
Combining DagMaps and Sugiyama Layout for the Navigation of Hierarchical

Data

Pierre-Yves Koenig, Guy Melançon

CNRS UMR 5506 LIRMM, INRIA Futurs / CNRS UMR 5506 LIRMM

Montpellier France

{Pierre-Yves.Koenig, Guy.Melancon}@lirmm.fr

Charles Bohan, Bérengère Gautier

Maison de la géographie, Montpellier France

{Charles.Bohan, Berengere.Gautier}@mgm.fr

Abstract

This paper presents a novel technique for exploring and

navigating large hierarchies, not restricted to trees but to

directed acyclic graphs (DAGs). The technique combines

two different visualizations emphasizing different points of

view the user can adopt when analyzing the content of the

hierarchy. Usual hierarchical (node-link) layout reflect the

relative position of nodes in the hierarchy while a varia-

tion of a treemap emphasizes node attributes. The classical

treemap algorithm has been adapted in order to deal with

DAGs. Linking the two views enables the user to visually

and interactively explore elements of the hierarchy with re-

spect to selected attributes, while being able to locate the

node in the DAG.

1. Introduction

Hierarchical data naturally appears in numerous applica-

tions. In their simplest form, hierarchies organize into trees.

Tree structures such as classifications (knowledge classifi-

cation systems, species and/or taxonomies, for instance),

phylogenetic trees, company organization charts, are but a

few examples. When dealing with richer hierarchical or-

ganization, cross links allow elements to belong to several

non distinct classes. Inheritance relations of classes in ob-

ject oriented programming is a typical example. Classifying

concepts extracted from documents, for instance, can some-

times require to “duplicate” a concept depending on its pos-

sible interpretations. The “network” concept, for example,

can refer to social network analysis or to low level computer

hardware and both concepts may be required to index a col-

lection of documents. Such a classification naturally leads

to the construction of a DAG.

The mathematical structure that naturally models this sit-

uation is a directed acyclic graph (a DAG). That is, nodes

are ordered as ancestor nodes or child nodes just as with

trees, with the exception that nodes may have multiple par-

ents. Nodes with no ancestors are called source nodes,

while those without any child will be called sinks. When

drawing the DAG, source nodes are often placed at the top

and are said to have level 0. The level of a node is then

set to the length of a longest path connecting it to a source

node. In doing so, we make sure all edges go downwards

(see Figure 1).

The case study we shall explore in this paper is made

up of companies linked to one another through subsidiary

links. That is, company c1 links with company c2 if c2 is

a subsidiary of c1. Clearly, this graph structure is a DAG:

subsidiaries themselves have subsidiaries, and a subsidiary

may be held by several “ancestor” companies. The dataset

also collects attributes measuring how much of a subsidiary

is held by each of its parent companies. The top image in

Figure 1 shows a part of a DAG describing links between

companies and their subsidiaries. Node (and link) color and

size map to different attributes that can be computed from

the DAG (see section 2).

Natural questions emerge when studying data modeled

with DAGs. The level of a node v in the DAG roughly corre-

spond to how “general” it is. More precisely, it correspond

to how much of the DAG it spans, or how many nodes can

be reached from v going downwards. For companies, this

amounts to how much a company controls its subsidiaries

(and subsidiaries of its subsidiaries, etc.). This is even more

true when one takes edge or node attributes such as com-



Figure 1. Traditional Sugiyama node-link lay-
out (top) and corresponding DagMap view of
a DAG (right). Node size and color corre-
spond to node attributes such as companies’

assets and headquarters’ location.

panies’ assets into account. In our case, the DAG structure

also reveals how much two (or more) companies’ strategies

or interests overlap over a set of subsidiaries. The tech-

nique we have set up combines a node-link view of the DAG

explicitly showing links between companies and visually

showing where a company sits in the whole hierarchy. This

type of view however is not optimal for showing and com-

paring node attributes. We have thus designed a DagMap

view, which builds a TreeMap [9] out of a DAG in order

to emphasize node attributes such as the total capital of a

company, making it easy to compare companies based on

this measure. Color coding semantic attributes such as the

country (or region) for the company’s headquarters revealed

to be efficient in helping geographers study how companies

build strategies to escape from income tax, compete against

competitors or collaborate with others. For instance, our vi-

sualization eases the identification of small subsidiaries as

being “tax haven” in the DagMap view while the node-link

view helps understand how they link to ancestor companies

or to other subsidiaries.

