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Global stabilization with low computational cost of the
discrete-time chain of integrators by means of bounded

controls

Nicolas Marchand, Ahmad Hably, Student Member, IEEE,
and Ahmed Chemori

Abstract—The paper proposes a bounded nonlinear control law com-
posed of saturation functions for the discrete time chain of integrators. A
dynamical adaptation rule of the saturation levels involved in the control
law is proposed to improve the closed-loop performances. The paper
unifies the original work of Yang et al. (1997) with static saturation level
and convergence improvements that recently appeared in the continuous
time case. The possible ranges for the controller’s parameters are
extended with respect to existing results.

Index Terms—Bounded control, saturation functions, chain of integra-
tors.

I. INTRODUCTION

Practical control applications obviously require bounded control in
order to fit into the physical limits of the actuators (see for instance
recent books [1], [2] or the special issue [3] and the chronological
bibliography therein). Among the numerous existing methods, one
can find the model predictive control (MPC). It is based on an online
computation of an open-loop optimal input over a prediction horizon.
The first step of the resulting optimal sequence is applied, and then
the prediction horizon is shifted forward. The optimization problem
is resolved again, and so on. MPC is a well-known method used
for stabilizing linear systems with constrained control inputs [4], [5],
[6], [7]. However, due to the intensive computations, this method
is not always applicable to fast systems. Moreover, the optimal
solution may be discontinuous as it is for the optimal time problem.
The linear anti-windup compensation is widely used. The saturation
effect is compensated by means of a linear feedback (see [8], [9]
in continuous time and [10], [11] in discrete time). Unfortunately,
as mentioned by Megretski [12], a rigorous stability and robustness
analysis is hard to carry out. Low-gain control also gave rise to much
literature [12], [13], [14], [15]. In this scheme, the saturation of a
linear controller is usually obtained by solving a Riccati equation
which depends on a specific parameter adapted online (without
adaptation, only semiglobal stabilization is achieved) [13], [12], [16].
Unfortunately, in order to insure global asymptotic stability, a convex
optimization problem must be solved at each time instant, a drawback
that reduces the number of embedded and fast applications based on
this type of control. Teel in [17] has proposed a nonlinear globally
stabilizing control law composed of nested saturation functions for the
continuous linear chain of integrators. Various works extended Teel’s
initial result to general controllable linear systems (in continuous
time [18] or in discrete time [19]) and linear systems subject to
measurement bounds [20]. The complexity of these methods is
close to those for the unconstrained one. As mentioned in [21],
a comparison paper for the double integrator case, the nonlinear
approach shows good performance with respect to robustness and
performance degradation. However, these nonlinear approaches suffer
from slow convergence, especially for high dimensional systems.
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This problem was partially answered by two different approaches.
Kaliora and Astolfi in [22] noticed (without testing it) that the state
of the system can be weighted with a weight computed offline by
means of a constrained optimization procedure. In [23], a dynamical
adaptation of the saturation levels of the control law is proposed
in function of the system’s state. The simplicity is kept and the
robustness properties are only slightly degraded. The convergence is
sped up considerably compared with other methods and is no longer
correlated to the system’s dimension. Extending these results to the
discrete time case is not trivial since owing to the saturation, the
continuous time controller can not be discretized since it is nonlinear.
The case with fixed saturations levels is treated in [19]. The purpose
of the present paper is to enable dynamical adaptation of these levels
in the discrete time case. In the proposed scheme, the conditions
imposed on the parameters of the control law are less restrictive than
in existing continuous time approaches. The control law unifies fixed
and dynamic approaches and provides a parameter that enables to
tune the degree of adaptation of the controller. As in the continuous
time case, the control law shows good performances while keeping a
very low computational complexity. In this paper, only the chain of
integrators is considered, but the results can be extended to general
linear systems following [19].

Notations: For any matrix P , Pij will stand for the element at the
ith row and jth column, Pj for its jth column. For any y ∈ R,
satM (y) = y if |y| ≤ M and satM (y) = sign(y)M otherwise.

