
HAL Id: lirmm-00157502
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00157502v1

Submitted on 26 Jun 2007 (v1), last revised 17 Dec 2007 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new tractable combinatorial decomposition
Binh-Minh Bui-Xuan, Michel Habib, Vincent Limouzy, Fabien de Montgolfier

To cite this version:
Binh-Minh Bui-Xuan, Michel Habib, Vincent Limouzy, Fabien de Montgolfier. A new tractable com-
binatorial decomposition. RR-07016, 2007. �lirmm-00157502v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00157502v1
https://hal.archives-ouvertes.fr

A new tractable combinatorial decomposition

Binh-Minh Bui-Xuan1 Michel Habib2 Vincent Limouzy2

Fabien de Montgolfier2

June 26, 2007

Abstract

This paper introduces the umodules, a generalisation of the notion of module in graph theory. The

structure to be decomposed, so-called homogeneous relation, captures among other undirected graphs,

tournaments, digraphs, and 2−structures. Our resulting decomposition scheme when restricted to undi-

rected graphs generalises the well-studied modular graph decomposition, and meets the recently intro-

duced bi-join decomposition. All other cases up to our knowledge lead to new notions.

First some properties of the umodule family are presented. Polynomial-time algorithms for non-

trivial umodule existence test and for maximal umodule computation are then provided. When the

input structure fulfills some natural axioms, the umodule family is shown to own a unique decomposition

tree. We provide various algorithms to compute this tree in polynomial time: their exact performance

depends on some size assumption.

Among other our theory applies to two particular cases: undirected graphs and tournaments. First,

the latter tree-decomposition time in theses two cases is linear in the size of the input structure. Besides,

our work here can also be seen as a unification of the bi-join undirected graph decomposition and

of a new tournament decomposition. From this viewpoint, we address the total decomposability of

those structures, and obtain strong structural relationship between the so-called cographs and round

tournaments. We then show how our theory provides a very natural manner to obtain several results on

the so-called round tournaments, including characterisation by forbiding induced subgraphs, recognition,

isomorphism testing, and feedback vertex set computation.

1 Introduction

In graph theory modular decomposition is now a well-studied notion [25, 11, 34, 18, 17], as well as some of
its generalisations [16, 31, 36, 37]. As having been rediscovered in other fields, the notion also appears under
various names, including intervals, externally related sets, autonomous sets, partitive sets, and clans. Direct
applications of modular decomposition include tractable constraint satisfaction problems [13], computational
biology [24], graph clustering for network analysis, and graph drawing.

Besides, in the area of social networks, several vertex partitioning have been introduced in order to catch
the idea of putting in the same part all vertices acknowledging similar behaviour, in other words finding
regularities [45]. Modular decomposition provides such a partitioning, yet seemingly too restrictive for real
life applications. The concept of a role [19, 20] on the other hand seems promising, however its computation
unfortunately is NP−hard [21, 22]. As a natural consequence, there is need for the search of relaxed, but
tractable, variations of the modular decomposition scheme. A step following this direction has generalised
graph modules to those of larger combinatorial structures, so-called homogeneous relations [8, 9, 10]. This
paper follows the same research stream, and weakens the definition of module in order to further decompose.
Fortunately we obtain a new tractable variation of modular decomposition, that we now introduce.

Modular decomposition is based on modules, more precisely vertex subsets without splitters: a vertex
exterior to a given vertex subset is called a splitter of the subset if it distinguishes some elements of the subset
from others. For instance an undirected graph splitter is linked with some vertices, while not linked to some

1LIRMM, Univ. Montpellier buixuan@lirmmfr
2LIAFA, Univ. Paris Diderot. {habib,limouzy,fm}@liafa.jussieu.fr.

Research supported by the French ANR project “Graph Decompositions and Algorithms (GRAAL)”

1

other ones. Therefore, the “outside” of a module constitutes for all vertices of the module the same ordered
partition. For instance, all vertices of an undirected graph module have the same neighbourhood. We here
address unordered-modules, so-called umodules for short: the outside of a umodule constitutes for all vertices
of the umodule the same unordered partition. For undirected graphs, if N is the “outsider” neighbourhood
of a vertex of a umodule, then N either is the outsider neighbourhood, or the outsider non-neighbourhood,
of all vertices of the umodules. Then same holds if N is the outsider non-neighbourhood of the first vertex
(see Fig. 1). A umodule thus can be seen as a vertex subset without interior splitters: there are no two
vertices inside the umodule that do not have the same unordered exterior partition.

This paper first displays umodule tractability by giving an O(|X|4 log |X|) time computation of the max-
imal umodules of an arbitrary homogeneous relation over a finite set X. If the input structure satisfies some
local configuration axiom, so-called the four elements condition, a decomposition scheme is provided, which
generalises the“decomposition frame with the intersection and transitivity properties” of Cunningham [16].
Notice that Cunningham’s theory has also been reconsidered under the formalism of “bipartitive families”
[35] and “unrooted set families” [31]. This has important structural consequences, both theoretical and
algorithmic. For instance in this case a compact tree representation of the umodule family with |X| leaves is
available. This tree can be computed in O(|X|4 log |X|) time using the previous algorithm. Moreover, when
the input structure also satisfies a second axiom, so-called the local congruence 2 condition, this computation
can be quickened to be in O(|X|2) time.

In order to show the importance of our decomposition scheme, the two particular cases of undirected
graphs and of tournaments, which satisfy at the same time the four elements and local congruence 2 con-
ditions, will be detailed. For undirected graphs our decomposition scheme meets the recently introduced
bi-join decomposition [36, 37]. The decomposition scheme for tournaments up to our knowledge is novel. In
both cases, a nice transformation can be made in order to reduce the umodular decomposition problem to
a general modular decomposition problem (as studied in [8, 9, 10]). This transformation is inspired from
the so-called Seidel-switch, which is an important non-trivial transformation on graphs [42]. Following the
transformation, we obtain linear time umodular graph and tournament decomposition algorithms.

We deepen the study and address the total umodular decomposability of undirected graphs and of tour-
naments, namely when any “large enough” sub-structure is umodular decomposable. Surprisingly enough,
this results to strong structural relationship between the important graph class of cographs (see e.g. [6])
and the tournament class of locally transitive tournaments, which also is known as round tournaments, a
sub-class of locally semicomplete digraphs (refer to [5] for more details). We then show how our theory
provides a very natural manner to obtain several results on round tournaments, including characterisation
by forbiding induced subgraphs, recognition, isomorphism testing, and feedback vertex set computation.

2 Notations

A (loopless finite simple undirected) graph G = (V,E) is such that V is a finite set, and E ⊆ {A ⊆ V ∧ |A| =
2}. The (open) neighbourhood of a vertex x of G is denoted by N(x) = {v | v ∈ V ∧{x, v} ∈ E}. The closed
neighbourhood of x is N [x] = N(x) ∪ {x}. The neighbourhood of x, restricted on the vertex subset X ⊆ V ,
is NX(x) = N(x) ∩X.

A (loopless finite simple) directed graph G = (V,A) is such that V is a finite set, and A ⊆ V 2\{(v, v) | v ∈
V }. The in-neighbourhood of a vertex x of G is denoted by N−(x) = {v | v ∈ V ∧ (v, x) ∈ A}. The out-
neighbourhood of a vertex x of G is denoted by N+(x) = {v | v ∈ V ∧ (x, v) ∈ A}.

For both undirected and directed graphs, we denoted by G[X] the induced subgraph of G on the vertex
subset X ⊆ V .

An oriented graph is an undirected graph along with an orientation on the edges. A tournament is an ori-
ented graph obtained from a clique, namely a complete undirected graph. Oriented graphs and tournaments
also are considered as directed graphs.

