
HAL Id: lirmm-00153370
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00153370

Submitted on 1 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Reciprocation using Degree-3 Polynomials but
Only 1 Complete Multiplication

Arnaud Tisserand

To cite this version:
Arnaud Tisserand. Hardware Reciprocation using Degree-3 Polynomials but Only 1 Complete Mul-
tiplication. MWCAS/NEWCAS’07: 50th Internationall Midwest Symposium on Circuits & Sys-
tems/5th International Northeast Workshop on Circuits & Systems, Aug 2007, Montréal, Canada,
pp.1-4, �10.1109/MWSCAS.2007.4488593�. �lirmm-00153370�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00153370
https://hal.archives-ouvertes.fr

301

1-4244-1176-9/07/$25.00 ©2007 IEEE.

Hardware Reciprocation using Degree-3
Polynomials but Only 1 Complete Multiplication

Arnaud Tisserand
ARITH Group, LIRMM, CNRS–Univ. Montpellier 2

161 rue Ada. F-34392 Montpellier, FRANCE
arnaud.tisserand@lirmm.fr

Abstract— This paper presents a dedicated operator for the
reciprocal evaluation in hardware. It uses a degree-3 polynomial
approximation that only requires one complete multiplication and
a small number of additions or subtractions. The polynomial
approximation is determined using a specific method for the
choice of the coefficients and the splitting of the input interval.
This leads to small and fast FPGA implementations.

I. INTRODUCTION

Basic operations such as addition/subtraction or multipli-
cation have always been implemented as high-performance
dedicated operators or units in digital circuits [1]. Some
recent applications, e.g. frequency demodulation, require fast
evaluation of more complex operations or functions such as
reciprocal (1/x). Function approximation is often performed
using polynomials in software as well as in hardware [2].
For instance, elementary functions (sine, cosine, exponential,
logarithm, arc-tangent...) are often evaluated using polynomi-
als [2]. Polynomial approximation to the reciprocal is often
proposed for small accuracy [3]. Other algebraic functions,
such as square root or square root reciprocal can be efficiently
approximated using polynomials.

In hardware implementations, the size of the multipliers
is a major concern. Several solutions have been investigated
to limit their size [4]. For polynomial approximations, this
constraint limits the degree of the polynomial. This paper
presents an operator dedicated to the reciprocal evaluation
using low-degree polynomial approximations with hardware
reduced cost and small delay. A specific method for the
selection of the polynomial coefficients allows to significantly
reduce the quantity of computations for the approximation
without a loss in accuracy.

This paper is organized as follows. Notations and back-
ground on function approximation are presented in Section II.
Standard polynomial evaluation schemes are presented in
Section III. Section IV presents the selection method for the
polynomial coefficients. The implementation of the operator
is presented in Section V. Section VI concludes this paper.

II. NOTATIONS AND BACKGROUND

The function to be evaluated is the reciprocal function
f(x) = 1/x for the argument x in the interval [1, 2]. This input
interval corresponds to the range of a floating-point mantissa.
Several range reduction schemes can be used to reduce to this
interval. A complete summary of range reductions schemes

may be found in [2]. The argument, the result and some in-
termediate values are represented using the standard unsigned
binary fixed-point number system.

The degree-d minimax polynomial approximation to a func-
tion f on [a, b] is the polynomial P ∗ that satisfies ||f −
P ∗||∞ = minP∈Pd

||f − P ||∞, where Pd is the set of
polynomials with real coefficients and degree at most d, and
the approximation error is ||f − P ||∞ = maxa≤x≤b |f(x) −
P (x)|. The numapprox package in the Maple computer
algebra system [5] provides the minimax function which
numerically estimates polynomial approximations and the
infnorm function which numerically estimates ||f −P ∗||∞.
The polynomial used for the approximation here will be the
degree-3 polynomial P (x) =

∑3
i=0 pix

i.
In the following, errors are expressed directly or as equiv-

alent accuracy. The accuracy is the number of correct or
significant bits. The relation between the error ε and the
accuracy µ is µ = − log2 |ε|. For instance, the error ε =
0.0000107 corresponds to an accuracy of µ = 16.5 bits.

The minimax polynomial for 1/x with x ∈ [1, 2] is:

2.871320 − 3.029870x + 1.392785x2 − 0.235498x3,

and it leads to a theoretical accuracy of 9.62 bits. The ranges
of the coefficients require a different number of integer bits
in the fixed-point representation. In order to avoid this scaling
problem, we now consider f(x) = 1/(1 + x) with x ∈ [0, 1].
Then the minimax polynomial is:

0.998737 + −0.950793x + 0.686291x2 − 0.235498x3.

