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Visually mining relational data 
 

Yves Chiricota 1, Guy Melançon 2 
 
 
Abstract – Mining relational data often boils down to computing clusters, that is finding sub-
communities of data elements forming cohesive sub-units, while being well separated from one 
another. The clusters themselves are sometimes termed “communities” and the way clusters relate 
to one another is often referred to as a “community structure”. 
Methods for identifying communities or subgroups in network data is the focus of intense research 
is different scientific communities and for different purposes. The present paper focuses on two 
novel algorithms producing multilevel community structures from raw network data. The two 
algorithms exploit an edge metric extending Watts's clustering coefficient to edges of a graph. The 
full benefit of the method comes from the multilevel nature of the community structure as it 
facilitates the visual interaction and navigation of the network by zooming in and out of 
components at any level. This multilevel navigation proves to be useful when visually exploring a 
network in search for structural patterns. 
 
Keywords: Network analysis, Visual Interaction, Graph Mining 
 

 

I. Introduction 
Visual interaction is a powerful approach to assist the 

analysis and exploration of data. Exploration is actually 
a complex process since the user often needs to “see” 
the data before a strategy can be defined for tackling the 
problem to solve [1]. Visual assessment of cluster 
tendency [2] and interactive nearest neighbor search [3] 
are typical examples where visualization and interaction 
actively assist the data analyst. When exploring the 
data, a particular view might provide ideas as to what 
type of patterns can be searched and understood. 
Visualization does not only assist the analysis but 
actively contributes to its progress. As a particular case, 
the visual inspection of a network supports the analysis 
of its community structure and helps to answer 
questions concerning prominent actors or subgroups. 
Once a subgroup has been identified, and when the 
subgroup moreover appears as such within the 
visualization, it can be zoomed in to allow for a more 
detailed inspection of its own dynamics. 

Network analysis and visualization has been the 
focus of fertile research for many years [4] [5] and 
many aspects contribute to make a graph visualization 
more effective at helping the exploration of its 
underlying data. Graph Drawing1 is an active research 
area focusing on the design of layout procedures, where 
algorithms are mainly targeted at producing aesthetic 
drawings while being scalable [6] [7]. However, laying 
out a graph only forms one of a series of phases in the 
visualization process (see Fig. 1 below). Interaction also 
plays an essential role giving the user the ability to 
discover knowledge from the data representation. When 
 

1 See the URL www.graphdrawing.org, for instance. 

it comes to interacting with very large graphs, the 
interaction is subsumed to the possibility of dealing 
with the entirety of the data while being able to build 
and maintain a coherent mental map. That is what 
scalability is mainly concerned with, although it is also 
linked to more algorithmic and technical questions. 
When dealing with relational data, scalability can be 
tackled through graph clustering, allowing to present 
the user with an abstract and more readable view of the 
data, helping her/him to navigate the whole information 
space while having a reduced number of graphical items 
to deal with at a time. Graph clustering is also 
sometimes termed "community identification", an 
expression originally coined by Newman, stemming 
from the analysis of social network [8] [9] and 
emphasizing the fact that an algorithm should be able to 
find clusters of elements sharing common properties. 
Graph clustering, or community identification based on 
the topology of the network, is a major question we will 
be looking at in this paper. Categories into which graph 
clustering techniques can be put have been surveyed by 
several authors [10] [11] [12] [13] [14] and from 
different points of view: VLSI design, data mining or 
graph theory, e.g. 

Figure 1 gives a high-level view of the processes 
involved in visualization. The diagram describes visual 
knowledge discovery as the result of pipelined data 
transformation stages. In a sense, visualization 
embraces the whole pipeline although the “viewable” 
elements are only output during the later stages. Indeed, 
the usability of the visualization depends on its ability 
to “translate” the properties of the data, thus initially 
requiring strong data analysis. Clustering appears here 
as a filtering and enrichment step relying on data 
analysis and carrying onto the visualization mapping. It 
comes as a fruitful strategy to answer questions or tasks 
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concerned with connectivity, as opposed to attribute-
based tasks or lower-level topology-based task such as 
finding nodes with higher degrees. Indeed, clusters 
group elements that are “close” to one another - 
clustering primarily focuses on the notion of proximity. 
Once clusters have been defined, additional knowledge 
can be inferred by looking at how they connect with one 
another. 

 
Fig. 1. Visualization as a high-level dataflow pipeline. The diagram is 
adapted from [15]; Chi's data state reference model [25] offers another 
point of view on the visualization process; see also van Wijk [26] for a 
“non-linear” version of the pipeline (but rather described as a dynamic 

system) targeted at usability taking user effort and acquired 
knowledge into account. 

The different stages in Figure 1 must not be seen as 
isolated closed boxes, but rather as open processes 
acting on each other, particularly through user 
interaction (depicted by the return arrows). The visual 
inspection of the data might, for instance, help to 
evaluate the number q of “natural” clusters there might 
be, bringing the user back to the data analysis stage 
[15]. Metrics computed from different properties of the 
data (during the data analysis phase) can be used to map 
data elements to graphical cues, with the hope that 
visual patterns will emerge and ideally reveal structure. 
Typically, the user will want to filter out elements based 
on their metric value to look at the backbone structure 
of the network [16]. This filtering operation requires 
however some knowledge on the distribution of the 
metric within the data set under study and thus relies on 
the data analysis stage - in order to filter out the right 
proportion of data elements. 

The approach we propose to study in this paper 
exploits metrics as a central ingredient to graph 
clustering. It aims at producing a clustering of a 
network in a reasonably short time in order to facilitate 
its visual and interactive inspection. It combines metric 
computation together with filtering, based on a 
canonical interpretation of a metric according to which 
the value of a graph element corroborates its relative 
importance in the network. This idea has revealed to be 
fertile in numerous situations [17] [16] [18] [19] [20]. 
Botafogo [21] had applied a similar approach to 
collections of hypertext documents. Henry [22] reported 
simple filtering techniques based on node attributes. 
The work by Newman and Girvan [23] [8] [9] also 
enters this perspective (see Sections II.2 and II.3). 