2

3 Umodule, an enlarged notion of module

Let X be a finite set. The family of all subsets of X is denoted by P(X). A reflectless triple is (x, y, z) ⊆ X3

with x 6= y and x 6= z. Reflectless triples will be denoted by (x|yz) instead of (x, y, z) since the first element
plays a particular role. Let H be a boolean relation over the reflectless triples of X. Given x ∈ X, we define
Hx as the binary relation on X \ {x} such that Hx(y, z)⇔ H(x|yz).

3.1 Homogeneous Relation & Module [8, 9, 10]

Homogeneous relations and modules are defined as follows.

Definition 1 (Homogeneous Relation and Module) [8, 9, 10] H is a homogeneous relation on X if,
for all x ∈ X, Hx is an equivalence relation on X\{x} (i.e. it fulfills the symmetry, reflexivity and transitivity
properties). A subset M ⊆ X is a module of H if

∀m,m′ ∈M, ∀x ∈ X \M, H(x|mm′).

Equivalently, a homogeneous relation H can be seen as a mapping from each x ∈ X to a partition of
X \{x}, namely the equivalence classes of Hx. If ¬H(x|mm′) we say that x distinguishes m from m′, or x is
a splitter of {m,m′}. A module M is trivial if |M | ≤ 1 or M = X. The family of modules of H is denoted
by MH , and M when no confusion occurs. H is modular prime, or M-prime, if MH is reduced to the trivial
modules.

Homogeneous relations generalise graphs and 2-structures, where modular decomposition still applies
under the different but equivalent name of clan decomposition [17, 18]. Roughly, a 2−structure is a complete
digraph G = (X, X2) along with an edge colouration C : X2 → N (see e.g. [17, 18]). Thus, a digraph is a
2−structure using two colours, denoting the existing and absent arcs. Notice that there is no need of the
concept of adjacency in a homogeneous relation. Besides, a straightforward relation can be derived from
graphs and 2−structures as follows.

Definition 2 (Standard Homogeneous Relation) [8, 9, 10] The standard homogeneous relation H(G)
of a directed graph G = (X, A) is defined such that, for all x, u, v ∈ X, H(G)(x|uv) is true if and only if the
two following conditions hold:
1. either both u and v or none of them are in-neighbours of x, and
2. either both u and v or none of them are out-neighbours of x.

This also holds for undirected graphs, tournaments, oriented graphs, and can be extended to a 2−structure
(G, C): H(G)(x|uv) is true if and only if C(x, u) = C(x, v) and C(u, x) = C(v, x).

Proposition 1 Let G be a graph, resp. tournament, oriented graph, directed graph, 2−structure. Modules
of its standard homogeneous relation H(G) are modules of G, resp. clan if G is a 2−structure, in the usual
sense [25, 34, 18, 17].

3.2 Umodules

We now introduce the central notion of this paper which, thanks to Proposition 2 (below), can be seen as a
proper generalisation of the classical modules/clans. Besides, from the subsequent Proposition 4, umodules
can also be seen as a dual notion to the generalised modules (in the sense of [8, 9, 10]).

Definition 3 (Umodules) A subset U of X is a umodule of H if

∀u, u′ ∈ U ∀x, x′ ∈ X \ U H(u|xx′)⇐⇒ H(u′|xx′)

Roughly, elements of a umodule come from the same “school of thinking”: if one element of a umodule
differentiates, resp. mixes together, some exterior elements, so does every element of the umodule. A
umodule U is trivial if |U | ≤ 1 or if |U | ≥ |X| − 1. The family of umodules of H is denoted by UH , and U

when no confusion occurs. H is umodular prime, or U-prime, if UH is reduced to the trivial umodules. It
follows from definition that

3

c
a

b
d

e

1

2

3

4

5

Figure 1: Modules and umodules in a graph: {a, b} is a module and also a umodule, {1, 2} is a umodule but
is not a module.

Ha

Hb

Hc

Hd

Ha c,d b

a,c d

a,b d

a,b,c

Figure 2: A homogeneous relation with a module which is not a umodule. {a, b} is a module: they belong
to the same equivalence class in both Hc and Hd. {a, b} is not a umodule: c and d belong to the same class
in Ha, and to different classes in Hb.

Proposition 2 If H is the standard homogeneous relation of an undirected graph (resp. a digraph, or a
2-structure), then any module of H also is umodule of H.

The two following basic propositions link umodules to the 1-intersecting families framework as defined in [28].

Proposition 3 Let U be the umodule family of a homogeneous relation. For any two umodules U,U ′ ∈ U,
if U ∩ U ′ 6= ∅ then U ∪ U ′ ∈ U.

Proposition 4 If M is a module of a homogeneous relation H over a finite set X, then X \M is a umodule
of H.

In case of undirected graphs, a natural question arises [15]: for which graphs the notions of module and
umodule coincide ? The following result solves this problem. For convenience, as in the case of module, the
umodules of a graph G refer to the umodules of the standard homogeneous relation of G.

Notice in this case that the complementary of a umodule also is a umodule. A threshold graph is a
graph that can be constructed from the single vertex graph by repeated applications of the following two
operations: addition of a single isolated vertex to the graph; and addition of a single dominating vertex to
the graph. Equivalently, a threshold graph is a graph with no induced P4, C4, nor co-C4, where P4 denotes
the four vertex path, C4 the four vertex cycle, and co-C4 the dual graph of C4.

Proposition 5 (Characterisation of threshold graphs) G is a threshold graph if and only if in all in-
duced subgraph of G, every umodule is either a module or the complementary of a module (or both).

Proof: If G is not threshold, there are four vertices a, b, c, and d which induce either a P4, a C4, or a co-C4.
For all three cases, in the induced subgraph G[{a, b, c, d}], the vertex subset {b, c} is a umodule which is
neither a module nor the complementary of a module.

Conversely, let U ⊆ V ′ be a umodule of some induced subgraph G′ = (V ′, E′) of G such that U is neither
a module nor the complementary of a module of G′. Let W = V ′ \ U . That U is not the complementary
of a module implies the existence of a ∈ U and b, c ∈ W such that a is a splitter of {b, c}, i.e. ¬H(a|bc)
with H being the standard homogeneous relation of G. W.l.o.g. we suppose that ab is an edge, and ac is a
non-edge. Let A be the set containing all neighbours of b that belong to U , and D = U \ A. Let B be the
set containing all neighbours of a that belong to W , and C = W \ B. Using the fact that U is a umodule,

4

and that a ∈ A, b ∈ B, and c ∈ C, one can deduce for all x ∈ A, y ∈ B, z ∈ C, t ∈ D that xy and zt are
edges while xz and yt are non-edges (this corresponds to bi-joins, which are detailed in see Section 7.1.1).
Moreover, U is not a module, and we can deduce that there is a vertex d belonging to D. Finally, one can
check that G[{a, b, c, d}] is either a P4, a C4, or a co-C4. �

Threshold graphs are known to be one of the smallest graph classes (see e.g. [6]). Therefore for most
graphs umodules and modules differ, and Section 7.1.1 is devoted to the umodular decompostion of undirected
graphs. However, before deepening decomposition issues, let us first display umodule tractability.

4 Algorithmic Tractability for the general case

This section addresses the general case of an arbitrary homogeneous relation H over a finite set X. As far as
we are aware, there is no evidence of a umodule decomposition scheme for arbitrary homogeneous relations.
The only valuable objects to compute thus seem to be the maximal umodules with respect to some cut.
Using this computation, we also provide a polynomial time umodule existence test (U-primality test).