The theoretical approximation error is the same since the
change of variable x = 1 + x does not modify the minimax
polynomial quality. In practice one evaluate 1/(1 + x) for
x ∈ [0, 1], this leads to more efficient operators.

III. POLYNOMIAL EVALUATION SCHEMES

The evaluation of P (x) can be done using different evalu-
ation schemes [2]. The direct, Horner and Estrin schemes are
commonly used and they are summarized in Table I.

The direct scheme is not used due to its high operation
cost and smaller accuracy (see [6] for accuracy analysis).
The Horner scheme has the smallest operation cost but it
is a sequential structure while the Estrin scheme allows
some internal parallelism. The Horner scheme is implemented
using basic blocks called fused multiply and adds (FMAs).

302

scheme computations # ± # ×
direct p0 + p1x + p2x2 + p3x3 3 5

Horner p0 + (p1 + (p2 + p3x)x)x 3 3

Estrin p0 + p1x + (p2 + p3x)x2 3 4

TABLE I

STANDARD EVALUATION SCHEMES FOR DEGREE-3 POLYNOMIALS

A FMA computes uv + w with more or less the same cost
(delay and circuit area) than a single multiplication uv. The
Horner scheme leads to a very efficient evaluation method for
software implementations on processors providing FMA units
but without internal parallelism (such as in floating-point units
of several modern processors). For software implementation
on a modern super-scalar or VLIW processor, the Estrin
scheme leads to fast solutions due to parallelism. But for
hardware implementation its higher operator cost (large area of
multipliers), reduces its interest. Table II presents a scheduling
example for the evaluation of a degree-3 polynomial using
Horner and Estrin schemes assuming additions and multipli-
cations require one cycle and two units are available for the
Estrin scheme. This table clearly shows that Estrin scheme
leads to faster polynomial evaluation even with a higher
operation count than the Horner scheme.

This paper shows how to choose coefficients p1 and p3 such
that multiplications p1x and p3x reduce to a small number of
additions or subtractions in the case of the reciprocal evaluated
using the Estrin scheme.

IV. COEFFICIENTS SELECTION METHOD

Table III presents the accuracy (number of significant bits)
of minimax approximation polynomials for various degrees
and the reciprocal function 1/(1 + x) on [0, 1].

degree 1 2 3 4 5

accuracy [bits] 4.54 7.08 9.62 12.17 14.71

TABLE III

ACCURACY OF MINIMAX POLYNOMIALS FOR 1/(1 + x) ON [0, 1]

The best degree-3 polynomial approximation to 1/(1 + x)
on [0, 1] only leads to 9.62 bits of accuracy. In order to
increase the accuracy without increasing the degree of the
polynomial, we split the input interval into two sub-intervals
and use one polynomial on each sub-interval. In order to
simplify the sub-interval selection the decomposition is often
[0, 1] −→ ([0, 1/2], [1/2, 1]). This decomposition leads to the
accuracies and polynomials reported below:

• Sub-interval [0, 1/2]: 12.50 bits of accuracy with
0.999828178 − 0.987732997x + 0.859842408x2 −
0.435419491x3

• Sub-interval [1/2, 1]: 14.98 bits of accuracy with
0.969776265 − 0.797738933x + 0.437900384x2 −
0.109968557x3

The accuracy on the 2 sub-intervals is not balanced and
most of the coefficients pi are not very close to powers of 2.

In order to find values p1 and p3 closer to powers of two and
to balance the accuracy on both sub-intervals we use another
decomposition of the input interval [0, 1]. We use the sub-
intervals IL = [0,m] and IH = [m, 1]. This requires a full-
width comparison for the sub-interval selection (implemented
using a subtracter).

The search for the value m is performed using an manual
exploration starting from m = 1/2. The value m = 0.404
leads to the accuracies and the polynomials reported below:

• Sub-interval IL: 13.48 bits of accuracy with
PL(x) = 0.999912796−0.992439460x+(0.895560967−
0.500060549x)x2

• Sub-interval IH : 13.74 bits of accuracy with
PH(x) = 0.975990948 − 0.823384105x +
(0.472178883 − 0.124858604x)x2

The search for the value m is performed by hand using
several tests based on the minimax function in Maple. This
value m = 0.404 leads to good results in practice. In the
future, we plan to try to formalize this problem in order to
provide an algorithm and an optimal value.