We cluster graphs by filtering edges based on their 
strength metric, as originally introduced in [24] and 
[18]. In a sense, the strength of an edge can be seen as 
dual to its centrality - as defined by Newman [23] [8] 
(see Section II.2). After some edges have been deleted, 
the connected components appear as candidate clusters. 

We shall look at two different filtering strategies for 
defining communities or clusters. The first strategy 
(“MinDisconnect”, see Section III.1) performs a fine-

grained filtering of edges in a manner similar to Girvan 
and Newman [8, Section II.B]. Weaker edges are 
filtered out first, almost one by one, leading to a 
detailed hierarchical decomposition of the whole 
network. The second method (“MQ”, see Section IV) 
applies a threshold on edge strength, simultaneously 
filtering out a whole subset of weak edges. The 
threshold is selected in order to provide a “best 
possible” clustering with respect to a quality measure 
first introduced in [27, Section 3.3] in the context of 
reverse software engineering. This second method can 
be iterated on each cluster to obtain a hierarchical 
clustering of the original graph. As pointed out earlier, 
the full benefit of our approach comes not only from a 
simpler view of the graph, but also from the possibility 
to interactively navigate and explore a whole hierarchy 
of subgraphs. 

II. Metric-based clustering 

II.1. Clustering vs Drawing 

Visualizing smaller graphs does not mandatorily 
require clustering. Even when dealing with average size 
graphs, drawing algorithms may sometimes be efficient 
at producing readable and informative views of graphs. 
Many algorithms however require graphs to share 
special properties, such as being trees or being planar 
(no edge crossing), having no directed cycles, etc. 
When a graph does not possess any special property, we 
are essentially left with one type of drawing algorithms, 
namely the force-directed layouts [6, Chap. 10] 
[7, Chap. 4]. 

Figure 2 (left) shows the layout of a graph using such 
a drawing algorithm, confirming our assertion on the 
readability of the layout for smaller graphs. 
Unfortunately, these techniques are somewhat 
inefficient for the visualization of larger graphs, either 
because their time complexity is too high or simply 
because they are unable to produce readable views from 
a large number of nodes and edges, as show the middle 
image in Figure 2. However, by clustering a graph we 
can offer the user an abstract view of the original graph 
consisting of a much smaller number of items, while 
being able to read patterns formed by sub-components. 
In turn, the set of components identified by the 
clustering process itself forms a graph that can most of 
the times be drawn using force-directed methods 
because of its smaller size, as confirmed by the image 
on the right of Figure 2 - high-level nodes actually 
contain subgraphs. This downsizing step sometimes 
requires the clustering technique to be re-applied on a 
component to further improve its readability and reduce 
its size. In doing so, we actually compute a hierarchy of 
subgraphs ultimately offering the user a multilevel view 
of the original data. In ideal cases, as we shall see with 
the air transportation network example (Section IV.3), 
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the various levels or scales present in the hierarchy can 
reinforce the interpretation of the original data. 

 
Fig. 2. Example layouts of force-directed algorithm on a small graph 

(left) and a larger graph (middle). The graph on the right has been 
clustered and then laid out using a force-directed method. (See also 

Fig. 4, Fig. 6 and Fig. 14.) 

II.2. Metrics 

Graph clustering is most of the time guided by 
topological properties. The methods we discuss in this 
paper rely on the computation of a metric for each edge 
or node of the graph. We shall now introduce notations 
that will be used throughout the paper. Let G = (V,E) 
denote a graph with nodes V and edges E, and write n = 
|V| and m = |E|. An edge metric is a map E → R which 
computes a numerical value for each edge in the graph 
(here R stands for the set of real numbers). A node 
metric V → R can be defined similarly. The value 
associated with a given edge e usually results from 
some algorithm. 

One of the simplest example of a node metric is the 
one computing the degree of a node (number of 
neighbours). A more interesting example of a node 
metric is the clustering coefficient c(v) of a node v 
introduced by Watts [28]. The clustering coefficient 
computes a ratio reflecting how much neighbours of the 
node v are likely to be connected. More precisely, let Nv 
denote the set of neighbours of v and let r(Nv,Nv) denote 
the number of edges between neighbors of v. Thus, the 
clustering coefficient associated with v is computed as: 
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Observe that nodes belonging to a clique (a complete 

graph) have a clustering coefficient of 1 since any two 
neighbors of a node v are connected. Incidentally, the 
higher the clustering coefficient of a node, the higher 
the probability that it belongs to a clique. Watts had 
introduced the clustering coefficient of nodes in order to 
identify a key property shared by the so-called “small-
world networks”, a class of graphs that recently became 
the focus of intensive research. Small world networks 
indeed appear as more realistic models than random 
graphs, as defined by Erdös and Rényi [29] [30] (see 
also [31]). A graph qualifies as a small world graph if 
the average distance between any two nodes is low 
while the average clustering coefficient of nodes is high 
- when compared with Erdos-Renyi random graphs with 
the same number of nodes and edges. That is, a small 

world graph can be seen as formed of denser 
neighborhoods connected by pivot nodes so that routing 
a message in the network from end to end requires only 
a few steps through incident edges. Instances of small 
world networks appear in various application areas; the 
air traffic network we study in Section IV.3 is a typical 
example. For more examples and a survey on the 
subject see [32] [33] and [34]. 

 
Fig. 3. Neighbors of nodes incident to an edge partition into three 

distinct subsets Wu;v, Mu and Mv. 
 