4.1 Maximal Umodules Computation

Partitions will be ordered with respect to the usual partition lattice: P = {P1, . . . , Pp} is coarser than
Q = {Q1, . . . , Qq}, and Q is thinner than P, if every part Qi is contained in some Pj . It is noted Q ≤ P and
Q < P if the partitions are different. Let S be a subset of X. As the umodule family U is closed under union
of intersecting members (Proposition 3), the inclusionwise maximal umodules included in either S or X \ S
form a partition of X, denoted by MU(S) = MU(X \S). In other words, this is the coarsest partition of X
into umodules of H, which is thinner than {S, X \ S}. Roughly, it gives an indication on how the umodules
are structured w.r.t. S: a umodule either is included in a umodule of MU(S), or properly intersects S, or
properly intersects X \ S, or trivial.

Definition 4 Let H be a homogeneous relation over X. Let C ⊆ X. The relation RC on C is defined as:

∀x, y ∈ C,RC(x, y) if ∀a, b ∈ (X \ C) H(x|ab)⇐⇒ H(y|ab).

This clearly is an equivalence relation on C. Furthermore, C is a umodule if and only if RC only has one
equivalence class. Let us define a refinement operation, the main algorithmic tool for contructing MU(S).

Definition 5 Let P be a partition of X and C a part of P. Let C1, . . . , Ck be the equivalence classes of RC .
Refine(P, C) is the partition obtained from P, by replacing part C by the parts C1, . . . , Ck. A partition P is
refinable by C if Refine(P, C) 6= P. P is unrefinable if for every part C of P, we have P = Refine(P, C).

Let us say that Refine(P, C) is the refinement of P using part C. Refine(P, C) is thinner than P since
every part of P is included in a part of Refine(P, C). The Refine operation is the algorithmic tool we use
for constructing MU(S).

Lemma 1 Let H be a homogeneous relation over X, U a umodule of H, and P a partition of X. If U is
included in a part of P, then for any part C of P, U is included in a part of Refine(P, C). Moreover, a part
C of P is a umodule if and only if P is not refinable by C.

Proof: Let U be an umodule and P be the part containing U . For the first statement let consider Q =
Refine(P, C) where C is a part of P. If P 6= C, then P remains a part of Q and still contains U . Else if
P = C then, as U is a umodule, the vertices of U cannot be separated using refinement. The proof for the
second statement is immediate since C is a umodule if and only if P = Refine(P, C). �

Following the lemma, it is easy to write the simple partition refinement Algorithm 1. Subsequently we
explain how to improve the algorithm for better performance.

5

Data: S ⊆ X
Result: MU(S)
P← {S, X \ S}
while there exists an unmarked part Cin P do

if P = Refine(P, C) then
mark C

else
P← Refine(P, C)

Algorithm 1: Standard refinement algorithm

In this standard partition refinement algorithm, each part of the current partition may be marked, which
means “processed”. When P is replaced by Refine(P, C), the marked parts of Refine(P, C) are exactly the
marked parts of P.

Theorem 1 For every S ⊆ X, Algorithm 1 computes the coarsest umodule partition thinner than {S, X−S}
in O(|X|3) time.

Proof: Let us examine the correctness of the algorithm. From first point of Lemma 1, if a part C is marked,
then C is a umodule. Consequently, when the algorithm terminates, P is unrefinable. In order to prove
that P, when the algorithm terminates, is indeed MU(S), one can notice that lemma 1 implies the following
invariant: There is no umodule partition Q such that P < Q < {S, X−S}, where < is the natural ordering in
the partition lattice of X. Therefore, starting from {S, X − S} the algorithm constructs a strictly decreasing
chain of partitions of X ending at MU(S).

For time complexity, we notice that: at each step of the ”while” loop of the algorithm, either a part is
marked (and will never be unmarked, or split), or a part is broken by Refine into at least two new parts.
As the number of part of P is bounded by |X|, each of the events above can happen at most |X| time and
the ”while” loop runs O(|X|) times. According to Lemma 2, Refine can be implemented in O(|X|2) time.
Using a stack or any other data structure, it is not hard to find an unmarked part in constant time. As the
”while” loop performs O(1)-time computations plus one call to Refine, the overall algorithm complexity is
O(|X|3). �

Furthermore, the algorithm can be improved as follows.

Lemma 2 It is possible to compute Refine(P, C) in O(|X|2) time.

Proof: We first show how to test for RC(x, y). Compute, for every element x of C, a partition H(x,C) =

{P 1
x , . . . , P

k(x)
x } of X \C. It is the restriction of Hx to X \C, i.e P i

x = Hi
x \C. It is easy to build in O(|X|)

time for each element of C. Then we have RC(x, y) if and only if H(x,C) is exactly the same partition
than H(y, C). It can be tested in O(|X|) time, but performing this for each couple of elements of C would
lead to an O(|X|3) time implementation of Refine(P, C). Let us instead consider H(x,C) as a b bit vectors
(with b = |X \C| = O(|X|)). Looking for duplicates among these vectors can be performed easily, by bucket
sorting them on their first bit, then the second, and so on. A scan of all vectors (i.e. of all elements of C)
compute the pairwise equal vectors, i.e the RC equivalent elements of C. It is then easy to split C and to
update P, in O(|X|2) time. �

Theorem 2 For every S ⊆ X, the coarsest umodule partition thinner than {S, X − S} can be computed in
O(|X|2 log(|X|)) time.

Proof: Using the well-known Hopcroft’s partition refinement rule it is possible to improve the above algo-
rithm. The idea is to avoid at each step to consider the biggest part, see [40]. Thus, to compute MU(S)
assuming that |S| ≤ |X − S|, we first partition X − A using the ”neighbourhoods lists” of all a ∈ A. If we
assume a data structure which links each edge ay to its opposite edge ya. We can associate in the meantime
to each element a ∈ A a bitvector representing how X − A sees a. These |A| bitvectors of size |X − A| can
be sorted in O(|X|.|X − A|) ∈ O(|X|2). Using Hopcroft’s rule, a vertex a can only be explored at most
O(log(|X|) time, which yields the announced complexity. �

6

4.2 Testing for U-primality

By definition, if MU(S) contains only trivial umodules, then all nontrivial umodules of X intersect both S
and X \ S. This allows to test the umodular primality of a homogeneous relation in O(|X|4 log |X|) time
using the following brute force algorithm: test if MU({x, y}) is trivial for all pair of elements {x, y}; output
a non trivial umodule if any. Notice that it is hard to have a better performance using the MU algorithm
as toolbox, since there exist homogeneous relations having X \ {x, y} as unique non trivial umodule.

Theorem 3 It is possible to check in O(|X|4 log(|X|)) time if a homogeneous relation H is U-prime and, if
not, to output a nontrivial umodule.

5 Local Congruence and Crossing Families

Definition 6 (Local congruence) Let H be a homogeneous relation on X. For x ∈ X, the congruence
of x is the maximal number of elements that x pairwise distinguishes. In other words, it is the number of
equivalence classes of Hx. The local congruence of H is the maximum congruence of the elements of X.

Remark 1 The standard homogeneous relation of an undirected graph or a tournament has local congruence
2. This value is 3 for an antisymmetric directed graph or a directed acyclic graph. The value is 4 for digraphs.

When the local congruence of H is 2, so-call LC2 condition for short, we obtain the following strutural
property on its umodule familly.

Definition 7 (Crossing family) F ⊆ 2X is a crossing family if, for any A,B ∈ F , that A ∩ B 6= ∅ and
A ∪B 6= X implies A ∩B ∈ F and A ∪B ∈ F (see e.g. [41] for further details).

Proposition 6 The umodules of a homogeneous relation with local congruence 2 form a crossing family.