Using the decomposition ([0, 0.404], [0.404, 1]), the coeffi-
cients p3 are very close to powers of two (namely −1/2 for IL

and −1/8 for IH). Then the multiplication p3x is replaced by
the term −2−1x for IL and −2−3x for IH . So the evaluation
cost for sub-polynomial S(x) = p2 + p3x reduces to only
one subtraction. According to the Estrin evaluation scheme
presented in Section III, S(x) must be multiplied by x2. For
this operation we will use a specific squaring method recalled
in Section V-A.

Now we have to replace the products p1 × x on each
sub-interval by a small number of additions/subtractions. We
use quantification of the coefficient p1. The quantification
results are described in Table IV. Several numbers of non-
zero bits are tested and the corresponding accuracies (total
approximation error with quantified p1) are reported. This
shows that the product p1 × x can be replaced by up to 5
additions/subtractions. The additions/subtractions involved in
this computations are not on the critical path.

The numerical quality of the approximation to a function
using a polynomial deals with two components: the approxi-
mation error and the round-off error. The approximation error
measures the distance between the approximated mathematical
function and the function used for the approximation, here the
polynomial p. Here the approximation error is provided by the
minimax Maple function. The approximation error is also
called the method error. One can deal with the approximation
error by using more accurate approximations. This mainly
corresponds to use higher degree minimax polynomials. In
practice bounding the approximation error is not really difficult
using tools such as the numapprox package in Maple.

The round-off error or rounding error due to the discrete
nature of the intermediate and final values adds up to the
approximation error. It is the difference between the calculated
approximation of a number and its exact mathematical value.

303

Horner Estrin

Cycle unit # ± # × unit1 unit2 # ± # ×
1 p3 ⊗ x 0 1 x ⊗ x p3 ⊗ x 0 2

2 p2 ⊕ p3x 1 0 p1 ⊗ x p2 ⊕ p3x 1 1

3 (p2 + p3x) ⊗ x 0 1 p0 ⊕ p1x (p2 + p3x) ⊗ x2 1 1

4 p1 ⊕ (p2 + p3x)x 1 0 p0 + p1x ⊕ (p2 + p3x)x2 — 1 0

5
(
p1 + (p2 + p3x)x

) ⊗ x 0 1 — — 0 0

6 p0 ⊕ (
p1 + (p2 + p3x)x

)
x 1 0 — — 0 0

total 3 3 total 3 4

TABLE II

SCHEDULING OF HORNER AND ESTRIN SCHEMES FOR DEGREE-3 POLYNOMIALS (⊕ AND ⊗ OPERATIONS ARE COMPUTED AT CURRENT CYCLE)

interval p1 accuracy [bits]

IL

1 8.35

1 − 2−7 11.91

1 − 2−7 + 2−12 12.47

1 − 2−7 + 2−12 + 2−17 12.48

IH

1 2.49

1 − 2−3 4.27

1 − 2−3 − 2−4 6.55

1 − 2−3 − 2−4 + 2−7 8.44

1 − 2−3 − 2−4 + 2−7 + 2−9 9.97

1 − 2−3 − 2−4 + 2−7 + 2−9 + 2−10 12.95

TABLE IV

ACCURACY FOR SEVERAL QUANTIFICATIONS OF COEFFICIENT p1

This error is small for one single operation, i.e. a fraction
of the weight of the least significant bit (LSB). But during
a sequence of operations, these small errors may accumulate
themselves and significantly degrade the accuracy of the final
result. Bounding the round-off error is a very complex task.
In digital-signal processing some methods have been proposed
to model round-off errors using noise (see [7]).

The GAPPA software, presented in [8], allows to evaluate
and to produce a proof of mathematical properties on numer-
ical codes. The main useful characteristic of GAPPA used in
this word is its capability to tightly bound round-off errors
and prove these bounds are below some threshold. GAPPA can
generate a file for the Coq proof assistant (see [9]).

We use GAPPA to get the total accuracy (including approx-
imation and round-off errors) of our operator for each sub-
interval (IL and IH). These accuracy results for our operator
are reported in Table V.