We now recall the definition of the strength metric 

introduced in [24] [18] which can be seen as an 
extension of Watts' clustering coefficient to edges of a 
graph. This metric intuitively measures how much an 
edge is likely to connect two distinct communities in the 
network, or on the contrary contributes to the 
cohesiveness of its own community. In other words, 
weaker (low value) edges correspond to passageways 
between distinct communities. In order to define this 
metric, we need to introduce useful notations. Given a 
node u ∈  V, we denote by NG(u) or simply by Nu the set 
of neighbours of u in G. Consider an edge e = {u, v} 
and define Wu,v = Nu ∩  Nv, Mu = Nu \ Nv, and Mv = Nv \ 
Nu. That is, Mu is the set of neighbors of u that are not 
neighbors of v (similarly for Mv) and Wu,v denotes the 
set of neighbours common to both u and v. Observe that 
Wu,v, Mu and Mv partition the set of neighbour nodes Nu 
∪  Nv into three distinct subsets (see Figure 3). 

First, we define the ratio:  
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which computes the proportion of 3-cycles (cycles of 

length 3) containing the edge e. The ratio γ3 goes back 
to [35] and is known as the Jaccard index. It can also be 
defined as (|Nu ∩  Nv|) / (|Nu ∪  Nv|). Note that we have 
a maximum number of 3-cycles containing e when Wu,v 
= Nu = Nv (and thus Mu = Mv = 0), that is, when u and v 
have all their neighbors in common, in which case γ3 (e) 
= 1. A weighted version of the Jaccard index was given 
by Tanimoto [36] (see also [37]). 

Next, given distinct subsets of nodes A,B ⊂  V , let 
r(A,B) be the number of edges connecting nodes 
between A and B (but not connecting nodes of a same 
subset A or B). That is, ( ) BAAAr ⋅≤, . We use the 
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same notation r(A,A) to denote the number of edges 
between nodes in a subset A. In this case, we have 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−⋅≤

2
2/1,

A
AAAAr  and the maximum is 

reached if the subgraph induced on A is a clique (a 
complete graph). Define 
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so that γ4(e) computes the proportion of 4-cycles 

containing the edge e. The strength metric γ(e) is 
defined as  

 
( ) ( ) ( )eee 43 γγγ += . 

 
Note that, strictly speaking, we should write the 

metric as γG (e) and explicitly refer to G. This can be of 
importance when computing the strength of an edge in a 
subgraph induced from G. This full notation will be 
useful in Section IV.2. 

The strength of an edge γ(e) is thus a positive value 
with 0 ≤ γ(e) ≤ 2. Intuitively, weak edges either have a 
small associated subset Wu,v or are contained in only a 
few cycles of length 4 (or both). In other words, there 
are few edges connecting any two subsets chosen 
among Wu,v, Mu or Mv. As a consequence, there is a high 
probability that the edge e must be traversed when 
traveling between any two of these subsets. Having this 
in mind, we can interpret the strength metric as a 
centrality measure in a network, even though it relies 
only on close neighbourhoods. Centrality measures are 
usually defined for nodes of a network reflecting the 
overall importance of a node [38] (see also [39]). As a 
special case, the betweenness centrality of a node  
computes the number of shortest paths between pairs of 
other vertices which run through v. Girvan and Newman 
recently extended betweenness centrality to edges, 
where the betweenness of an edge e is simply the 
number of shortest paths between pairs of vertices that 
run along e [8]. Their use of the edge betweenness is 
much similar to our use of edge strength (see algorithm 
MinDisconnect presented in a forthcoming section). 

II.3. Variations on strength 

Goldberg et al. [40] independently studied variations 
on edge centrality pursuing a different goal than us in a 
bio-informatics context. They introduced what they call 
the geometric index for an edge e: 
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Observe that we can go from the geometric index to 
Jaccard's as can be deduced from the fact that 

vuvuvu NNNNNN ∩−+=∪ (Goldberg et al. 

actually also discuss the Jaccard index). The Jaccard 
metric however assigns a high value to an edge even if 
one of its ends is connected to few other nodes, which is 
not the case for the geometric index. We have 
experimentally noticed that the strength metric γG is not 
correlated with any of these two metrics. This actually 
reinforces the relevance of strength metric as a 
significant ingredient of our clustering algorithm. 
Golberg et al. also consider two other candidate metrics 
(see [40] for more details). 

II.4. Complexity 

The strength metric of an edge can be computed in a 
time proportional to BA ⋅  where A and B are any two 

of the neighborhoods Wu,v ,Mu or Mv, leading to a worst 
time case of O(|V|2) since deg(v) ≤ |V| for all nodes v ∈  
V . When G has bounded degree, that is when deg(v) = 
O(1) for all v ∈  V , γG (e) can be computed in constant 
time, which is a reasonable hypothesis to make when G 
is sparse, although sparse graphs may contain a few 
nodes with a degree of order O(|V|). 

So assuming nodes in G have bounded degree << n, 
the strength of all edges becomes computable in time 
O(|V|). Note that theoretically speaking, the strength of 
all edges requires O(|V|2) even if it only contains a 
limited number of nodes with degree O(|V|). However, 
in practice having deg(v) = O(|V|) for a small number of 
nodes remains under the constraints of interactive 
mining. Conversely, computing the betweenness 
centrality requires O(|V|·|E|) [Brandes, 2001] even 
when G has bounded degree. Observe that when G is 
sparse, O(|V|·|E|) is equivalent to O(|V|2). This actually 
makes our strength metric a real competitor to 
betweenness centrality. 