II. PROBLEM STATEMENT AND PRELIMINARY DEFINITIONS

For continuous time systems, the chain of integrators of dimension
n is classically given by:

ẋ = Ax + Bu, x ∈ Rn, u ∈ R (1)

where
• Aij = 1 for i, j ∈ {1, . . . , n} if i + 1 = j and Aij = 0

otherwise
• Bi = 0 for i ∈ {1, . . . , n− 1} and Bn = 1.

For discrete time systems, two forms of the integrator chain are
commonly considered. Both are treated in this paper. They are defined
by

x+ = Ax + Bu, x ∈ Rn, u ∈ R (2)

where the pair (A, B) can be either the Euler discretization of (1)
with a normalized unitary sampling period:

• Aij = 1 for i, j ∈ {1, . . . , n} if i = j or i + 1 = j and
Aij = 0 otherwise

• Bi = 0 for i ∈ {1, . . . , n− 1} and
Bn = 1.

(3)

or the ZOH discretization of (1) with some sampling period T :

• Aij = T j−i

(j−i)!
for i, j ∈ {1, . . . , n} if i ≤ j

and Aij = 0 otherwise
• Bi = T n+1−i

(n+1−i)!
for i ∈ {1, . . . , n}.

(4)

The aim of this paper is to address the global stabilization of (2)
with a control sequence u that remains bounded by some a priori
fixed level ū:

−ū ≤ u ≤ ū (5)

Similarly to the continuous time case [23], [18], [17], the system
is first transformed into an appropriate state representation. On the
contrary, the present proposed transformation is a little more general
since the value of the parameters θi is not a priori fixed.
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Lemma 1: For any family of real numbers Θ = {θi}i=1,··· ,n, let
(AΘ, BΘ) be defined by:

AΘ =

0BBBBB@
1 θ2 θ3 . . . θn

0 1 θ3 . . . θn

...
. . .

. . .
...

0 . . . . . . 1 θn

0 . . . . . . 0 1

1CCCCCA BΘ =

0BBB@
1
1
...
1

1CCCA (6)

Then, for any controllable pair (AΘ, BΘ), there exists a coordinate
change y = PΘx such that the system (2) becomes:

y+ = AΘy + BΘu (7)

Note that AΘ and BΘ are independent from θ1. However, for the
ease of the notation, the family Θ is defined with n members that
will all play a role in theorem 1.

Proof of Lemma 1:1

Let C and CΘ be the controllability matrices of the pairs (A, B) and
(AΘ, BΘ). C and CΘ are known to transform (A, B) and (AΘ, BΘ)
into their canonical form that are identical since the eigenvalues of
A and AΘ are the same. Hence, the transition matrix PΘ is given by
CΘC−1. �

III. MAIN RESULTS

The main result is formulated in the following theorem
Theorem 1: Let Θ := {θi}i=1,··· ,n be a family of n real numbers

such that:

• the pair (AΘ, BΘ) as in (6) is controllable

• for all k ∈ {2, . . . , n}, 0 <
Pk−1

i=1 θi < θk < 1

Let {Mi}i=1,...,n be defined by:8><>:
Mn = 1

Mj = 1 + αj
θj+1

θj

ˆ
Mj+1 −

˛̨
satMj+1

` yj+1
σ

´˛̨˜
,

for j = 1, . . . , n− 1

(8)

where αj ∈ [0, 1] for all j = 1, . . . , n − 1 and y = PΘx with PΘ

as in Lemma 1. Let σ := ū/
Pn

i=1 θi, then, the control law

u = −σ

nX
i=1

θisatMi

“yi

σ

”
(9)

globally asymptotically stabilizes the system (2) at the origin.
Theorem 1 is proved in the appendix A.