Proof: Whithout any assumption on the relation, the union of two overlapping umodules is also a umodule.
Now let us consider two overlapping sets A,B ∈ F , with A ∩ B 6= ∅ and A ∪ B 6= X, by hyphothesis A \ B
and B \A are non-empty, a ∈ A \B and b ∈ B \B. Moreover to be relevant A∩B must contain at least two
elements otherwise the intersection is obviously a umodudes. So y, z ∈ A ∩ B. And finally x ∈ X \ A ∪ B.
By hyphothesis we have H(a|xb) ⇔ H(y|xb) ⇔ H(z|xb) and H(b|xa) ⇔ H(y|xa) ⇔ H(z|xa) and as there
are only two possible classes we have H(y|ab)⇔ H(z|ab). �

Crossing families commonly arise as the minimizers of a submodular function. For instance, the minimum
s, t−cuts of a network form a crossing family. Moreover such a family admits a compact representation in
O(|X|2) space using a tree representation [23].

Considering undirected graphs or tournaments, it is easy to check that the umodume family necessarily
is self-complemented. This will be developped in Section 7. But it should be notice that it is not the case
for all relations with local congruence 2.

6 Self-complementarity and Bipartitive Families

As previsouly said, forcing the LC2 condition on a homogeneous relation H suffices to describe a polynomial-
space structure coding the family of umodules of H. Examples of such a relation include standard homo-
geneous relations of graphs and tournaments. Moreover, those relations have stronger properties, which we
will use to show a linear-space structure coding the umodule family.

Definition 8 (Four elements condition) A homogeneous relation H fullfills the four elements condition
if

∀ m,m′, x, x′ ∈ X,

{

H(m|xx′) ∧H(m′|xx′) ∧H(x|mm′)⇒ H(x′|mm′)
¬H(m|xx′) ∧ ¬H(m′|xx′) ∧ ¬H(x|mm′)⇒ ¬H(x′|mm′)

.

7

Proposition 7 Stardard homogeneous relations of undirected graphs and tournaments satisfy the four ele-
ments condition.

This is a light regularity condition, allowing to avoid examples similar to that of Fig. 2. Surprisingly
enough, it suffices to make the umodule family behave in a very tractable manner (Proposition 8 and
Corollary 1 below).

Definition 9 (Self-complementary condition) A family F of subsets of X is self-complemented if for
every subset A, A ∈ F implies X \A ∈ F.

Proposition 8 If a homogeneous relation H fullfills the four elements condition then the family U of umod-
ules of H is self-complemented.

Proof: Let us assume that U is a umodule and X \U is not, i.e. there are two elements x and x′ of X \U ,
and two elements m and m′ of X such that H(x|mm′) but ¬H(x′|mm′). As U is a umodule, either both
m and m′ distinguish x from x′ (i.e. ¬H(m|xx′) and ¬H(m′|xx′)) or none of m and m′ distinguish x from
x′ (i.e. H(m|xx′) and H(m′|xx′)). The first case is forbidden by the first implication of the four elements
condition, and the second case is forbidden by the second implication. �

The four elements condition is quite convenient since it allows to shrink a umodule, hence apply the
divide and conquer paradigm to solve optimisation problems. However, as far as umodules are concerned,
the self-complementary relaxation is sufficient to describe a tree-decomposition theorem as can be seen in
the following section. Finally, notice that the converse of Proposition 8 does not neccessarily hold. The
characterisation of relations having a self-complemented umodule family by a local axiom, such as the four
elements condition, actually appears to be more difficult.

6.1 Tree Decomposition Theorem

The following results on bipartitions can be found in [16] under the name of “decomposition frame with the
intersection and transitivy properties”, in [35] under the name of “bipartitive families” (the formalism used
in this paper), and in [31] under the name of “unrooted set families”.

We call {X1
i , X2

i } a bipartition of X if X1
i ∪X2

i = X and X1
i ∩X2

i = ∅. Two bipartitions {X1
i , X2

i } and
{X1

j , X2
j } overlap if for all a, b = 1, 2 the four intersections Xa

i ∩Xb
j are not empty. A bipartition is trivial

if one of the two parts is of size 1. Let B = {{X1
i , X2

i }i∈1,...,k} be a family of k bipartitions of X. The
strong bipartitions of B are those that do not overlap any other bipartition of B. For intance, the trivial
bipartitions of B are strong bipartitions of B.

Proposition 9 If B contains all trivial bipartitions of X, then there exists a unique tree T (B).

• with |X| leaves, each leaf being labelled by an element of X.

• such that each edge e of T (B) correspond to a strong bipartition of B: the leaf labels of the two connected
components of T − e are exactly the two parts of a strong bipartition, and the converse also holds.

Let N be a node of T (B) of degree k. The labels of the leaves of the connected components of T−N form a
partition X1, . . . , Xk of X. For I ⊂ {1, . . . , k} with 1 < |I| < k, the bipartition B(I) is {

⋃

i∈I Xi, X\
⋃

i∈I Xi}.

Definition 10 (Bipartitive Family) A family of bipartitions is a bipartitive family if it contains all the
trivial bipartitions and if, for two overlapping bipartitions {X1

i , X2
i } and {X1

j , X2
j }, the four bipartitions

{Xa
i ∪Xb

j , X \ (Xa
i ∪Xb

j)} (for all a, b = 1, 2) belong to B.

Theorem 4 If B is a bipartitive family, the nodes of T (B) can be labelled complete, circular or prime, and
the children of the circular nodes can be ordered in such a way that:

• If N is a complete node, for any I ⊂ {1, . . . , k} such that 1 < |I| < k, B(I) ∈ B.

8

• If N is a circular node, for any interval I = [a, . . . , b] of {1, . . . , k} such that 1 < |b−a| < k, B(I) ∈ B.

• If N is a prime node, for any element I = {a} of {1, . . . , k} B(I) ∈ B.

• There are no more bipartitions in B than the ones described above.

For a bipartitive family B, the labelled tree T (B) is thus an O(|X|)-sized representation of B, while the
family B can have up to 2|X|−1 − 1 bipartitions of |X| elements each. Furthermore, it allows to perform
some algorithmic operations efficiently on B. The self-complemented umodule families fit in this formalism.
Indeed if we define the bipartition closure of the umodule family of a homogeneous relation H as U′(H) =
{{U,X \ U} | U is a umodule of H}, then

Proposition 10 If the umodule family of a homogeneous relation H is self-complemented, then its bipartition
closure U′(H) is a bipartitive family.

Proof: As U′(H) is self-complemented each part of a bipartition belonging to U′(H) is a umodule. Fur-
thermore if the bipartitions {U,X \ U} and {V,X \ V } overlap (in the bipartition sense) then U and V
overlap (in the set sense). According to Proposition 3 if U and V overlap U ∪V is a umodule, and therefore
{U ∪V,X \ (U ∪V) ∈ U′(H)}. The self-complementary condition gives the results needed for the three other
bipartitions. �

Corollary 1 There exists a unique O(|X|)-sized decomposition tree that gives a description of all possible
umodules of a homogeneous relation H fulfilling the self-complementary condition.

This tree is henceforth called umodular decomposition tree. Notice that it is an unrooted tree, unlike the
modular decomposition tree. The computation of this tree can be done in polynomial time using results of
Section 4 as we are to describe next. However, it would be nice to find more efficient algorithms.

6.2 Tree Decomposition Algorithm

Let H be a self-complemented homogeneous relation, T (H) be its umodular decomposition tree and U be
a nontrivial strong umodule (if any). Let us examine some consequences of Theorem 4. Notice that two
umodules overlap if and only if they are incident to the same node of T (H). As H is self-complemented
the union of two overlapping umodules is a umodule (Proposition 3) but also their intersection. The strong
umodule U is an edge in T (H) incident with two nodes A and B.

• If one of them, say A, is labelled prime then for any x, y /∈ U such that the least common ancestor of
them in T (H) is A, then U ∈MU({x, y}).

• If one of them, say A, is labelled circular then for any x belonging to the subtree rooted in the successor
of U in the ordered circular list of A, and for any y belonging to the subtree rooted in the predecessor
of U , then U ∈MU({x, y}).

