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Abstract— This paper presents an error compensation method
for truncated multiplication. From two n-bit operands, the
operator produces an n-bit product with small error compared
to the 2n-bit exact product. The method is based on a logical
computation followed by a simplification process. The filtering
parameter used in the simplification process helps to control the
trade-off between hardware cost and accuracy. The proposed
truncated multiplication scheme has been synthesized on an
FPGA platform. It gives a better accuracy over area ratio than
previous well-known schemes such as the constant correcting and
variable correcting truncation schemes (CCT and VCT).

I. INTRODUCTION

In many digital signal processing applications, fixed-point
arithmetic is used. In order to avoid word-size growth, op-
erators with n-bit input(s) must return an n-bit result. For
multiplication, the 2n-bit result of an (n x n)-bit product has
to be set back to n-bit by dropping the n» least significant bits
through a reduction scheme (usually truncation or rounding).
This is the purpose of fruncated multipliers.

Truncated multiplication is used mainly for applications
such as finite-impulse response (FIR) filtering and discrete
cosine transform (DCT) operations. It can also be used to
reduce the hardware cost of function evaluation [1].

This paper starts by the notations and presents the main
methods used for truncated multiplication in Section II. In
this section, we introduce a simple classification of truncated
multiplication schemes. The proposed method is presented
in Section III. Our method is based on carry prediction and
selection. Section IV presents the error analysis and the im-
plementations results on FPGAs. It also presents a comparison
with some existing solutions.

II. BACKGROUND
A. Notations

Figure 1 presents the partial product array (PPA) of an
unsigned (4 x 4)-bit multiplication (see [2] for full-width
multiplication algorithms). The partial product z;y; is often
represented as a dot for compact notation (see Fig. 2).

We use fixed-point notation with n fractional bits (i.e.,
0.xyx9x3 . .. xy) for the operands and the result. As shown in
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Fig. 1. Partial product array of a (4 x 4)-bit multiplication.

Figure 2, M P represents the » — 1 most significant columns
of the partial product array. M P corresponds to the n bits
of the final truncated result. w;s; is the weight of the least
significant bit in the truncated result, i.c., w;s = 277, The
least significant part of the PPA is noted L P, and we further
distinguish its & most significant columns as L Py, qj0r, and
the remaining n — &k columns as LF,,;,.-. In some schemes,
the column in LP,,;,,, with the highest weight (the left-most
column in LP,,;,,, in Figure 2) is used. It is referred in the
following as LP%),LOT. We refer to a column in the PPA by its
weight, for example M P extends from columns coly to col,,,
i.e. from the column where the partial products weight 2= to
the column where the partial products weight 277" = wjgp.

Function trunc,,(z) denotes x truncated to the n-th bit, and
round,, (z) stands for 2 rounded to the n-th bit.

A truncated multiplication scheme computes the partial
products in M P, and add an error compensation value (ECV)
computed as a function of LP. The result of a truncated
multiplication is noted

P = trunc,, (MP + f(LP)).

The most obvious way of performing a truncated multipli-
cation is first to compute the exact 2n bits of the result, then
round it to » bits. This full-width result is

Ppw =round,, (MP + LP).

While giving the smallest possible error, which is only due
to the rounding, this method also requires the highest amount
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n k

Fig. 2. The different parts of a partial product array.

of hardware by computing all the partial products.

Since the sum bits in the 2n-bit full-width product are not
all used, one is tempted to remove some low-weight columns
in LP in order to diminish the hardware cost of the multiplier.
However, by doing this, the carries in the low-weight part of
the PPA are lost, thereby introducing an evaluation error.

Two kinds of error occur in truncated multiplication: the
evaluation error £_,,;, which is due to the columns that are
removed in L P, and the truncation error £;,,,,., which occurs
when the computed value of the PPA is reduced to an n-bit
value.

A direct-truncated multiplier computes only the n — 1
most significant columns of the PPA. While minimizing the
required amount of hardware, this approach does not take into
account any of the carries propagating from L P, and leads
to a maximal evaluation error. The result of a direct-truncated
multiplier is

Ppp = trunc,, (MP) :

B. Classification of the Truncated Multiplication Schemes

The truncated multiplication problem is the trade-off be-
tween accuracy and hardware cost. At one side, there is the
full-width multiplier with the best accuracy but the highest
cost. At the other side, there is the direct-truncated multiplier
with the lowest cost but the worst accuracy. Many truncated
multiplication schemes have been proposed with intermediate
trade-offs.