V. OPERATOR IMPLEMENTATION

The operator is decomposed into several parts. Its overall
architecture is presented on Figure 1. The critical path is
indicated using a dotted line on this figure. As in FPGA
additions and subtractions are performed using dedicated logic

interval IL = [0, 0.404] IH = [0.404, 1]

accuracy [bits] 11.35 11.58

TABLE V

ACCURACY RESULTS FOR OUR OPERATOR

using the fast carry lines, the critical path is the delay of the
squarer plus the delay of the multiplier plus finally the delay
of the last adder.

x

m

cmp

sqr

constant

right shift

p(x)

sel

sel

sel sel

Fig. 1. Reciprocal operator decomposition

A. Square

The x2 operation is implemented using an optimized method
that can be found in computer arithmetic books such as [1].
The partial products xixj for all i and j in {0, 1, . . . , n − 1}
are reduced using several identities:

• the term xixi reduces to xi;
• the sum of the two terms xixj + xjxi in a given column

can be replaced by 2xixj in the next column (of higher
weight);

• another simplification is possible using xixi−1 + xi =
2xixi−1 + xix̄i−1, i.e. two partial products in a column

304

are replaced a by one partial product in the same column
and another one in the next column (of higher weight).

Based on these simplifications, a dedicated square operator
is significantly faster and smaller than a standard multiplier.

B. Sub-Polynomial S(x) = p2 + p3x

Due to the very simple value of p3 = −2−1 or p3 = −2−3,
the sub-polynomial S(x) only requires one subtraction.

C. Complete Multiplication S(x) × x2

The only complete or full-with multiplication is the one for
the product of S(x) by x2. A large part of the operator circuit
is devoted to this operation.

D. Final Multi-operand Addition

Due to the quantification of the coefficient p1 using several
signed bits, several terms must be added in a final addition. For
each multi-operand addition/subtraction the 1 is not considered
as an input because it only impacts the very most significant
bits.

E. FPGA Implementation

The operator presented in this work has been implemented
on a Spartan3 FPGA (xc3s250e-ft256-4) using ISE CAD
tools from Xilinx for synthesis and place/route (average effort
for each step). The implementation results are reported in
Table VI.

synthesis effort area speed

area [slices] 96 103

delay [ns] 17.7 15.2

TABLE VI

IMPLEMENTATION RESULTS ON SPARTAN3 FPGA

F. Comparison with Previous Works

Several polynomial approximations to the reciprocal have
been proposed such as [1, page 373] or [10]. But these
works do not include implementation results. Our results have
been compared to the results reported in [3] for the same
accuracy (11 bits) on the same FPGA device and using the
same implementation constraints (synthesis effort and place
and route effort).

The operator proposed in [3] leads to an area of 178 slices
and a delay of 11.9 ns. The operator presented here is 40%
smaller but 50% slower. This is due to the fact that the operator
presented in [3] is only based on a table and an addition (it
uses a degree-1 polynomial). The speed of our operator can
be significantly increased using intermediate registers.

VI. CONCLUSION

We have presented a dedicated operator for reciprocation in
hardware. Using some specific non-standard decomposition of
the domain and quantification of some polynomial coefficients
it leads to small and fast hardware implementations. It uses
a degree-3 polynomial approximation that only requires one
complete multiplication and a small number of additions or
subtractions.

Future prospects include the design of pipelined versions
of our operator to reach smaller delay and higher throughput.
We also plan to study the impact of a larger number of sub-
intervals on the coefficients and the accuracy. Finally, we also
plan to try to extend this method to other functions.

REFERENCES

[1] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[2] J.-M. Muller, Elementary Functions: Algorithms and Implementation,
2nd ed. Birkhäuser, 2006.

[3] M. D. Ercegovac, J.-M. Muller, and A. Tisserand, “Simple seed ar-
chitectures for reciprocal and square root reciprocal,” in Proc. 39th
Asilomar Conference on Signals, Systems and Computers. Pacific
Grove, California, U.S.A.: IEEE, Oct. 2005, pp. 1167–1171.

[4] A. Tisserand, “High-performance hardware operators for polynomial
evaluation,” Int. J. High Performance Systems Architecture, vol. 1, no. 1,
pp. 14–23, Mar. 2007.

[5] Maplesoft, “The maple computer algebra.”
[6] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.

SIAM, 2002.
[7] D. Ménard and O. Sentieys, “Automatic evaluation of the accuracy of

fixed-point algorithms,” in Proc. Design, Automation and Test in Europe
(DATE), Mar. 2002, pp. 529–537.

[8] G. Melquiond, “GAPPA: génération automatique de preuves de
propriétés arithmétiques,” http://lipforge.ens-lyon.fr/www/gappa/, 2006,
LIP, ENS-Lyon.

[9] The Coq Development Team, “The Coq proof assistant,”
http://coq.inria.fr/, 2004, INRIA.

[10] M. Ito, N. Takagi, and S. Yajima, “Efficient initial approximation for
multiplicative division and square root by a multiplication with operand
modification,” IEEE Transactions on Computers, vol. 46, no. 4, pp. 495–
498, Apr. 1997.