III. Edge filtering: a basic navigation 
strategy 

III.1. Mindisconnect 

The strength metric admits an intuitive interpretation 
of weaker edges: since their neighbourhoods are not 
tightly connected, these edges mostly appear as 
passageways between denser neighbourhoods. Longer 
chains of weak edges may also exist. In this latter and 
extreme case, there might be edges of null strength. 
Conversely, strong edges sit in the middle of tightly 
connected neighbourhoods. This interpretation leads to 
a method for hierarchical clustering of connected graphs 
based on the removal of weak edges. 

Observe that arbitrarily deleting the weakest edge 
might not straightforwardly disconnect the graph, 
depending on the topological surroundings of the edge. 
On the contrary, the deletion of too many edges may 
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disconnect the graph abruptly into several connected 
components. The idea behind the methodology we are 
about to describe is to attentively follow this 
“disconnection” process and halt as soon as the graph is 
disconnected in order to build a hierarchy. The process 
is conducted solely depending on the strength metric. 
Given a graph G, and having computed the strength 
metric γG for all edges in G, we then find the minimal 
value τ such that removing edges whose strength value 
is less than τ disconnects the graph. The process is then 
applied recursively on each connected component until 
a stopping condition is reached. 

Here is a formal description of this algorithm. Write 
Gτ to denote the graph obtained from G by removing 
edges of strength lower than τ. Compute the connected 
components of Gτ and denote them as C1, . . . , Cq. Then 
Πτ = (C1, . . . , Cq) forms a clustering of the original 
graph G. That is, the subsets Ci are pairwise distinct 

0=∩ ji CC  for all i≠ j) and cover the whole set of 

nodes ( VCC q =∪∪ ...1 ). More formally, what we 

have just defined is a map [a, b] → ( )G℘  going from the 

metric range [a, b] to the set ( )G℘ of all possible 
clusterings or partitions of G. Assume G is connected so 
it possesses a single connected component. Now, define 
τdisc as the minimum strength value such that Gτ has 
more than one connected component. Obviously, τdisc 
exists since Gb has |V| connected components. Let Πτdisc 
denote the clustering (C1,C2, ... , Cq) obtained by 
filtering out edges of strength ≤ τdisc. A hierarchical 
clustering is computed by iterating the procedure over 
each cluster Ci unless Ci is a clique in which case we set 
q = 1 and C1 = G. 

 
Algorithm 1 MinDisconnect(G(V,E), γG) 
Compute γG for all edges e ∈  E 
Calculate τdisc = the minimum metric value τ such that 
Gτ has more than 
one connected component 
if τdisc = maximum value reached by γG 

return 
else 
{ 

Let (C1, C2, ..., Ck) = Gτdisc 
For each Ci 
{ 

Define the subgraph G(Ci) induced from 
G = (V,E) 
Call MinDisconnect(G(Ci), γCi) 

} 
} 
 

This algorithm proceeds in a top-down (or divisive) 
manner and implicitly constructs a (general) tree in 
which leaves correspond to clusters of vertices of a 
graph G. Indeed, the process begins with a unique 
cluster (the initial graph), and “breaks” it into 

components, which will be in their turn broken down. 
Note that the strength metric is recomputed for each 
cluster occurring in the process, and as a metric 
associated with the graph GCi  

 

 
Fig. 4. A force-directed layout of Zachary's network showing 

connections between members of a karate club. White and greyed 
nodes indicate two groups that formed resulting from a disagreement 

between the club's officers (see [41]). 
 
As a first (toy) example illustrating our method, we 

have applied MinDisconnect to the friendship graph 
borrowed from Zachary [41] (see Figure 4). Links in the 
graph correspond to friendship relations between 
members of a karate club. Figure 5 shows the cluster 
tree output by MinDisconnect. As the structure of the 
cluster tree indicates, node 12 has been isolated at the 
first iteration. This is no surprise since node 12 has 
degree one, and consequently the edge connecting it to 
the graph has null strength. Ignoring node 12, the 
algorithm comes up with two distinct groups of nodes 
that can be interpreted as sub-communities within the 
whole network. Zachary had studied the impact of a 
disagreement between two officers, resulting into two 
distinct subgroups within the club. Colors in Figure 4 
indicate how the club was divided into these two sub-
communities. A striking fact is how the friendship 
relations support the choice of individuals to go with 
one officer or the other (see [41] for more details). 

 
Fig. 5: the tree describes the cluster structure output by 

MinDisconnect. Apart from node 12 being isolated, the algorithm 
comes up with two distinct groups of nodes that can be interpreted as 

sub-communities within the whole network. 
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As a matter of fact, MinDisconnect was able to 
recover the two groups based on the topology of the 
friendship graph, but with one exception. Indeed, the 
only node that was misclassified is node 10 (and node 
12). Observe however that node 10 sits at the top of the 
hierarchy indicating that its link to the community is 
weak, or put differently, that it sits on the border of the 
two communities. Conversely, clusters connect more 
intensively as we go down the tree.Please insert your 
figures with “inline wrapping” text style, as in this 
template (see Fig. 1). 

We used this example to compare MinDisconnect 
with Girvan and Newman's approach (see [8, Sect. 
III.B]). Girvan and Newman however proceed by 
removing edges one by one, recomputing edge 
betweenness each time (although they only run over 
edges affected by the removal). Both methods identify 
two groups and slightly disagree with Zachary. They 
also disagree with one another, putting node 3 in 
different subgroups. 

III.2. Complexity issues 

Because MinDisconnect is recursive, and because it 
proceeds by filtering out edges, the number of times 
MinDisconnect is called is bounded above by m = |E|. 
Each call first computes the strength of edges and then 
finds a threshold value τ. Assuming the degree of nodes 
is bounded by a constant - which is a reasonable 
condition to require - the metric γG can be computed in 
time O(n) (see Section II.4). Next, finding the 
“disconnecting value τdisc” follows a divide and conquer 
strategy, recursively bisecting the range of the strength 
metric, involving at most a constant number of DFS 
searches on edges. Consequently, this step is also 
performed in time O(n). Hence, the total time 
complexity is O(mn), which reduces to O(n2) when G 
has bounded vertex degree. Without any particular 
condition on vertex degree, the worst case complexity is 
O(n3), making the technique applicable only to small 
graphs (with a few hundred nodes) to comply with 
interactivity. Note however that it is possible to further 
optimize the computation of strength on connected 
components by only recomputing strength values 
incrementally for edges at distance at most two from 
edges that are removed during the filtering process. 