We propose a simple classification based on the complexity
of the ECV computation scheme. We distinguish two main
kinds of solutions: static ECV and dynamic ECV. Static ECV
means that the correction value does not depend on the actual
values of the operands (the value is fixed at design time).
Dynamic ECV uses a correction value computed using the
actual operands (at run-time). Obviously, dynamic ECV is
more accurate but it requires larger circuit area.

In order to refine the classification, we add subgroups
depending on the PPA part impacted by the truncated mul-
tiplication method. We propose the five groups defined below.

o Static ECV with C: no partial product from LP is
computed, the constant C' is based on the LP part.

« Static ECV with LP,,,;,, + C: all partial products from
LPyqj0r are computed, the constant C is based on the
Lk, minor part

o Dynamic ECV with f(LP.qj0-): all partial products
from LP,. . are computed and used to evaluate the
correction due to LP.

e Dynamic ECV with LP,qj0r + f(LPminor): all par-
tial products from LF,, ;.- are computed, some partial
products from LF,, ;. (usually LP%)MT) are used to
evaluate the ECV.

o Dynamic ECV with LP: all partial products in LP are
computed and used to compute the ECV.

Table I presents the classification of the previous methods
and our method accordingly to those groups.

C. Static ECV: C

In [6], the expected value of C = Sum(LP) is estimated
by assuming that each bit of the inputs has a probability 1/2
of being one. The probabilities of each carry and sum bit are
evaluated using the logic properties of the half-adder and full-
adder cells.

The direct-truncated multiplication scheme described previ-
ously also fits in this category with C' = 0, L P is not computed
nor approximated.

D. Static ECV: meajar + C

Truncated multiplication schemes with a static ECV ap-
proximate the error done by leaving out the low-weight
columns L P, ;.- With a constant, which is computed either
by exhaustive search on the input values or as a statistical
evaluation of the expected value of LP,;,.-. In order to
improve the accuracy, the & columns of LPFP,,;, are used
as an extension of M P. The resulting (n + k)-bit value is
then rounded or truncated to » bits.

In [3], every input bit is assumed to have a probability %
of being one. Each partial product therefore has an expected
value %. By adding their expected values over LP,,;,,-, Lim
gets the expected value of the evaluation error:

i,
(i +1) 287 1)

n—

>

Wish

E@val - - 4

k—
=0
The multiplication result is:

P =round, (MP + LPqjor + 10Und) 1 1 (—FEecyal)),

and the parameter & is chosen so as to give to the evaluation
error a variance lower than the variance w?;,,/12 of the
rounding error, which is treated as a random noise.

This method is refined in the constant correction truncated
(CCT) multiplication [7], where the error made by truncating
the (n + k)-bit result to an n-bit value is computed assuming
for each result bit of the multiplication a probability % of being
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Static ECV

Dynamic ECV

C | LPmajo'r + C f(LPmajo'r) | LPmajo'r =+ f(LPmino'r) | LP
direct-truncated | [3] 4] [5] full-width
[6] (7] [8] [9]. [10]

[11] our method

TABLE I
CLASSIFICATION OF THE ECV METHODS USED IN LITERATURE.

one. This gives:

-1
Wish i Wish —k
Erunc:_— 2 =——=(1-2 .
' 5 ;k = )

The multiplication result is:

P = trunc,, (MP + meajar
+r0undn+k (_Eeval - Etrunc)) .

E. Dynamic ECV: f(LPmajor)

In order to further diminish the error, some schemes have
been proposed where, instead of approximating the value of
the partial products in LP,,,;,. by a constant, it is expressed
as a function of the partial products in LF,,,,jor -

[4] gives an ECV for a modified Booth encoded PPA,
where each line of partial products in LF,,;,,, is estimated
as a multiple of the corresponding partial product in LE,,q 0r
(k =1). This results in a data-dependent ECV.

[8] presents another dynamic ECV for a modified Booth
multiplier. For every possible combination of bits in the
recoded operand, a corresponding expected value of LP,inor
is computed by statistic analysis, and added to the exact value
of LP.qj0r (k= 1). This gives for every possible value of the
recoded operand an approximation of the carries propagated
from LP. A carry generation circuit is then computed using
a Karnaugh map. For sizes larger than 12, the exhaustive
simulation is replaced by statistical analysis.