The remaining of the paper is organized as follows. We

first briefly describe our case study, to motivate the use of

the combined DagMap and node-link layout. We then pro-

vide details on how the DagMap is computed out of the

DAG. Coming back to the case study, we explain how the

node-link view and the DagMap view are bound to one an-

other through user interaction. Related work is then dis-

cussed before the paper concludes on future work.

2. Case study

Part of this work was conducted in collaboration with ge-

ographers through the National French Research Program

SPANGEO1. Data was obtained through the Orbis database

maintained by the Bureau van Dijk office2; part of the data

was also collected manually by one of the author geogra-

pher (C. Bohan). The full dataset concerns about 140 000

companies emerging as subsidiaries of 597 main companies

covering numerous industrial sectors. Companies (and sub-

sidiaries) are linked to one another by about 250 000 links.

Geographers are not however interested in studying the full

dataset but rather concentrate on specific sectors of activity

(NACE code). Alternatively, part of the whole DAG emerg-

ing from selected major companies (source nodes) can be

computed and explored separately. The case study we are

concerned with here spans over subsidiaries of a major Eu-

ropean car constructor.

The visualization help geographers reveal how compa-

nies obey territorial logics or on the contrary develop their

activity based on other concerns. Strategies differ from one

group to another (Peugeot has a completely different organi-

zation than that of Renault for instance), but also differ from

one sector to another (food companies indeed usually sell

their products locally; the car industry is organized differ-

ently, with parts produced in lower cost countries, cars as-

sembled in another, while vehicles can be shipped wherever

markets exist). The picture becomes even more complex

when companies expand their activities over several indus-

trial sectors. Typically, companies will develop subsidiaries

in the financial sector in order to have control over financial

flows generated by their overall activity, for instance. As a

consequence, commercial and financial strategies intertwin

over several industrial sectors.

The combined DagMap and node-link visualization pro-

vides an efficient exploratory device in order to develop a

view over these phenomena. The right image in Figure 1

1See the URL s4.parisgeo.cnrs.fr/spangeo/spangeo.htm
2See the URL www.bvdep.com/en/orbis.html



illustrates the DagMap view of subsidiaries of the car in-

dustry emerging from the Fiat international group. Cells

have been colored according to whether subsidiaries are in-

stalled in Europe (blue – darker blue is used to indicate that

a company belongs to one of the 15 founder European coun-

tries), Asia (yellow), North America (orange), South Amer-

ica (green) or Africa (gray). This color code was designed

with the help of geographers; they moreover required a spe-

cial color code for subsidiaries suspected to act as tax haven

(magenta). The DagMap relies on a squarified treemap al-

gorithm [1] where cell areas correspond to companies’ as-

sets.

The DagMap actually encodes a DAG, and not simply

a tree. This translates into the possibility of seeing, in the

treemap itself, whether a specific subsidiary depends on a

single ancestor company, or on the contrary that it is held

by more than one competing companies. When clicking

on a cell, the user can readily see whether the underlying

element expands over other cells in the treemap. This vi-

sual feedback provide a quick measure of how much a sub-

sidiary is present in the network and help analyze compa-

nies’ strategies. This is the case for the subsidiary “Cen-

tro Studi sui Sistemi di Trasporto” (CSST for short) which

depends on both “Iveco S.p.A.” and “Fiat Auto Holdings

B.V.”. Looking at the node link diagram we indeed see how

it sits between these two companies. We moreover observe

that “Fiat Auto Holdings B.V.” does not hold its CSST sub-

sidiary directly but rather through “Fiat Auto S.p.A.”. It is

not our role here to make any conclusion about these rela-

tionships between these companies and their subsidiaries.

We rather wish to underline the usefulness of this combined

view, as it has been reported to us during our interviews

with our final users.

3. DagMaps: extending TreeMaps to directed

acyclic graphs (DAGS)

Treemaps appear as an excellent alternative to traditional

(node-link) layout for trees [9], emphasizing attributes of

leaf nodes as opposed to relative position of nodes in the

tree. Indeed, internal nodes of the tree are apparent only

through the nesting of cells and can moreover be equipped

with several attributes such as node size or color (compare

images in Figure 1). Many improvements on the original

design of treemaps have been suggested [12, 1]. Tradi-

tional tree layout (see [2, 7]) draw internal nodes as well

as leaf nodes and thus explicitly show the relative positions

of nodes in the tree. These properties also remain with tra-

ditional node-link layout for DAGs [3] .