 
Fig. 6. Force directed layout of the word association network. 

 

 
Fig. 7. The tree structure obtained after iterating MinDisconnect 

recursively. 
 

III.3. Example : Word Association Network  

We will now give a more elaborate example of the 
application of MinDisconnect to a network linking 
words according to spontaneous associations made by 
users. This network of associations between words is 
the result of an experiment conducted partly over the 
internet with interactive forms, and partly on-campus. 
People were asked to spontaneously reply a word when 
given a first one. Each person was asked to reply to 30 
start words randomly selected from a larger subset. For 
the sake of coherence, the experiment was restricted to 
common nouns. The experiment was started using a 
small collection of common nouns. After a word had 
been given as a reply by a user, it became eligible as a 
start word in further experiments. This network thus 
collects different semantics between words - synonyms, 
homonyms, etc. It served as a common ground for a 
work gathering researchers from computer science, 
cognitive science and ergonomics. More details can be 
found in [42]. 

The original network we considered contained 10 
000 nodes and about 100 000 edges. We performed our 
calculation on a single connected component 
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comprising 3 000 words and 7 000 edges. This network 
is scale-free and typically shows as a dense ball of wool 
, making any drawing algorithm useless when visually 
mining the graph, as confirmed by Figure 6. 

As the example will show, the MinDisconnect 
algorithm is able to divide the network into semantically 
coherent pieces that can be further visually navigated 
and explored. Indeed, the strength metric acts just as we 
want by selecting stronger associations between subsets 
of words. Moreover, by calling MinDisconnect 
repeatedly on sub-clusters, we get a cluster tree as 
shown in Figure 7. The figure only shows part of the 
cluster tree laid out using a force directed algorithm. 
The thin structure of the tree results from the criteria we 
apply when defining sub-clusters C1, . . . ,Cq. The 
algorithm is indeed sensitive to the smallest metric 
difference between two edges and will thus process 
them at different stages. In other words, a common 
computation step might filter out a single edge e = {u,v} 
from cluster C, thus separating a single node u from it 
before reapplying MinDisconnect to sub-cluster C – 
{u}. Most often, MinDisconnect will discard a small 
subset of edges (less than 5). There are however regions 
that do form denser sub-trees of clusters. These are the 
regions of interest as they rely on stronger semantic 
associations. 

 
Fig. 8. A sub-cluster showing sea-related words. 

 
The algorithm has been implemented within an 

interactive environment allowing for the selection of 
nodes from the layout. After selecting nodes, the user 
can recover the corresponding word list. Each leaf in 
the tree consists in a cluster typically containing two to 
four words. The user can thus examine larger subsets of 
words by selecting neighbor nodes or by simply 
selecting a small subtree as shown in Figure 7. The 
navigation offered by this clustering schema is used to 
pursue the study of this and other word association 
networks [43]. Figures 8 and 9 provide additional 
examples. Even non-expert users can assess the 
relevance of the clusters identified by MinDisconnect. 

 

 
Fig. 9. A sub-cluster showing fruit-related words. 

 

IV. Modularity quality  
The algorithm presented in the previous section 

produces a fine-grained clustering by going through all 
possible values for edge strength, and by recursively 
selecting values that “minimally” disconnect subgraphs. 
The method we now describe differs from the previous 
one in that edges are filtered out in bulk. The filtering 
operation is operated with the hope that visual and 
structural simplification will help identify salient 
properties guiding further investigation. This filtering 
technique is even more useful if we allow the user to 
further examine each component and its 
subcomponents, and so forth. Applying the method 
recursively on each subcomponent leads to a 
hierarchical decomposition of the original graph, just as 
with “MinDisconnect” but leading to a coarser 
hierarchy. 

IV.1. MQ: modularity quality of a clustering  

Given a clustering Π = (C1,C2, ..., Cq) of a graph G, a 
quality measure associated with the clustering Π (and 
the graph G) should provide a numerical value 
reflecting how natural the partition Π is with respect to 
the topology of the graph G. Naturality is used here to 
capture the idea that clusters should have high internal 
edge density, while having but a few external links 
(edges connecting nodes of different clusters). 

Mancoridis et al. introduced such a function in the 
context of software reengineering [27]. This function, 
denoted as MQ(Π,G) when applied to a graph G and a 
clustering Π, consists of two terms. The first term 
computes the mean value of edge density within 
clusters, and the second term appears as a penalty term 
computed from edge density ratios between clusters. 
More precisely, we have: 

 

( ) ( ) ( )
∑∑

≤<≤≤≤ ⋅
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Π

qji ji

ji

qi i

ii

CC
CCr

qC
CCr

q
GMQ

11

,

2

1

2

,1,  

 



 
Yves Chiricota, Guy Melançon 

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved                                International Review on Computers and Software, Vol. xx, n. x 

Observe that ( )
1

2

,
0 ≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

i

ii

C
CCr  and ( )

1
,

0 ≤
⋅

≤
ji

ii

CC
CCr  so 

MQ(Π;G) varies within [-1, 1]. The ratio computed by 
the first term measures how close clusters Ci are to 

cliques - the term ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

/,
Ci

CCr ii
 can actually be seen 

as an extension of Watts's clustering coefficient to 
clusters of the graph G. Similarly, the second term 
indicates how close edges between Ci and Cj are to a 
complete bipartite graph. In this case, the ratio 
( ) jiji CCCCr ⋅/,  could be interpreted as a 

dissimilarity between the sets Ci and Cj , by analogy to 
the link index introduced by Guha et al. [44] as part of 
the ROCK clustering algorithm. 