The αi’s and the θi’s in the control law expression unifies the
original works [18], [19] with the approaches that aim at improving
the convergence [22], [23]. This enables to tune the degree of adap-
tation in relation with the robustness degradation allowed. Indeed,
improving the convergence is paid with less robustness, in particular
with respect to measurements delay.

αi = 0 makes the level of the saturation independent of the
state of the system. This approach was initially proposed in [18]
for continuous time systems with θi’s restricted to θi < εn−i+1,
0 < ε ≤ 1

2
. The αi’s enable to tune the degree of adaptation in

relation with the robustness degradation allowed. Indeed, improving
the convergence is paid with less robustness, in particular with respect
to measurements delay [21], [23]. However, robustness properties
remain acceptable for most applications when taking αi = 1 that
insure the fastest convergence of the states without introducing more
computational complexity. Note that the convergence speed is known

1The authors thank anonymous reviewer for the suggestion of the proof

to be the main drawback of nested saturation approaches caused
by an under utilization of the available input power in some state
configuration [12]. As proposed in [22], the θi’s can be chosen
using some optimization procedure constrained by the inequalities
{0 <

Pk−1
i=1 θi < θk < 1}k=2,...,n in order to insure the stability.

IV. SIMULATIONS

Figure 1 shows the time evolution of system (1) when the control of
Theorem 1 (taking θi = 0.618n−i+1) is applied in a ZOH framework
(that is applying u constant between the time steps) for the initial
condition x0 = (2 − 2 3)T . Using the continuous time system (1)
for the simulation instead of its discretization shows the behavior of
the system between two time samples and enables the comparison
with several other continuous time control approaches, that are the
nonlinear saturated controls proposed in [17], [18] and [23], the
minimum-time control (that corresponds to the best one can expect),
and the low gain approach of Megretski [12] improved by [24]. The
obtained performance shown in Figure 2 is very close to what can
be expected using optimization with a computational cost similar to
unconstrained control.
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Fig. 1. Control of the third order integrator - Evolution of x(t) and u(t)
with T = 1, x0 = (2 − 2 3)T and θi = 0.618n−i+1
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Fig. 2. Control of the third order integrator - Evolution of ‖x(t)‖ for an
initial condition x0 = (2 − 2 3)T

V. CONCLUSION

In this paper, a bounded nonlinear control law composed of sum
of saturation with possibly state dependent levels is proposed to
stabilize the discrete time chain of integrators. The approach unifies
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the original work on this subject with recent improvements proposed
in the literature in the continuous time case. The range for the
control law parameters is increased. The approach combines a very
low computational cost to competitive performances in terms of
convergence speed.

APPENDIX

Let us consider the system (7) with AΘ and BΘ as in (6) and
apply the coordinate change z := 1

σ
y and v := 1

σ
u. The system (7)

becomes:

z+ = AΘz + BΘv (10)

with

v = −
nX

i=1

θisatMi(zi) (11)

Assume that zn /∈ [−1, 1]. We will prove that zn necessarily joins
[−1, 1] after a finite number of sampling time and remains therein
after. Indeed, defining Vn := z2

n, it follows from (10):

V +
n − Vn = (zn + v)2 − z2

n = v2 + 2znv (12)

Clearly, thanks to the inequality θn >
Pn−1

i=1 θi and the definition
(11) of the control v, znv is necessarily negative. Hence (12) can be
rewritten:

V +
n − Vn = v2 − 2 |znv| (13)

With (11) one has:

|v| ≥ θn |satMn(zn)| −
n−1X
i=1

θi |satMi(zi)|

When zn /∈ [−1, 1], |satMn(zn)| = 1, and therefore it follows
using (8):

|v| ≥ θn −
n−1X
i=1

θi |satMi(zi)|

≥ θn −
n−1X
i=2

θi |satMi(zi)| − θ1M1

≥ θn −
n−1X
i=2

θi |satMi(zi)|

−θ1

„
1 + α1

θ2

θ1
[M2 − |satM2(z2)|]