We shall now explain how the basic treemap algorithm

can be adapted in order to deal with DAGs. Roughly speak-

ing, the DAG is unfolded into a tree by duplicating nodes

where necessary. That is, a node v with multiple father

a

b

d e

g h

f

c

a

b

d

g

f

c

e

hg

e

h

Figure 2. A tree is obtained from a DAG by
duplicating nodes (and labels) with multiple
ancestors.

nodes is duplicated as many times as necessary in order

that each of its father has its own copy of v. Put formally,

let G = (V,E) be a DAG. Given a node v ∈ V , de-

note by F (v) the father nodes of v in G. In other words

F (v) = {u ∈ V |(u, v) ∈ E}. Now, assume for a moment

the subgraph H induced from the set of descendant nodes

of v ∈ V (nodes reachable from v going downwards, in-

cluding v itself) is a tree. For each father node u ∈ F (v)
we clone the subtree H into a distinct subtree Hu and at-

tach it below u. In doing so, nodes u ∈ F (v) now have

distinct descendants (as far as v is concerned). See Fig-

ure 3. Performing this type of transformation (we denote

as T ) bottom-up from sink nodes towards the sources will

eventually output a tree T = T (G).

Conversely, let T = (V, E) be a tree where nodes have

labels, that is T comes equipped with a labelling λ : V →
L. Suppose moreover that T is such that if two nodes

u, v ∈ V have equal labels λ(u) = λ(v), then the sub-

trees Tu = (Vu, Eu), Tv = (Vv, Ev) extending from u and

v are isomorphic (same tree structure) and corresponding

nodes have equal labels. That is, there is a bijective cor-

respondence φ : Vu → Vv satisfying λ(x) = λ(φ(x)) for

all x ∈ Vu, moreover preserving edges: (x, y) is an edge

in Eu if and only if (φ(x), φ(y)) is an edge in Ev . We can

then define on T an equivalence relation on nodes where

u ≡ v ⇐⇒ λ(u) = λ(v). The quotient set V/ ≡ can then

be equipped with a graph structure G where classes [u], [v]
connect (in G) if two nodes x ∈ [u], y ∈ [v] connect in



Figure 3. Selecting subsidiaries, the user immediately visualizes “regions” of the hierarchy where it
is involved (the CSST subsidiary appears twice as a pale turquoise cell). Using a slider, the user can
dim the cells of lower level subsidiaries, emphasizing visual cues of higher level companies’ activity.

T . As can be easily seen, the graph computed from T is a

DAG, and the previous unfolding process unfolds G back

into T (see Figure 3).

This bijective correspondence moreover needs to be im-

plemented in order to track user interaction on the DagMap

and map it back to the original DAG (or over the Sugiyama

layout when synchronizing views).

The treemap algorithm proceeds recursively, cutting the

cell associated with a node into subcells for each of the child

nodes, moreover ordering the child nodes u1, . . . , uk ac-

cording to their number of leaf nodes (in Tu1
, . . . , Tuk

).

This also holds true with the DagMap: the number of sink

nodes accessible from node u (in G) equals the number of

leaf nodes in the subtree Tu (in T = T (G)). As a con-

sequence, because we may suspect companies with many

subsidiaries to have greater asset, cells with greater area are

placed in the top left part of the treemap.

4. Exploring the hierarchy: coordinating

DagMaps with classical Sugiyama layout

The use of the DagMap alone revealed to be insufficient

when exploring the whole hierarchy of companies and sub-

sidiaries, as we explain below. The exploration focuses on

the discovery of different commercial strategies and com-

panies, and its relation to the territory. Note that the visual

exploration only comes as a first step towards a full expla-

nation of such a phenomenon. Typically, users built their

analysis combining standard (text-based) exploration with

Google search trying to build hypothesis, then back to a

classical node-link visualization with questions in mind, it-

erating a sense-making loop [10] engaging various intellec-

tual postures (from wild guesses to strong and documented

assertions).

The complexity of the analysis however partly comes

from the necessity of quickly perceiving the level and place

of a node in the hierarchy, while visualizing attributes such

as a company’s asset and localization (country/continent)3.

Simply mapping companies’ assets and territorial member-

ship using node size (and thus node area) and color in a

traditional layout (top image in Figure 1) proved to be inef-

ficient, apparently because it did not easily allow the visual

comparison of node area. Not mentioning the fact that the

traditional layout displays at least twice as much visual in-

formation as the DagMap since ancestor nodes are mapped

onto colored disks as well), or edge crossings and occlu-

sions. Note also that a lot of space is left unoccupied with

the Sugiyama layout, as is usual with almost all node-link

layouts. As a consequence, the space required to display all

nodes with areas reporting companies assets (in our case)

requires a lot more space than with the treemaps and argues

unfavorably for a Sugiyama-alone visualization.