• If one of them, say A, is labelled complete then the intersection, for all x, y /∈ U whose least common
ancestor is A, the intersection of all parts of MU({x, y}) containing U is exactly U .

As a consequence:

Theorem 5 There exists an O(|X|4 log(|X|)) algorithm to compute the unique decomposition tree for a self
complemented umodule family.

Proof: For every pair {x, y} compute MU({x, y}) in O(|X|2 log(|X|)) time (Theorem 1). That gives a
family of at most |X|3 umodules. Greedily compute the intersection of overlapping umodules of the family.
It is possible in O(|X|4 log(|X|)) time: for each triple (a, b, c) look for the umodules containing exactly two
of them, they overlap. Then we have all strong umodules. We just have to order them into a tree and to
label its nodes, an easy task. �

9

1

2

34

5

6

Seidel(1)
1

2

34

5

6

Figure 3: An example of a Seidel switch on an undirected graph

7 Seidel-switching Theorem, a potent Tractability

Standard homogeneous relations of graphs and tournaments are of local congruence 2, and their umod-
ule families are self-complemented. Firstly this means we can either decompose those families using the
crossing decomposition or using the bipartitive decomposition. Moreover, relations that satisfy both the
self-complementary and LC2 properties seem to own stronger potential. In particular, let us show a nice
local transformation from the umodules of such a relation to the modules of another relation. This opera-
tion was first introduced in J. Seidel in [42] on undirected graphs. It was later studied by several authors
interested in some computational aspects [14, 32] and structural properties [29, 30] and recently in [36, 37].
The operation is referred to as Seidel switch in [30], and we will adopt this termonology.

Roughly speaking, for an undirected graph G = (V,E), and W ⊆ V , the Seidel switch on G, W is
obtained by taking the complement of the edges between G[W] and G[V \W] (but it should be noticed that
G[W] and G[V \W] remain unchanged). Actually we only use a particular case of this powerful operation,
when applied to homogeneous relation, we identify the set W as one of the part of an element x ∈ X. For
instance, on graphs the set W will be chosen as the neighbourhood of vertex. Moreover there is also a slight
difference with the original operation, that is we remove from the transformation the element w such that
Hi

w = W . For convenience, if H is a homogeneous relation on X and s ∈ X, we also refer to the equivalence
classes of Hs as H1

s , . . . ,Hk
s .

Definition 11 (Seidel switch) Let H be a homogeneous relation of local congruence 2 on X, and s an
element of X. The Seidel switch at s transforms H into the homogeneous relation H(s) on X \ {s} defined
as follows.

∀x ∈ X \ {s},H(s)1x = (H1
x∆Hj

s) \ {s} and H(s)2x = (H2
x∆Hj

s) \ {s}

with j such that x /∈ Hj
s . where A∆B denotes the symmetric difference of A and B.

An illustration on undirected graph is given in Figure 3.

Theorem 6 Let H be a homogeneous relation of local congruence 2 on X such that UH is self-complemented.
Let s be a member of X, and U ⊆ X a subset containing s. Then, U is a umodule of H if and only if
M = X \ U is a module of the Seidel switch H(s).

Proof: Let C = H1
s ∩M and D = H2

s ∩M . Since H is of local congruence 2, {C,D} is a partition of M .
Let a ∈ U \ {s}. Suppose that U is a umodule of H. Then, for all y, z /∈ U , H(a|yz) if and only if H(s|yz).
In other words, C is included in one class among H1

a and H2
a while D is included in the other class. As

C ⊆ H1
s and D ∩H1

s = ∅, C ∪D is included in one among the two classes H(s)i
a = Hi

a∆Hj
s (i ∈ {1, 2} and

j as in Definition 11). Hence, M = C ∪D is a module of H(s).
Conversely, if M is a module of H(s), then C ∪D is included in either H(s)1a or H(s)2a. Moreover, the

definition of the Seidel switch can also be written as Hi
a = H(s)i

a∆Hj
s for i ∈ {1, 2} and j as in Definition

11. Therefore, C is included in one class among H1
a and H2

a while D is included in the other class. In other
words, for all a ∈ U \ {s}, and y, z /∈ U , H(a|yz) if and only if H(s|yz). This implies for all a, b ∈ U , and
y, z /∈ U , H(a|yz) if and only if H(b|yz) and U is therefore a umodule. �

10

Modular decomposition trees have well-known properties [11, 34]. They are rooted trees whose leaves
are in one-to-one correspondence with elements of X. A node of the modular decomposition tree is exactly
a strong module, a module that overlap (in the set sense) no other modules.

For a node N let F1, . . . , Fk be the leaf-sets of its k children in the tree. When the family of umodules of
H is bipartitive as it is the case in Theorem 6, the family of modules of any Seidel switch of H is a partitive
set family [11], also known as rooted set family [31]. The following theorem from [11] describes the structure
of partitive set families.

Theorem 7 The nodes of a modular decomposition tree T can be labelled complete, linear or prime, and
the children of the linear nodes can be ordered in such a way that:

• If N is a complete node, for any I ⊂ {1, . . . , k} such that 1 < |I| < k,
⋃

i∈I Fi is a module.

• If N is a linear node, for any interval I = [a, . . . , b] of {1, . . . , k} such that 1 < |b− a| < k,
⋃

i∈I Fi is
a module.

• If N is a prime node, for any element I = {a} of {1, . . . , k}
⋃

i∈I Fi is a module.

• There are no more modules than the ones described above.

The relationships between the umodular decomposition tree of H and the modular decomposition tree
of H(v) are very tight:

Proposition 11 Let H be a homogeneous relation of local congruence 2 on X such that UH is self-complemented.
Let s be an element of X. The umodular decomposition tree TH of H and the modular decomposition tree
TH(s) of the Seidel switch H(s) of H at s have the following properties:

• the two trees are exactly the same (same nodes and edges) excepted that the leaf with label s is missing
in TH(s) but present in TH .

• The node of TH that is adjacent to the leaf s corresponds to the root of TH(s) (while TH is unrooted).

• A circular node of TU corresponds to a linear node of TM (s). The orderings of the children are the
same. The prime and complete nodes are the same in both trees.

Proof: This is a consequence of Theorem 6. Every strong module of H(s) gives a strong bipartition of TH ,
and the converse is true. Then for a node N of the modular decomposition tree, for any union

⋃

i∈I Fi of
leaf-sets of children there is a bipartition {

⋃

i∈I Fi, X \ (
⋃

i∈I Fi) = B(I) using the notations defined above.
For each bipartition of umodules of H, the part that contain s is dropped and the other part is put is the
family of modules of H(s). �

A similar proof (and more detailed) with this result can be found in [31]. That article indeed describes
the relationship between the consecutive-ones ordering and the circular-ones ordering of a boolean matrix,
but the results (described in [31] as the transformation of a PQ-tree into a PC-tree) are the same. Notice
that the modular decomposition tree of H can be trivial, while the one of its Seidel switch at s may be not.

Corollary 2 The umodular decomposition tree of a self-complemented homogeneous relation of local con-
gruence 2 on X can be computed in O(|X|2) time.

Proof: Using a Seidel switch on any element will result in a homogeneous relation having the so-called
modular quotient property [8]: every module of the relation also is a umodule. Then, the O(|X|2)-time
modular decomposition algorithm for modular quotient relations depicted in [8] and Proposition 11 allow to
conclude. �

11

b)a)

Figure 4: a. A bi-join (i.e. umodule) in an undirected graph, b. a umodule in a tournament

b

x

a

c

x

b

a

c

Figure 5: Forbidden arc configuration between neighbourhoods

7.1 Applications to undirected graphs and tournaments

7.1.1 Bi-join decomposition of undirected graphs

Let us now apply the umodular decomposition framework to graphs, or more exactly to the standard homo-
geneous relation of a graph. The resulting decomposition was already published in [36, 37]. We summarise
here the main results of that paper and establish the link with umodules.