«
≥ θn − θ1 −

n−1X
i=3

θi |satMi(zi)|

−θ2M2 + θ2(1− α1) [M2 − |satM2(z2)|]

since θ2(1− α1) [M2 − |satM2(z2)|] ≥ 0, it follows

|v| ≥ θn − θ1 −
n−1X
i=3

θi |satMi(zi)| − θ2M2

Carrying on with the same reasoning, it gives:

|v| ≥ θn −
n−1X
i=1

θi > 0 (14)

With the same reasoning, it also follows:

|v| ≤
nX

i=1

θi |satMi(zi)|

≤
nX

i=2

θi |satMi(zi)|+ θ1

„
1 + α1

θ2

θ1
[M2 − |satM2(z2)|]

«
≤ θ1 +

nX
i=3

θi |satMi(zi)|+ θ2M2

...

≤
nX

i=1

θi

Since θn < 1, it gives:

|v| ≤ θn +

n−1X
i=1

θi ≤ 2− θn +

n−1X
i=1

θi

and therefore, since zn /∈ [−1, 1]:

|v| − 2 |zn| ≤ −θn +

n−1X
i=1

θi < 0 (15)

From inequalities (14) and (15), it follows in (13) that:

V +
n − Vn ≤ −

 
θn −

n−1X
i=1

θi

!2

Hence, one can conclude that Vn is strictly decreasing as long as
zn /∈ [−1, 1] and zn necessarily joins [−1, 1] after a finite number
of sampling period. Once zn has joined [−1, 1], one has:

˛̨
z+

n

˛̨
≤ |(1− θn)zn|+

˛̨̨̨
˛
n−1X
i=1

θisatMi(zi)

˛̨̨̨
˛ ≤ 1− θn +

n−1X
i=1

θi < 1

Hence, once zn has joined [−1, 1], it remains therein for all future
steps.

Assume now that zn ∈ [−1, 1] and that zn−1 /∈ [−1, 1]. It is
already known that zn remains in the interval [−1, 1], we shall prove
that zn−1 will also join this interval after a finite number of iterations.
Indeed, defining Vn−1 := z2

n−1, it follows from (10):

V +
n−1 − Vn−1 = (zn−1 + θnzn + v)2 − z2

n−1

=

"
n−1X
i=1

θisatMi(zi)

#2

−2zn−1

n−1X
i=1

θisatMi(zi) (16)

With similar arguments as for equations (14) and (15), one has:˛̨̨̨
˛
n−1X
i=1

θisatMi(zi)

˛̨̨̨
˛ ≥ θn−1 −

n−2X
i=1

θi > 0 (17)

and˛̨̨̨
˛
n−1X
i=1

θisatMi(zi)

˛̨̨̨
˛ ≤ θn−1+

n−2X
i=1

θi ≤ 2 |zn−1|−θn−1+

n−2X
i=1

θi (18)

that gives in (16):

V +
n−1 − Vn−1 ≤ −

 
θn−1 −

n−2X
i=1

θi

!2
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Hence, zn−1 necessarily joins [−1, 1] after a finite number of time
steps and z+

n−1 then fulfills:˛̨
z+

n−1

˛̨
≤ |(1− θn−1)zn−1|+˛̨̨̨

˛
n−2X
i=1

θisatMi(zi)

˛̨̨̨
˛ ≤ 1− θn−1 +

n−2X
i=1

θi < 1

As a result, zn+1 remains in the interval [−1, 1] for all future steps.
Continuing the same reasoning for all the zi’s, one can conclude

that the state z necessarily joins a unitary ball around the origin after
a finite number of iterations. Once in the unitary ball, the control law
(11) is linear and the closed loop system is given by:

z+ =

0BBBBBB@

1− θ1 0 0 · · · 0
−θ1 1− θ2 0 · · · 0

...
. . .

. . .
...

...
. . . 1− θn−1 0

−θ1 · · · −θn−1 1− θn

1CCCCCCA z

that is obviously asymptotically stable since θi < 1 for all i ∈ [1, n].
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