F. Dynamic ECV: LPyqjor + f(LPpminor)

In [5], the ECV for a Baugh-Wooley array multiplier is
computed in three parts. First LF,,q ., is computed and
summed. Then the partial products in LP%),LOT are computed,
some of them are inverted, and all this is summed. The pattern
of inversions applied to the partial products in LP%)MT is
parametrized by an integer ¢). The sum is noted 0 ;. Finally
the expected value of (LPninor — 6o ) is estimated, and
added do LP,,,j0r + tg 5. The best value of ¢ is obtained
by exhaustive search. For n > 16, a statistical analysis can be
performed.

The variable correction truncated (VCT) multiplication [9],
[10] estimates the carries propagated from L P, ;,,, by adding
to the least column of LP,,;. the partial products of
LP%LOT. This is equivalent to multiplying these partial-
products by two. An immediate consequence is that the ECV
is minimal when the multiplication operands are minimal, and

vice versa. The truncation error Ey,.,. 1S the same as the one
defined in the CCT multiplication.

The multiplication result is:

P = tI'uIlCn (MP + meajor + 2Lp(h)

+I‘011Hdn+ k ( —Birune ) )

An hybrid correction truncation (HCT) multiplication [11]
realizes a compromise between the CCT and VCT multipli-
cation by only using a percentage p of the partial products
in LP%MT for the ECV, and adding 1 — p of the evaluation
error F.y 1, defined in the CCT multiplication. The truncation
error Fippne. 1S also the same as in the CCT and VCT
multiplications.

The multiplication result is:

P = trunc, (MP + LPpajor + p- 2LPY)

minor

+round,, ((p = 1) “Beyar — Etrunc))

G. Dynamic ECV: LPpqj0r + LPpinor

Only the full-width multiplier fits into this category: this is
the case where all of LP is computed.

III. PROPOSED METHOD

In this work, a new data-dependent truncated multiplication
scheme is introduced. It is named prediction-selection correct-
ing truncated (PSCT) multiplication. It is proposed for direct
non-recoded unsigned array multiplication.

In the CCT, VCT and HCT multiplication schemes, the
carriecs propagated from LPF,,;,, are estimated, cither by
statistical analysis or with the help of the partial products in
column LP%LOT. It is then difficult to know what kind of
error is done, and what additional terms might be introduced
in order to improve accuracy.

Our approach tries to address this issue by computing in
a first time the exact values of every carry generated in
LP,nor, and then discarding the less probable ones. This
scheme simplifies the computation of the ECV and lower the
associated hardware cost, while keeping track of the error
made by removing those products.

A. Carry Prediction

Consider a complete PPA as the one used for the full-width
multiplication in Figure 2. Since the n — k least significant
bits of the result are discarded, the corresponding sum bits
of LP,inor do not have to be computed. But if LP,,;,r 1S
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Fig. 3. The four steps of carry prediction for n = 4 and k£ = 1.

not implemented at all, all the carries generated there are lost,
leading to the evaluation error described in Eq. (1).

In order to keep the evaluation error low while removing
unnecessary hardware, only the logic formulas of the carries
generated in L P,,,;, ., have to actually be implemented. These
expressions are obtained by replacing the full-adder and half-
adder cells in L P,,;,,0 by their respective logic definitions:

carty g4 (a, b, ¢) = abV ac V be
sumpa(a,b,c) =a®bdc
carty yy 4 (a,b) = ab

sumg a(a,b) =a®b

where ab means “a and b7, aV b is “a or b” and a ¢ b stands
for “a exclusive-or b”.

It is possible to express the logic formulas of the carries
through L P, ;.. Once implemented, the carries generated in
LP,inor are known exactly.

Figure 3 shows the carry prediction steps for a 4-bit multi-
plication with one column in LF,, 4., (a).

o (b) The first step computes the carries generated in the
least significant column of LP,,;,,,, cols. Since there is
only one partial product there, no carry can be generated.

o (¢) The carry generated in col; is added to colg. This
carry is expressed logically as zoz1yoy:.

o (d) The first carry in colg,
Az, y) = carty p 4 (Toy2, T1Y1, T2Y0) is similarly
added to col;, and the corresponding sum bit
B(z,y) = sumpa(zoy2, 71y1,v2y0)  replaces  the

three partial products in cols.

e (¢) Finally 2oz yoy: and B(z,y) are removed and their
carty C(x,y) is added to cols, in LPpqj 0r-

We note LP,, ., and LP[,. . the parts of the PPA
corresponding t0 LP,,q 0, and LE,,;,,, obtained at the end
of the prediction process.