Definition 12 (bi-join) A bi-join of a graph G = (X, E) is a bipartition {X1, X2} of the vertex-set such
that the edges between X1 and X2 form at most two disjoint complete bipartite graphs, and that for each
i, j = 1, 2 every vertex of Xi is adjacent to a vertex of Xj.

Proposition 12 If {X1, X2} is a bi-join of a graph then both X1 and X2 are umodules of G.

a

b

c

d

e

f

g

b
A C

X
1

X
2

Figure 6: Example of a bi-join of a graph

12

Gem Co-Gem C5 Bull

Figure 7: Forbidden induced subgraphs for Completely Bi-join Decomposable Graphs

Proof: Let A (resp. C) be the vertices of X1 (resp. X2) incident with the first complete bipartite graph,
and B (resp. D) be the other vertices of X1 (resp. X2). Any vertex of X1 distinguishes a vertex of C from
a vertex of D, but can not distinguish two vertices from C, nor two vertices from D. X1 is thus a umodule,
and a similar proof holds for X2. �

In [36, 37] the Seidel switch was used to derive most of the properties:

Proposition 13 Let G be a graph. {X1, X2} is a bi-join of G if and only if for every v ∈ X1 (resp. X2)
X2 (resp. X1) is a module of the Seidel switch G(v).

It may be used to prove the converse of Proposition 12:

Proposition 14 If U is a umodule of a graph G = (X, E) then {M,X \ U} is a bi-join of G.

This is because the homogeneous relation of a tournament has local congruence 2 and is self-complemented
(see Section 5).

Corollary 3 The umodular decomposition of a graph equipped with its standard homogeneous relation is
exactly its bi-join decomposition.

Among the consequences exposed in [36, 37], bi-join (thus umodular) decomposition trees have no circular
nodes.

Theorem 8 [37] There is a unique unrooted decomposition tree T associated to an undirected graph G. All
the nodes are labelled degenerate or prime. There is exactly two kind of degenerate nodes: The clique nodes
Kn and the complete bipartite node Kn,m.

7.1.2 Isomorphism of (C5,bull,gem,co-gem)-free graphs

In this section, we prove that the isomorphism testing testing between two graphs totally decomposable w.r.t
bi-join decomposition can be tested in linear time. This class of graph is studied by [37]. It is exactly the
(C5,bull,gem,co-gem)-free graphs (see Figure 7), and also exactly the graphs that can be obtained from a
single vertex by a sequence of (twin,antitwin)-extensions.

It follows from definition that the decomposition tree has no prime nodes; furthermore, the decomposition
tree alone is an O(n)-sized encoding of the graph (like the cotree is an O(n)-sized encoding of a cograph).
We are then reduced to a tree isomorphism problem, as proven below.

Theorem 9 Let G1 and G2 be graphs totally decomposable w.r.t. bi-join decomposition. Isomorphism
between G1 and G2 can be tested in linear time.

Proof: From Theorem 8 and [37], the decomposition tree of a graph is uniquely defined, and a decomposition
tree with no prime nodes corresponds to exactly one graph. It is then sufficient to test for decomposition
trees isomorphism.

It is possible to compute the decomposition trees of G1 and G2 in O(n + m) (see [37]). Then the tree
isomorphism is achieved in linear time [1]. Notice that decomposition trees are unrooted, and that the
internal node labelling with a K or S is already known. �

13

7.1.3 A New Tournament Decomposition

We have investigated in Section 7.1.1 the umodules of undirected graphs, and noticed that they lead to
a nice decomposition. Similarly for tournaments our theory applies and we present a new tournament
decomposition: the umodular decomposition. It is indeed the umodular decomposition of the standard
homogeneous relation of the tournament. Actually this decomposition is more powerful than the general
modular decomposition of [8, 9, 10], because every module of a tournament is a umodule, while umodular
decomposition is able to decompose M-prime tournaments – those without nontrivial modules (Figure 8).

e

a

b

d

c f

Two Umodules
(Unrooted) Umodular
decomposition tree

Circular

d

f

e

c

a

b

Figure 8: An example of a M-prime tournament which is not U-prime. The umodular decomposition tree is
drawn on the right.

We can deduce from Proposition 11 some very interesting properties of the umodular decomposition of
tournaments.

Corollary 4 The umodular decomposition tree of a tournament has no complete node. And there exists a
circular ordering of the vertices of the tournament such that every umodule of the tournament is a factor
(interval) of this circular ordering.

Proof: The first observation is obvious using Theorem 6. Furthermore any traversal of the umodular
decomposition tree, respecting the order of the sons of a circular node, orders the leaf labels into the desired
circular ordering. �

This result was already known for modular decomposition [35]: there exists a (not circular) permutation
of the vertices whose every module of the tournament is a factor. It is called factorising permutation.

Proposition 15 The umodular decomposition tree of a tournament can be computed in O(|X|2) time.

Proof: Again Theorem 6 says that one just has to perform a Seidel switch on a arbitrarily chosen vertex,
then to compute the modular decomposition of the tournament. This can be done in linear (in fact O(|X|2))
time using the algorithm from [33]. Proposition 11 tells how to cast the modular decomposition tree into
the umodular one. �

Given a graph decomposition scheme, is often worth to consider the totally decomposable graphs with
respect to that scheme, namely the graphs in which every ”large enough” subgraph admits a non trivial
decomposition. In general this leads to the definition of very interesting class of graphs, such as cographs
with modular decomposition or distance hereditary graphs with split decomposition. Totally umodular
decomposable homogeneous relations may also be defined. Let us deepen the special case of standard
homogeneous relations of tournaments.

7.2 Locally transitive tournaments

In this section, we focus on totally umodular decomposable tournaments. We first obtain strong structural
relationship between the important graph class of cographs (see e.g. [6]) and the tournament class of locally

14

transitive tournaments, which also is known as round tournaments, a sub-class of locally semicomplete
digraphs (refer to [5] for more details). We then show how our theory provides a very natural manner to
obtain several results on round tournaments, including characterisation by forbiding induced subgraphs,
recognition, isomorphism testing, and feedback vertex set computation. It is well-known that:

Proposition 16

• If T is an M -prime tournament then T contains an induced cycle with 3 vertices.

• T is totally decomposable w.r.t. modular decomposition if and only if it contains no induced cycle with
3 vertices (it is a transitive tournament).

7.2.1 Characterisation theorems

We have:

Theorem 10 If T is an U -prime tournament then T contains a diamond (one of the induced subgraph
described in Figure 9). T is totally decomposable w.r.t. umodular decomposition if and only if it is diamond-
free.

Figure 9: Minimal U-Prime Configurations in tournaments = forbidden subgraphs of a tournament totally
decomposable w.r.t. umodular decomposition

Proof: Thanks to Theorem 6, T is U -prime if and only if for any vertex v a Seidel switch at v gives an
M -prime tournament. Thanks to Proposition 16, one just has to check all the four-vertices tournaments
where a Seidel switch on a vertex produces the cycle with 3 vertices. It is tedious but no hard. �

Another characterisation is possible:

Definition 13 A tournament T is locally transitive if for each vertex x ∈ V (T), T[N+(x)] and T[N−(x)] are
transitive tournaments.

It is not hard to see the equivalence between the two classes, a classical result:

Proposition 17 A tournament T is diamond-free if and only if it is locally transitive

7.2.2 Recognition algorithm

Thanks to Theorem 10 the class membership can be checked in O(|X|4) time, and thanks to Proposition 17
in O(|X|3) time. The following condition provides however a faster test by checking only one vertex of the
graph.

Another linear-time recognition algorithm was given by [12]. As far as we know, this french thesis
was never published in english. We present here another linear-time recognition algorithm, based on the
factorising permutation instead of so-called circular ordering (see below). Our algorithm is furthermore
certyfing : it outputs a diamond if the graph is not diamond-free, i.e. not locally transitive.