Notations. Recall that Πτ denotes the clustering 
induced from the threshold value τ (see section III.1). 
Note also that we can form a graph whose nodes 
correspond to the clusters C1, . . . , Cq, where edges 
connect two cluster nodes if there are edges in E 
connecting nodes in V between them. This graph is 
referred to as a quotient graph and is usually denoted as 
G / Πτ . We save these notations for later use. 

Clearly, the map [a, b] → ( )G℘  defined in section 

III.1 does not cover the entire set ( )G℘ . That is, 
filtering edges through all values τ will not exhaust all 
possible clusterings of the graph G. The hope here is 
that some values of τ may lead to clusterings of “good 
quality”. To achieve this, we use MQ to survey the 
evolution of the clustering quality as τ varies. Put 
formally, we define a map [a, b] → R giving the quality 
measure of the clustering induced from the threshold τ . 
More precisely, we compute MQ(Πτ,G) for all τ ∈  [a, 
b]. Trusting MQ, we finally select a clustering of 
maximum quality. This can be achieved by properly 
sampling the range [a, b], and for each threshold value τ 
compute the associated clustering τ and its quality 
measure. Thus the values MQ(Πτ,G) vary along a curve 
defined over the range [a, b], and we seek to find its 
maximum and the corresponding threshold τ . 

Figure 10 illustrates how MQ varies over the range 
of the strength metric applied to an example graph. As 
can easily be seen, the curve reaches its maximum value 
at τ ~ 1.7. The graph used in this example is computed 
from a subset of the IMDB, the Internet Movie 
Database 2 . Nodes of the graph correspond to actors or 
actresses. Edges connect actors having played in a same 
movie or TV show. The graph is displayed on part (a) 
of Figure 11 and has been laid out using a force-
directed algorithm. 

This example exhibits specific properties due to its 
construction. Indeed, the graph was built by extracting 
actors having played with either Tom Cruise, Cameron 
Diaz or Jim Carrey, or with an actor having played with 
one of them, and so on up to a maximum distance of 

four links away. Consequently, the actors having played 
in a same movie all appear in a clique. Although this is 
not usual in a social network, it served as a good 
example and testbed for our methodology.  

 
Fig. 10. The curve showing how MQ(¦τ ;G) varies with respect to τ . 

 
Notice that the circled cluster in the left panel of 

Figure 11 is tightly connected, as confirmed on the 
middle image (b). Image (c) on the right provides an 
abstract view of the clustered graph with each cluster 
represented by a single node with size proportional to 
the number of nodes it contains, in a manner similar to 
[45]. Links between clusters are induced from links 
between nodes in the original graph and provide an 
overview of its topology. At first we might expect the 
cliques involved in that cluster to separate just like most 
of the other cliques do. This is not however the case, 
thus revealing intimate and closer links between actors 
of that subcommunity. Further analysis of the clusters 
shows they contain major actors such as Warren Beatty, 
Faye Dunaway, Dustin Hoffman and Jack Nicholson 
intuitively explaining why the links sitting in that 
neighbourhood are stronger. 

 

Fig. 11. Edge filtering applied to an IMDB subgraph. 
 
More details on this introductory example can be 

found in [18]. We shall discuss another example in 
Section IV.3, requiring an extension of the strength 
metric to weighted graphs. 
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IV.2. Multilevel visualization and hierarchical 
clustering 

As we pointed out earlier, iterating the method on 
each component isolated by the filtering process leads 
to a hierarchy of subgraphs. The process can be stopped 
using various halting conditions depending on a 
component size or variation on the strength of edges. 
For example, a component with edges all having a 
strength equal to 1 is obviously a clique so the process 
should not iterate further. Also, even though a 
component is not a clique, it might be the case that the 
maximum value reached by MQ is precisely when we 
take the component as a unique cluster. 

 
Fig. 12. Sub-clusters of the IMDB graph. 

 
Part (a) of Figure 12 shows a close view of the 

circled subcomponent of the IMDB network in Figure 
11. The middle image (b) is obtained by locally relaying 
out the cluster, providing a less constrained and more 
readable layout. The right image (c) shows s the effect 
of the filtering process when applied locally. Obviously 
the four nodes sitting in the middle of the image act as 
mediators between the top and bottom clusters. They 
have been identified as such by the strength metric, and 
the filtering process together with the MQ criteria 
selected a threshold extracting these mediator nodes 
while maintaining most of the edges in the two other 
clusters. 

Let us describe the algorithm more formally. It takes 
as input a graph G = (V,E), the strength metric  and the 
quality measure MQ (although the algorithm is named 
after MQ here). We also introduce a variable p acting as 
a probability and used to properly sample the range [a, 
b] over which γG varies. The variables τmax and MQmax 
are used to respectively store the metric value τ leading 
to a maximum MQ score. As mentioned before, the 
output can be coded as a hierarchy of subgraphs. 