Another difficulty comes from the fact that a company’s

strategy is embodied over several levels in the hierarchy.

For instance, Asian or South American subsidiaries of Fiat

only appear at the lowest level (Figure 4), suggesting that

delocalization actually take place through intermediate sub-

sidiaries. The identification of this type of scenario required

specific visual cues. We introduced an artefact helping the

user to momentarily lessen the visual impact of lower level

subsidiaries, in order to see higher level strategies form be-

fore digging down to lower levels. Indeed, although lower

level subsidiaries might be Asian companies, the strategy is

revealed by observing whether control is held by European

companies, for instance. To this end, the user can dim lower

level companies and vary the opacity of the corresponding

3As a matter of fact, the original data is not exactly a DAG: there might

indeed be links from a subsidiary controlling part of an ancestor company,

thus introducing cycles in the network of links. This however only hap-

pens exceptionally, and is considered as marginal by our expert users, who

actually discarded them.



Figure 4. Two different dynamic cues can
be used to explore the hierarchy structure.
Lower level subsidiaries can be temporarily

dimmed out. Moreover, the level at which the
dimming effect operates can itself be varied.

cells using a slider (compare images in Figure 4) – this

dynamic cue proved to be an efficient way to recover the

hierarchy’s structure without having to leave the DagMap

view. Dimming out all but the highest level companies may

readily confirm that control is held by European headquar-

ters. Depending on where subsidiaries are located, the user

is then capable of forming hypotheses about strategies be-

ing based on territorial logic, as opposed to pure financial

strategies, for instance.

5. Related work

Extending treemaps from trees to general graphs has al-

ready been studied by Fekete et al. [4], extracting a span-

ning tree out of a graph, then drawing edges on top of the

treemap. Incidentally, Holten’s edge bundle technique [6]

can be used to improve the readability of such a drawn-over-

treemap.

We believe our approach to be more adequate to the vi-

sualization of hierarchical data (DAGs) for two reasons. In

our case, edges do not connect any two cells but do cor-

respond to inheritance relations which somehow carry spe-

cific meaning. Users needed to go back to the Sugiyama

layout to consult about inheritance relationships (and hier-

archical level of companies), swapping from the treemap to

the Sugiyama layout to grasp that information before go-

ing back to the treemap. Quickly blinking at the Sugiyama

layout appeared to be a fast and efficient way of maintain-

ing their mental map. This quick blink actually makes use

of a crucial positional attribute, which translates into edges

being all drawn downwards. This would not be the case if

edges were simply drawn over a treemap.

Also, extracting a spanning tree would privilege a sub-

tree (or part of the DAG), arbitrarily deciding that a sub-

sidiary belongs more to one owner company as opposed

to another owner company. This choice however can only

be made based on arguments that precisely should emerge

from the exploration and visualization of the datasets. We

should keep in mind that the analysis is conducted here in

order to confront territories (continent) with financial strate-

gies (control of subsidiaries, implantation of subsidiaries in

other parts of the worlds, etc.). The DagMap indeed lays

out useful and complementary information on different part

of the screen while linking corresponding cells through user

interaction. In a sense, the unfolding of the DAG, together

with our visualization, provides an exploratory framework

opened to any explanatory hypothesis.

6. Future work

The DagMap is undergoing users’ critics as it is used on

a daily basis by the geographers. Obviously, other datasets,

and other types of datasets can be explored with the help

of the DagMap. Typically, object oriented software visu-

alization should benefit from such a visualization since in-

heritance is a central issue in the design and/or re-design of

such systems.

Dags also naturally appear when performing clustering,

where clusters are allowed to overlap. Indeed, the hierar-

chy primarily indicates how clusters nest; common child

nodes then roughly correspond to intersection of clusters.

Again, DagMaps can be used to observe how much ele-

ments spread over the whole clustering.

The image below shows an example where overlap-

ping clusters of concepts (keywords) distribute as higher

level cells in a DagMap. The fact that clusters overlap is

somewhat natural, as keywords can typically have differ-

ent meaning. The highlighted cells (grey and turquoise)

show how the “network” concept spans across all clusters.



