0, 1} to real condition
% € [0,1]. Obviously 7}, < 7jy-

For all i,5,1 < i < n,1 < j < k;, assume a} to be the value of x; in an
optimal solution to the relaxed linear programming problem and define:

bi‘ _ 1 if a;t = maXi<p<k; a}L
J 0 otherwise

(for a given ¢,1 < i < n, if more than one b;- is equal to 1, set all of them but
one at 0).

Now, as max<j<k, a’ > 7, letting rlgorithm qenote the load associated
with the (b})1<i<n,1<j<t, solution yields the following :

algorithm - %
T km
IN < IR - IR k

* — * *
TIN TIN TIR

11



We conclude by noting that the size of the linear programming instance is poly-
nomialy related to the size of the k—choice minimum load routing instance. <

Get n be a positive integer and let L = 2n. Consider the communication
instance where the graph is the mesh whose rows and columns are numbered
from 0 to 1 and the communication requests are 1, ..., r, with r; = {(0,0), (1,1)}
for 1 <14 < L. The algorithm from the theorem above might compute the real
solution where a% = 0.5 for 1 < i < L and 1 < j < 2, possibly yielding an
integer solution of load L while the optimum load is L/2.

Restricting again k—choice routings to RC-routings in meshes, theorem 6
yields the following.

Theorem 7 The minimum load RC-routing problem is 2-APX.

The 2 approximation factor expressed in theorem 7 might be improved upon,
but not beyond %, as stated in the following result.

Theorem 8 If the minimum load RC-routing problem is d—-APX for some con-
stant d, then d > 3/2.

Proof. Consider an optimization problem to which any solution has a cost
which is positive or null, while c is some positive integer. Whenever the problem
of the existence of a solution of cost less or equal to ¢ is N'P—-complete, then, it
is known that the optimization problem cannot be d—APX for any d < <1 [26].
We can conclude on the basis of the fact that the 2-load RC-routing problem is
NP -complete (see theorem 3). &

3 The RC-paths colouring problem

Given some routing R solution to a given communication instance I, the conflict
graph induced by R is the graph G whose nodes are the paths of R, with two
paths being adjacent in G when they have at least one edge in common.

Lemma 1 If G is the conflict graph of some direction-segmentable routing R
on a hypermesh of dimension d, then E(G) < d(L — 1)(n — £) where n is the
order of G and L is the load of R.

Proof. For every i € [1,d], let G; be the subgraph of G induced by con-
flicts which occur along direction i only, and let L; be the maximum load on
edges of F;(G). Then G; is an interval graph, say of order n. On the one hand,
with G; being a triangulated graph, the number of edges of G; is less or equal to
fulk) = (k—=1)(n— %) where k is the maximum size of a clique, and, on the other
hand, G; being an interval graph, any clique of maximum size in G; is of size L;.
Thus |E(G;)| < (L; — 1)(n — &). As f,(k) is a non-decreasing function when
k<mnandas L; <Lforall i€ [1,d], it follows that |E(G;)| < (L —1)(n — £).
One concludes the proof considering that |E(G)| < Zf |E;(@)]. &
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Lemma 2 If G is the conflict graph of a direction-segmentable routing R on a
hypermesh of dimension d, one of the nodes of G is of degree at most 2d(L —1),
where L is the load of R.

2x E(G)

Proof. The average node degree in G is , where n is the order of G.

One can conclude from lemma 1.

Theorem 9 Any direction-segmentable routing in a hypermesh of dimension d
can be coloured in polynomial time using at most 2d(L — 1) + 1 colours, where
L is the routing load.

Proof. By induction on the number n of chains in the routing R. The result
is straightforward if n = 1. As colouring the routing is equivalent to colouring
the nodes of its conflict graph, let n > 1 and let G be the conflict graph induced
by R. From lemma 2, some node p in G is of degree 2d(L — 1) at most. Let R’
be the routing obtained from R by suppressing the path p, G’ be the conflict
graph induced by R’, and L’ be the load of R’. By the induction hypothesis, G’
can be coloured using 2d(L’ — 1) + 1 colours at most, thus 2d(L — 1) + 1 colours
at most. Considering the degree of p yields the result.

As an interesting special case, theorem 9 yields:

Theorem 10 Any row-column routing in a mesh can be coloured in polynomial
time using at most 4L — 3 colours, where L is the routing load.

4 The all-optical RC-routing problem
We first take advantage of the proof of theorem 3.

Theorem 11 For any k > 2, the k-all-optical RC-routing problem is N'P-
complete.

Proof. We assume k = 2 (as for theorem 3, the proof is easily extended
to k > 2). Let C be some instance of 3-SAT and let I be the communication
instance associated with C in the proof of theorem 3. One can check that I can
be satisfied using 2 colours if and only if there exists a 2-load RC-routing which
satisfies I, that is, due to the proof of theorem 3, if and only if C' is satisfiable.
Which leads to the conclusion.

Given a communication instance I and a RC-routing S for this instance, let
7(S), resp. w(S), denote the load, resp. the number of colours, used by S.
Similarly, let 7(I), resp. w(I), denote the load of a minimum load RC-routing
for I, resp. the number of colours used by a minimal all-optical RC-routing for
I. As mentioned before, one has 7(S) < w(S), and therefore 7(I) < w(I) as
well.

13



Theorem 12 The row-column minimum all-optical routing problem is 8—APX.

Proof. Let I be some communication instance whose network is a mesh, let
S be a routing for I computed by a 2-approximation minimum load RC-routing
algorithm whose existence is asserted by theorem 7, and let ¢(.5) be the number
of colours used by a path colouring algorithm using at most 4 x 7(S) colours,
whose existence is asserted by theorem 10.

We then have ¢(S) < 4 x 7(S) < 4 x 2 x w(I), and we conclude with the
general inequality (1) < w(l). ¢

5 Conclusion

In general, the minimum all-optical routing problem and the minimum load
routing problem are both N"P-hard, and it is not known whether they are APX
or not, while the minimum path colouring problem is both N'’P—hard and No-
APX. Restricting these problems to meshes does not change their complexity
status.

In this paper, we restricted these three problems to RC-routings in meshes.

Regarding load routing problems, we proved the L-load RC-routing problem
to be in P when L = 1 and otherwise N'P—complete, and we provided a 2-APX
algorithm to solve the associated minimizing problem when it is N'P—hard.

Regarding the minimum RC-path colouring problem, we proved it to be 4-
approximable, where L is the load of the path family, which is an improvement
over several previous results known to us (namely, 8-approximation algorithms).
This result stems from a result expressed for dimension-segmentable chains in
meshes of dimension d.

Regarding the minimum all-optical RC-routing problem, and due to the
indirect proof of the result, we think the constant asserted in the 8—A4 PX result
(see theorem 12) should be improved upon.

Last, it is worth noting that, not surprisingly, some results can be extended
from meshes to tori.
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