Proposition 18 Let T be a tournament and x an arbitrary vertex. T is locally transitive if and only if

15

1. T[N+(x)] and T[N−(x)] are transitive tournaments, and

2. if a vertex a ∈ N+(x) has an out-neighbour b ∈ N−(x) and an in-neighbour c ∈ N−(x) then (b, c) ∈ T .

3. if a vertex a ∈ N−(x) has an out-neighbour b ∈ N+(x) and an in-neighbour c ∈ N+(x) then (b, c) ∈ T .

Proof: Let us suppose T is totally decomposable. According to Proposition 17, (i) holds. If (ii) does not
hold for some vertices a, b and c, i.e. if there is an arc (c, b) instead of (b, c), then {a, b, c, x} induce a
forbidden configuration of Figure 9. Same if (iii) does not hold.

Conversely let us suppose that the three conditions hold. We shall prove that for every vertex, its in-
and out-neighbourhoods are transitive. Then Proposition 17 tells T is totally decomposable w.r.t. umodular
decomposition. For x, this is true thanks to (i) . Let t be a vertex of N+(x). If T[N+(t)] is not transitive
then it contains a circuit (u, v, w) (with arcs, w.l.o.g., (u, v) and (v, w) and (w, u).) As both T[N+(x)] and
T[N−(x)] are transitive, the circuit overlaps them. Suppose w.l.o.g u ∈ N+(x) and w ∈ N−(x). Then (iii) is
not true: take a = w and b = u and c = t.
If we suppose T[N+(t)] is not transitive, it contains a circuit (u, v, w) with an arc (u, w), u ∈ N+(x) and
w ∈ N−(x). (iii) is also violated: take a = w and b = t and c = u.

Now let t be a vertex of N−(x). If T[N+(t)] is not transitive then it contains a circuit (u, v, w) with an arc
(u, w), u ∈ N+(x) and w ∈ N−(x). (ii) is violated with a = u and b = w and c = t. And if T[N−(t)] is not
transitive then it contains a circuit (u, v, w) with an arc (u, w), u ∈ N−(x) and w ∈ N+(x). (ii) is violated
with a = u and b = t and c = w. �

Theorem 11 There exists an O(|X|2)-time certifying algorithm to recognize if a tournament is locally tran-
sitive.

Proof: Condition (i) of the Proposition 18 can be tested in O(|X|2) time. Number a0 . . . ak the vertices of
N+(x) in increasing order along the transitive tournament T[N+(x)], and b0 . . . bl the vertices of N−(x) in
increasing order. If ai fulfills (ii), then its out-neighbourhood contains b0 . . . bf(i) and its in-neighbourhood
bf(i)+1 . . . bl. This can be tested in O(|X|) time. A similar test in O(|X|) time is performed for each ai and
bj , leading to an O(|X|2)-time algorithm. �

Algorithm 2 presents a certifying implementation of this proof.

7.2.3 Umodular decomposition tree of a locally transitive tournament

Theorem 12 (Umodular decomposition tree of locally transitive tournaments) The umodular de-
composition tree of a locally transitive has only one single node. Moreover this node is a circular node.

Proof: According to Theorem 6 for any x the Seidel switch at vertex x of a tournament T totally de-
composable w.r.t. umodular decomposition gives a tournament T (x) totally decomposable w.r.t. modular
decomposition. According to Proposition 16 T (x) is transitive: its modular decomposition tree has a single
linear node. According to Proposition 11 the umodular decomposition tree of T only has a circular node.

�

It is well known that for encoding a cograph, it is enough to store its modular decomposition tree.
Unfortunately, for a locally transitive tournament, the decomposition tree is not enough since it does not
encode adjacencies between vertices.

The circular ordering of the vertices along this unique circular node is called a circular factorising
permutation, since every umodule of G is an interval of this circular permutation, and the converse also
holds, by definition of a circular node.

Further results on locally transitive tournaments are known:

16

Data: A Tournament T = (V,A)
Result:

Yes: A circular factorising permutation σ of T .
No: An obstruction.

begin
Pick a vertex x ∈ V
A ← N+(x)
B ← N−(x)
if T[A] is not a transitive tournament then

Failure: certificate is A dominated 3-circuit
if T[B] is not a transitive tournament then

Failure: certificate is A anti-dominated 3-circuit
for i ← 1 to k do

if there exists j ∈ {0, . . . , l} such that then
∀ p ≤ j bp ∈ N+

B
(ai)

∀ q > j bq ∈ N−
B

(ai)

else
Find α and β such that α < β
with bα ∈ N−

B
(ai) and bβ ∈ N+

B
(ai)

3-Circuit ← (ai, bβ , x)
Dominating vertex ← bα

Failure: certificate is (Dominating vertex,3-Circuit)

for i ← 1 to l do
if there exists j ∈ {0, . . . , k} such that then
∀ p ≤ j ap ∈ N+

A
(bi)

∀ q > j aq ∈ N−
A

(bi)

else
Find α and β such that α < β
with aα ∈ N−

A
(bi) and aβ ∈ N+

A
(bi)

3-Circuit ← (aα, bi, x)
Anti-Dominating vertex ← aβ

Failure: certificate is (Anti-Dominating vertex,3-Circuit)

Pick a vertex x
Compute a Seidel switch on x
σ ← Seidel(x) ∪ x
return σ(V) a circular factorising permutation.

end
Algorithm 2: Certifying recognition of a totally U -decomposable tournament. The certificate output on
failure is a diamond; on success is a circular factorising permutation (the set of intervals of this permutation
is exactly the set of umodules)

17

1

2

3

4 5

6

0

Figure 10: The complete circuit of 7 vertices (k = 3).

7.2.4 Circular structure of locally transitive tournaments

A circular structure result of Locally transitive tournament is known from Lopez and Rauzy, we recall it
here.

Definition 14 A tournament G = (V,E) is a complete circuit if the vertices can be numbered from 0 to
2k and if for every vertex numbered i, its out-neighbourhood is the vertices numbered from i + 1 to i + k
inclusively (modulo 2k + 1).

Theorem 13 [27] Let G = (V,E) be a locally transitive tournament. V can be partionned into V0 . . . V2k,
k ≥ 0, and

• for each 0 ≤ i ≤ 2k G[Vi] is a transitive tournament

• for x ∈ Vi and y ∈ Vj, if there exists a ≤ k such that i = a + j modulo 2k + 1 then (x, y) is an arc of
G, otherwise (y, x) is an arc of G

Notice than every Vi is a module of the graph, furthermore these modules are maximal wrt inclusion (the
only module containing Vi is V).

Corollary 5 A nontrivial module M of a locally transitive tournament induces a transitive tournament.

The circular ordering of the 2k + 1 strong modules, i.e. the circular partition V0 . . . V2k as defined in
Theorem 13. henceforth called circular ordering

We have seen another “circular structure” exists: the circular factorising permutation of the n vertices.
These two circular orderings are not isomorphic however.

Let G = ([0 . . . 2k], E) be the unique (up to isomorphism) complete circuits of 2k + 1 vertices. Then let
τ be the bijection

τ(i) = ki modulo 2k + 1

Let τ ′ be τ seen as a circular list

Proposition 19 The intervals of τ ′ are exactly the umodules of G

Proof: Thanks to the property of closure under union of overlapping umodules (Proposition 3) we just have
to check that the umodules of tow vertices are exactly the pairs {i, i + k} (additions are performed modulo
2k + 1). This is easy to check. �

This proposition can be generalised if G is locally transitive, but not a complete circuit.