Algorithm 2 MQ-clustering(G(V,E), γG , MQ) 
Compute γG for all edges e ∈  E 
Set τmax = 0 and MQmax = 0 
Let p vary from 0 to 1 using a fixed increment ε 
{ 

Compute τ ∈  [a, b] such that the proportion 
of edges with strength  ≤ τ is p 

Filter the edges and define the induced 
subgraph Gτ 
Compute the connected components 

(C1,C2, ... ,Cq) of Gτ 
Define the clustering Πτ 
Compute MQ(Πτ,G) and compare with MQmax 
Update τmax and MQmax accordingly 

} 
At this stage, we have selected the value τmax. We also 
need to store 
the corresponding clustering Πτ = (C1,C2, ... ,Cq) as well 
as the quotient 
graph G / Πτ 
 
For each Ci 
{ 

Define the subgraph G(Ci) induced 
from G = (V,E) 
Call MQ-clustering(G(Ci), γG(Ci), MQ) 

} 
 
 

The description of the algorithm calls for a number 
of remarks. First, observe that the strength metric γG  is 
recomputed at each stage in order to reflect the inner 
connectivity of a cluster after some of the edges have 
been filtered out. This is mandatory to avoid making 
decisions based on values inherited from the original 
graph. Indeed, the neighborhood of an edge and thus its 
strength γG(Ci) in a cluster Ci might well be completely 
different from its neighborhood in the original graph G. 
This is even more true when considering a cluster 
deeply nested in the hierarchy. Second, the values 
τ∈[a, b] are sampled in a way such that the more 
compact regions are visited with more care. Running 
over the interval [a, b] by linearly interpolating from a 
to b would lead to an inaccurate estimation of the MQ 
curve over [a, b] (see [46] for more details). Finally, the 
complexity of the implied computations requires to fine 
tune the algorithmics and memory usage. We will not 
comment on these issues as they go beyond the scope of 
this paper and also intersect with future work (see 
section V). 

One major benefit of this hierarchical clustering is 
the ability to navigate the network by zooming in and 
out of the subgraphs in the hierarchy, together with the 
possibility of navigating the network structure linking 
components with one another (at a given level of the 
hierarchy). The next section describes a use case where 
this feature enabled us to visually analyze the 
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worldwide air transportation network, allowing experts 
to gain insight on its dynamics [47]. 

IV.3. Worldwide air transportation network  

Our second example application shows how the MQ 
clustering strategy helps to grasp the community 
structure of the worldwide air transportation network, 
and brings forward a visual representation of its nested 
sub-communities. The multiscale nature of this 
organization into sub-communities makes it necessary 
to be able to navigate through the hierarchy of 
subgroups. In this regard, our approach is 
complementary to the work by Guimerà et al. [48], who 
have studied the worldwide air transportation network 
by analyzing its centralities without the help of any 
visualization whatsoever. The analysis of the network 
supported by our method has been conducted with the 
help of experts who were able to assess its usefulness. 
The conclusions they were able to draw from the 
visualization and interactive exploration of the air 
transportation network can be accessed in [47] 3 . 

 
Fig. 13. Top level view of the hierarchically clustered worldwide air 

traffic network. 
 
Obviously, a visualization of the airline connections 

drawn on a traditional 2D geographical representation 
of the earth is worthless, as the network contains a large 
amount of connections. Moreover, this type of 
representation could only reveal subgroups defined 
around regional strategies. The challenge here is to 
unveil sub-networks emerging from non territorial 
logics. Indeed, more and more companies today define 
their routes based on partnerships and logistic hubs 
installed in specific airports. The visual and multilevel 
analysis of the network allowed experts to identify sub-
communities and suggested hypotheses explaining the 
overall organization of the worldwide network. The 

original dataset acquired from IATA comprises 1347 
cities and 16526 connections. For the sake of 
readability, the images shown here only reveal a part of 
the total network consisting of connections involving at 
least 300 000 passengers in 2001, resulting in a network 
of 294 nodes and 1049 edges. 

The multiscale representation shown in Figure 13 
splits the network into several components and layers. 
Observe how MQ helped to go from a 294 nodes/1049 
edges graph to a 25 nodes/90 edges graph providing a 
more readable representation of the data. The topology 
of the quotient graph globally is star-like with the 
exception of the bottom left region, which appears to be 
more densely connected. Clusters of cities in periphery 
strongly depend on the world hubs to connect to other 
parts of the world and do not show a strong 
participation in the overall exchanges. That however 
does not imply that they do not play such a role at 
another level. Investigation of deeper level components 
is required. 

 

 
Fig. 14. World hubs form into a sub-community sitting at the center of 

the star-like topology of the worldwide air transportation network 
(Fig. 13). 

 
A quick exploration of the center component reveals 

that it contains all principal air hubs: Atlanta, New 
York, Chicago, London and Paris are all there (Fig. 14). 
These capitals clearly drain most of the international 
traffic and impose routes to fly the world around 
because of airline partnerships (economical logic). Asia 
clearly stands apart from these core hubs because of 
strong territorial ties endorsed by national Asian airline 
companies (territorial logic). A large part of the 
European cities appear at the bottom left. This part of 
the network is more densely connected and confirms the 
organization of the European network on the fringe of 
the international hubs (the center component). Figure 15 
shows a close-up of the sub-network organized around 
Zurich, Manchester (UK) and Luton. The other 
destinations in this sub-network, together with Luton (a 
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minor airport in the UK), clearly indicate tourism as a 
major aggregating force in this neighborhood. For a 
more detailed examination of the network and its 
subcomponents, the reader should consult [47]. 

Observe that the Zurich/Manchester/Luton sub-
network does not admit any sub-community at a lower 
level. However, the center component containing the 
western world air hubs can be navigated four more 
levels down after entering the “USA sub-network” 
component (Fig. 14). Figure 16 shows a view of the 
USA sub-network. The central cluster of this sub-
network can itself be explored two more levels down 
and reveal how Cleveland, Denver, Detroit, 
Minneapolis, Philadelphia, Tampa and other cities of 
similar “importance” organize. 

 
Fig. 15. Zurich/Manchester/Luton European sub-network. 

 

IV.4. Taking the air traffic into account 

In order to build the representation of the worldwide air 
transportation network, we had to extend the metric 
originally defined in [18]. Indeed, the network came 
equipped with weights counting the number of 
passengers that had traveled between each pair of 
cities 4 . The data did not sort passengers according to 
airline companies they had traveled with, but added 
passengers flying from different airports of a given city. 
For instance, the Paris traffic with any other city was 
obtained by summing departures/arrivals from/to the 
Charles de Gaulles or the Orly airports. 