It might be useful in this case to explore clusters at vari-

ous levels of details, using indices such as Furnas’s DOI

and API [5] or van Ham van and Wijk’s DOA [11], which

naturally extend to DAGs.

We definitely should proceed to a formal evaluation

of the combined DagMap-Sugiyama technique, testing it

against various scenarios (Fekete et al. [4] drawn-over-

treemap, Sugiyama alone, DagMap alone, etc.). We should

expect, for instance, the DagMap-Sugiyama visualization

to work best with DAGs containing but only few cross

edges. Experimentations should help determine how much

“few cross edges” is. For now, the claimed benefits of our

DagMap-Sugiyama technique is solely based on user “inter-

views”. The technique and the tool was actually designed

together with users (expert geographers) who were able to

informally evaluate our prototype:

Exploring the Fiat dataset with the combined

DagMap-Sugiyama visualization, we were able to observe

(and confirm) different strategies that were already

identified by Porter [8], moreover developing on a

continental level with Fiat, which probably obeys a “car

culture” differentiation. Also, (Fiat) Europe seems to

traditionally control the hierarchy and emergent South

American countries sit on lower levels thus confirming a

classical center-periphery schema (Porter).

Further analysis is needed to confirm what has been

discovered using the DagMap-Sugiyama visualization.

Namely, that the lower levels of the hierarchy obey a global

model, which could link to the development of the “world

car” explaining why subsidiaries from different world

regions end up in the same DagMap cell. Conversely,

higher levels of the hierarchy concentrate control on

European soil, then involving a pyramidal logic in the

whole structure: headquarters at the top of the pyramid,

relying on financial subsidiaries (2nd level) right before a

structuration of markets following cultural (continental)

difference (3rd level mainly involving European firms),

then an undifferentiated “world car” market at the bottom

spread over emergent countries.

Acknowledgements. This work was funded through the

French ANR SPANGEO project. We wish to thank our col-

league Céline Rozenblat from University of Lausanne for

useful comments during all stages of this work, and Laurent

Perrier from University of Montpellier who greatly helped

to collect the Orbis dataset.

References

[1] M. Bruls, K. Huizing, and J. J. van Wijk. Squarified

treemaps. In W. d. Leeuw and R. v. Liere, editors, Joint

Eurographics and IEEE TCVG Symposium on Visualization

(Data Visualization ’00), pages 33–43, Amsterdam, 2000.

Springer-Verlag.
[2] G. di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph

Drawing: Algorithms for the Visualisation of Graphs. Pren-

tice Hall, 1998.
[3] P. Eades and K. Sugiyama. How to draw a directed graph.

Journal of Information Processing, 13(4):424–437, 1990.
[4] J. Fekete, D. Wang, N. Dang, A. Aris, and C. Plaisant. Over-

laying graph links on treemaps. In IEEE Information Visual-

ization 2003 Symposium Poster Compendium, pages 82–83.

IEEE Press, 2003.
[5] G. W. Furnas. Generalized fisheye views. In Human Factors

in Computing Systems CHI ’86, pages 16–23. ACM Press,

1986.
[6] D. Holten. Hierarchical edge bundles: Visualization of ad-

jacency relations in hierarchical data. IEEE Transactions

on Visualization and Computer Graphics, 12(5):741–748,

2006.
[7] M. Kaufmann and D. Wagner, editors. Drawing Graphs,

Methods and Models, volume 2025 of Lecture Notes in

Computer Science. Springer.
[8] M. Porter. L’avantage concurrentiel : comment devancer ses

concurrents et maintenir son avance. Paris : Intereditions,

1986.
[9] B. Shneiderman. Tree visualization with tree-maps: 2-d

space-filling approach. ACM Transactions on Graphics,

11(1):92–99, 1992.
[10] J. J. Thomas and K. A. Cook. Illuminating the path: The re-

search and development agenda for visual analytics. In Illu-

minating the Path: The Research and Development Agenda

for Visual Analytics, pages 33–68. IEEE Computer Society,

2006.
[11] F. van Ham and J. J. van Wijk. Interactive visualization of

small world graphs. In T. Munzner and M. Ward, editors,

IEEE Symposium on Information Visualisation, Austin, TX,

USA, 2004. IEEE Computer Science press.
[12] J. J. van Wijk and H. van de Wetering. Cushion treemaps:

visualisation of hierarchical information. In G. Wills and

D. Keim, editors, IEEE Symposium on Information Visual-

ization (InfoVis ’99), page 7378. IEEE CS Press, 1999.