All the partial products left in L P/ . . are sum bits, which
do not need to be computed, since every carry originally
generated in LP,,;,,, 15 now computed in LP{ijT.

After the carry prediction process, LP/ . . contains only
one partial product in each column. Assuming that each result
bit of the multiplication has a probability % of being one,
the expected value of the evaluation error F.,,; is lower than

2% Loy, so that round,, 4 (—Eoyqe) = 0.

We can replace round,,  x(LP) by LFP}, ;...
Pps = round,, (MP + LP},,;,,)
= round,, (MP —+ roundn+k (meajgr G meinm’))

= Prw

At this point, the truncated operator we obtain gives the
same result as the full-width multiplication.

B. Carry Selection

So far, the evaluation error is lower than 2 % 1w, but
the partial products in LF,, ;. become very complicated
as n grows, and a large hardware cost may result. In order
to reduce the area requirements of the truncated multiplier,
some carries have to be simplified. For that purpose, the logic
formulas are written under their simplified disjunctive normal
form, and a “filter” is applied on the last column in L, ..,
This consists in removing any conjunction which number of
variables exceeds a given threshold ¢. Assuming that the input
bits have a probability % of being one, a conjunction of ¢ + 1
variables will have a probability 27*~! of being one. Applying
the filter, one makes an error of about m x 2%t~ 1, ., where
m is the number of conjunctions that were removed in the
process. The evaluation error F.,,; is updated in accordance

to this value. The multiplication result is:
Pps = round,, (M P + L% e round,, + k(— Eevar)) (2)

Let us consider the previous example (Figure 3) of an n-bit
truncated multiplication with » = 4 and £ = 1. The only
column in LP,,,;,, contains zsyo, - ,voys, A(z,y) and
Clz,y). where C(z,y) = zor122yoy1y2 V To21T2yoy172 N
its disjunctive normal form.

If no threshold is imposed, the truncated multiplication is
equivalent to the ideal rounded multiplication.

For a value of the threshold ¢{ = 4, both conjunctions in
C(z,y) are removed, and the evaluation error is increased by
the probability of C(z, y) being one.

If the restriction on ¢ is set down to 2, the three terms
constituting A(z, y) will also disappear. The evaluation error is
further increased by the probability of A(z,y) being one, and
the truncated multiplier is now equivalent to a CCT multiplier.
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Multiplication scheme  |] Cavg o e
Direct-truncated 7.66e-1  7.66e-1  6.19¢-1  3.06
Ideal rounded 6.25¢-2  2.34e-1 1.68e-1  5.00e-1
PSCTk=1,t=6 6.25¢-2  2.34e-1  1.68e-1  5.00e-1
PSCTk=1,t=14 4.69¢-2  236e-1 1.71e-1  5.62e-1
PSCTk=1,t=2 3.12¢-2  2.69e-1 2.15¢-1  1.06
CCTk=1 3.12¢-2  2.69e-1 2.15¢-1  1.06
VCT k=1 3.44e-1  3.59e-1 2.8le-1  9.37e-1
TABLE II

ERROR ANALYSIS OF SEVERAL TRUNCATED MULTIPLICATION SCHEMES
FORn =4

IV. RESULTS
A. Mathematical Error

For each studied multiplier scheme, the absolute bias |3],
average absolute error €,,4, standard deviation ¢ and absolute
maximum error &,,,, are given in output 1sb w;s, = 277, They
are computed exhaustively for » < 8, and using an extensive
random sampling for larger values of n.

The mathematical data for the previous example is given
in Table II. We can see that, by acting on the value of the
threshold ¢, we realize a compromise between the full-width
multiplier and the CCT multiplier.

B. Synthesis

We studied the implementation of truncated multiplica-
tion schemes on FPGAs. The CAD tool used was Xilinx
ISES8.1i and the target was an FPGA of the Spartan 3 family
(X(C38200) with a medium speedgrade (-5). Synthesis and
place-and-route were arca-oriented with a standard effort . The
multipliers were implemented using LUTs (not hardware block
multipliers).

The Xilinx devices are optimized for 4 up to 8-bit input
functions. This allows us to perform an efficient implementa-
tion of PSCT multipliers with a threshold up to ¢ = 8. We
implemented the PSCT multipliers for ¢ running from 3 to
8. A PSCT multiplier where ¢ = 2 is equivalent to a CCT
multiplier with the same value of the parameter k.