The frequency histogram in Figure 17 showing how 
passenger weights distribute over the network, reveals a 
scale-free phenomenon. This does not come as a 
surprise since only a few airports concentrate most of 
the world passenger traffic, or put differently, that a 
large amount of passengers go through only a few 
airline routes, as confirmed by the community structure 
revealed in Figure 13. The maximum (normalized) 
weight is however rather low with a value of 0.0073 for 
the Pusan-Seoul connection with a total of 
approximately 6 million passengers, compared to a total 
of 822 million (recall we only considered connections 
with more than 300 000 passengers per 

year).

 
Fig. 16. Third level USA sub-network (sitting at the center of Fig. 14). 

 
The clustering based on the strength metric defined 

in Section IV.2 does not take into account the weight of 
edges. Intuitively, we would like the algorithm to prefer 
edges with higher weight among those with equal 
strength metric. This can be achieved by computing for 
each edge its weighted strength 

)()()( eee ωγγ ⋅= obtained by multiplying its strength 
metric γ(e) by its weight ω(e), as defined in the next 
paragraph. 

 

 
Fig. 17. Frequency distribution of weights for passenger connections. 

 
This calculation requires to normalize weights to [0, 

1]. This normalization must be done with care. Let e be 
an edge supporting a passenger traffic T. We assign 
edge e a weight ω(e) equal to the proportion of edges 
supporting a traffic at most equal to T. The proper 
weight ω(e) can be deduced using a cumulative 
histogram computed from that illustrated in Figure 17. 
This has the desired result as the strength of high traffic 
edges is not altered, while strength of low traffic edges 
is lowered according to their relative importance. For 
example, the Pusan-Seoul connection has a weight of 
0.99 as expected, so its weighted strength almost equals 
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its “plain” strength. A connection supporting 
approximately 500 000 passengers representing 0.058% 
of all traffic has a normalized weight of ω(e) = 0.4, 
because 40% of connections support at most 500 000 
passengers. Its weighted strength γω(e) thus equals 40% 
of its plain strength γ(e). 

 
Fig. 18. Frequency distribution of strength for the worldwide air 
transportation network, before (left view) and after (right view) 

multiplication by normalized edge weights. 
 
Figure 18 shows how edge weights affect the 

distribution of edge strength. As can be seen, the range 
of metric values moves towards the left due to the 
multiplication by normalized weights. More 
importantly, the distribution of the edge metric is 
affected with a much lower population of edges having 
a weighted strength above 1.0, and the peak frequency 
being translated from 0.75 to approximately 0.4. 

IV.5. MQ clustering 

The method developed in Section IV.2 basically 
requires two distinct ingredients, an edge metric 
together with a clustering quality measure. 

The measure MQ we have been using to assess 
clustering quality possesses several interesting 
properties. In [24], we had already pointed out that MQ 
can be usefully approximated by a gaussian distribution 
with mean ~ -0.2 and standard deviation ~ 0.2, a fact 
that was unnoticed in [27] (see [49] for a proof). This 
allows us to assert the overall quality of our clustering 
technique since, for instance, there is only ½% 
probability that a clustering reaches an MQ value above 
0.30. The probability goes down to 0.00125 for an MQ 
value of 0.40. We were moreover able to compare our 
clustering to those computed by the clustering 

framework Bunch [50] and observe that we produce 
clusterings of similar MQ quality [24, Table 1]. Bunch 
implements algorithms exploring the space of all 
possible clusterings following various strategies (hill 
climbing, genetic algorithms, etc.). Algorithm MQ 
(Section IV.2) however visits a considerably smaller 
portion of the solution space. Indeed, letting τ vary over 
[a, b] defines a one-dimensional curve in the space 
( )G℘  of all clustering of a graph G. Obviously the 

path prescribed by the strength metric and the filtering 
process passes through “fertile” regions. 

V. Conclusion and future work  
We have presented a strategy for the visualization 

and navigation of complex networks based on the 
identification of a multilevel community structure. The 
usefulness of our method has been assessed by experts 
and has proven to be useful for the visualization and 
analysis of a word association network and for the 
worldwide air transportation network. Examples from 
software re-engineering have also been studied. The 
method is actually part of Tulip's latest release [51]5. 

Efficiency issues still remain to be studied to help the 
method reach full scalability. Although strength is 
defined as a local metric, its implementation can be 
helped by storing local information on Nu, Nv and Wu,v 
(see Section II.2) to avoid recomputing  γG(Ci) from 
scratch (Section III.2). These issues are essential if we 
are to extend strength to cover cycles of length 5, and 
more as suggested by Raddichi et al. [52]. 

We also plan to carefully describe the behavior of 
MQ after local changes in the network in order to 
localize its computation and adapt to dynamic networks. 
This would allow for real-time community 
identification, and could help follow the evolution of 
the network and study the evolution of its community 
structure. 

We plan to run a careful comparison between our 
work and that of Newman and Girvan. The combination 
of strength together with the modularity function Q 
used by Newman and Girvan could reveal useful. 
Conversely, we could mix MQ together with edge 
betweenness. The comparison should not only consider 
the community structure output by any of these 
combinations, but should also look at the multilevel 
community structure it produces. Indeed, we expect to 
get a better understanding of this methodology by 
introducing quality measures that take into account the 
whole cluster tree instead of only focusing on the 
clustering of a single component. 

Finally, this work will soon be integrated into a fully 
interactive environment similar to that developed by 
van Ham and van Wijk [45], allowing a more fluid and 
focus+context navigation of the multilevel community 
structure. 
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