C. Comparisons

The comparisons are lead with some well known truncation
schemes for direct multiplication, that is the CCT [7] and
VCT [9] multiplications. The full-width multiplier and direct-
truncated multiplier are used as a reference.

The comparisons were done for » = 8, 12 and 16. Our
method is not yet fit for higher values of n, because of the
fast growing computational cost of the prediction process.

Figure 4 shows how the different schemes behave for n = 8,
12 and 16 from to top bottom. The X-axis gives the average
absolute error, which is our principal accuracy criterion. The
Y-axis gives the hardware cost relatively to the full-width
multiplier. The aim is to perform a good accuracy while
minimizing the hardware cost. This corresponds to the lower
left part of each graph.

For n = 8, the CCT is outperformed by the PSCT for ¢ = 3,
4 and 5. One can compute with the same average accuracy as

Relative size vs. average error for an 8-bit precision
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Fig. 4. Relative size vs. average error for truncated multiplication schemes.

the CCT with smaller PSCT multipliers. Similarly, for n = 12,
the PSCT for ¢ = 3 require less hardware to provide the same
average accuracy as the CCT. For n» = 16, the two schemes
are equivalent.

Tables III, IV and V show accuracy results for the trun-
cated multiplication schemes. If one wants to get an average
accuracy as small as possible, that is get close to 0.25, the
PSCT multiplication has a lower hardware cost than the other
truncated multiplication methods.
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Multiplication scheme €444 o Brnam area  delay
Ideal rounded 2.49¢-1 1.46e-1  5.00e-1 48 10.3
Direct-truncated 1.75 9.76e-1  7.00 32 89
CCTk=4 2.52e-1  1.51e-1  5.66e-1 47 10.8
VCT k=14 2.51e-1  1.50e-1  5.66e-1 46 11.4
PSCTk=4,t=3 2.50e-1  1.48e-1 6.29e-1 45 10.2
PSCTk=4,t=5 2.49e-1  1.47e-1  5.5le-1 46 11.7
TABLE III

ACCURACY RESULTS FOR 8-BIT TRUNCATED MULTIPLICATION SCHEMES

Multiplication scheme €444 o e area  delay
Ideal rounded 2.49¢-1 1.45¢-1  5.00e-1 93 12.7
Direct-truncated 2.73 1.24 9.00 53 11.5
CCTk=5 2.51e-1  1.48-1 57le-1 85 12.3
VCT k=4 2.52e-1  1.49e-1  6.03e-1 93 14.6
PSCTk=5,¢t=23 2.51e-1  1.48e-1 6.56e-1 84 12.3
PSCTk=5t=4 2.50e-1  1.46e-1 594e-1 88 14.3
PSCTk=5,t=5 2.49e-1  1.46e-1 578e-1 91 14.3
TABLE IV

ACCURACY RESULTS FOR 12-BIT TRUNCATED MULTIPLICATION SCHEMES

Multiplication scheme €444 o B i area  delay
Ideal rounded 2.49¢-1 1.45¢-1  5.00e-1 162 15.2
Direct-truncated 3.76 1.48 12.5 95 13.2
CCTk=6 2.51e-1  1.47e-1  5.62e-1 140 15.0
VCT k=14 2.52e-1  1.50e-1  6.36e-1 149 15.3
VCT k=5 2.50e-1  1.46e-1  5.5%-1 153 15.3
PSCTk=5,t=14 2.52e-1  1.50e-1 6.4le-1 140 16.0
PSCTk=5,t=6 2.51e-1  1.49e-1  6.26e-1 142 18.2
TABLE V

ACCURACY RESULTS FOR 16-BIT TRUNCATED MULTIPLICATION SCHEMES

CONCLUSION

We presented a new truncated multiplication scheme. The
method first computes the logic expression of the carries
propagated from L P, , then performs simplifications while
keeping control over the introduced error. This scheme
achieves an improvement both for accuracy and hardware
requirements over previous schemes. The proposed method
has been implemented on FPGAs, it shows an area reduction
for comparable accuracy on 8 and 12-bit multipliers.

In a near future we plan to improve the speed of our method
in order to deal with larger multipliers. We also plan to study
the effects of different groupings of the partial products during
the carry prediction phase, that should lead to accuracy and
hardware cost improvements.
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