18

i h

c

b d
e

a gf

Figure 11: Example of locally transitive graph of 9 vertices: the complete circuit of 5 vertices where each
vertex is substututed with a transitive tournament. A circular ordering is ({a}, {b, c, d}, {e}, {f, g}, {h, i})
while a factorizing permutation is (a, e, i, h, d, c, b, g, f) (see Section 7.2.4)

Proposition 20 Let G = (V,E) be a locally transitive tournament and V0 . . . V2k be its circular ordering.

Each Vi induce a transitive tournament, i.e its vertices form a chain v1
i ...v

f(i)
i .

Let σ be the circular permutation such that

• Each Vi is a factor (interval) of σ

• The Vi follow consecutively following τ ′, ie V0 then Vk then V2k then V3k... (subscripts modulo 2k + 1)

• Within each Vi the ordering of vertices is the reverse of the ordering of the chain: v
f(i)
i ...v1

i .

The umodules of G are exactly the intervals of σ (i.e. σ is a circular factorising permutation of G).
Furthermore, σ is the unique circular factorising permutation of G.

Figure 11 gives a example of the relationship between the circular ordering and the circular factorising
permutation.

This proposition allows to contruct the circular ordering, given the circular factorizing permutation
computed by Algorithm 2.

A first step should identify the 2k+1 induced tournaments. Two vertices u and v are twins if N+(u)\{v} =
N+(v) \ {u}. They are consecutive twins for a circular factorising permutation σ if they follow consecutively
in σ. Let R be the transitive closure of the consecutive twins relation

Proposition 21 The equivalence classes of R are exactly the induced transitive tournaments V0 . . . V2k of
the circular ordering of a locally transitive tournament.

Proof: It is not hard to check that, in a tournament, two twins form a module of two vertices, and that
the classes of the transitive closure R are thus modules. Then just apply Corollary 5. We just have to check
that each class M of R is a maximal module: if not then there exists x such that M ∪ {x} is a module, but
then either x and M sink, or x and M source, are twins, contradiction. �

Then we can give another quadratic-time algorithm than the one of [12]

Theorem 14 The circular ordering of a tournament can be computed in O(n2)

Proof: First Algorithm 2 computes the circular factorising permutation. Then the relation R of Proposi-
tion 21 can be computed by checking if the n pairs of consective vertices are twins or not. Then the sets
V0 . . . V2k are re-ordered using the inverse of τ as in Proposition 20. �

19

7.2.5 Efficient storage of locally transitive tournaments

Definition 15 A composition of n is a list of k integer terms such that the sum of the terms is n. The
composition is odd if k is odd.

An circular odd composition of n is a circular list of 2k +1 integer terms such that the sum of the terms
is n. Notice that a circular list has reading direction: {1, 2, 3} differs from {3, 2, 1} but is same than {2, 3, 1}.

Brouwer [7] computed the number of locally transitive tournaments by establishing a bijection between them
and “shift registers where the complement of the bit shifted out of the last position is shifted into the first
position”. These results can be rephrased as:

Theorem 15 [7] There is a bijection between the totally decomposable tournaments of n vertices and the
circular odd compositions of n elements.

Brouwer gave the first terms of the sequence, i.e. the number of locally transitive tournaments on n
vertices, referred in Sloane encyclopedy [43] as A000016: 1, 1, 1, 2, 2, 4, 6, 10, 16, 30, 52, 94, 172, 316, 586,
1096, 2048, 3856, 7286, 13798, 26216, 49940, 95326, 182362, 349536, 671092, 1290556, 2485534, 4793492,
9256396, 17895736. He also gave the exact value:

∑

d|n

2d−1

d
odd(

d

n
)

∑

e|n

d

µ(e)

e

where µ is the Möbius function and odd(x) is 1 if x odd, 0 otherwise.
Remark that the number of tournaments totally decomposable w.r.t. umodular decomposition is strictly

larger than the number of tournaments totally decomposable w.r.t. to modular decomposition. For modular
decomposition there exists indeed only one tournament totally decomposable with n vertices!

Theorem 16 A locally transitive unlabelled (resp. labelled) tournament of n vertices can be stored in O(n)
(resp. O(n log n)) bits.

Proof: If the tournament is unlabelled, one just has to store the corresponding circular odd integer compo-
sition. This can be done using a standard encoding of compositions: a vector of n− 1 bits. If the kth term
of the composition is x, it is stored by x − 1 ones followed by a zero. The last bit is always zero and thus
can be omitted. For instance the composition {2, 3, 1, 1, 3} of 10 is stored as [1, 0, 1, 1, 0, 0, 0, 1, 1]. This is a
classical canonical encoding of compositions [2].

If the graph is labelled, the permutation of vertices is must also be stored, in O(n log n) bits. �

7.2.6 Minimum Feedback Vertex Set

The Minimum Feedback Vertex Set problem is NP-Hard on directed graphs [26, GT7], and remains NP-Hard
on tournaments [44].

In this section show that the Minimum Feedback Vertex Set is polynomial on tournaments totally de-
composable w.r.t. umodular decomposition.

Let us recall what a feedback vertex set is. A feedback vertex set of directed graph G = (V,A) is a
subset V ′ ⊆ V such that each element of V ′ belongs to at least one circuit of G. The goal is to minimise the
cardinality of V ′.

Another way of considering this problem is to find a minimum set whose removal will result in an acyclic
graph.

Consequently in tournaments, the problem is equivalent to find the maximum sub-tournament induced,
which is transitive.

Considering the structure of tournament totally decomposable , it not hard to be convinced that finding
the maximum transitive sub-tournament induced can be done in polynomial time. Actually it suffices to find
the vertex with the maximum out or in-degree and retrieve its neighbours and then output the complementary
set.

Theses operations can be achieved in O(n2)-time.

20

7.2.7 Isomorphism

As far as we know, the status of the isomorphism problem is still unknown for tournaments. [4, 3]. [12] gave
a linear-time algorithm for locally transitive tournaments isomorphism. It is not hard to see that, given the
compact encoding given in Section 7.2.5, isomorphism can be tested in O(n) time.

8 Extensions and further developments

We have presented the umodules and homogeneous relations focusing on graph theory field. But umodules
may be found in many other objects. Let us briefly present an example.

8.1 Homogeneous relation based on a binary function

Let f be a binary function X ×X → Y . The homogeneous relation based on f , written Hf , is defined as
Hf (s|ab) if and only if f(s, a) = f(s, b) and f(a, s) = f(b, s).

For instance on graphs f is the existence of an edge. On directed graph is the existence of an arc. And
on a 2-structures f(x, y) is the number of equivalence class of the couple (x, y). It can also be seen as a
colouring of the edge (x, y).

Notice that weaker homogeneous relations can be defined from a binary function: the left homogeneous
relation based on f , H l

f , is defined as H l
f (s|ab) if and only if f(s, a) = f(s, b). And the right homogeneous

relation based on f , Hr
f ,is defined as Hr

f (s|ab) if and only if f(a, s) = f(b, s). But these relation do not have
the quotient properties, and have not the same umodules. We have:

Proposition 22 If M is a umodule for Hr
f and for H l

f then is a umodule for Hf .

The proof is immediate from definition. Notice that the converse is not true. For instance for X = {a, b, c, d}
if f(a, c) = f(a, d), f(b, c) = f(b, d) and all other couples have pairwise different values, then {a, b} is a
umodule for Hf but neither for H l

f nor for Hr
f . If f is a symmetric function, then the three homogeneous

relations of course are the same. This is true for graphs and for symmetric 2-structures, for instance.

Proposition 23 The principal ideals of a ring are umodules (w.r.t. its multiplication homogeneous relation).

8.2 Further work

In this paper we study umodular decomposition applied to graphs, when the local congruence is 2, the
next challenge is now to understand umodular decomposition of directed graphs or directed acyclic graphs,
starting with the self-complemented case first.

Our U-primality test presented here is polynomial, but its asymptotic complexity can surely be reduced,
especially when applied to particular combinatorial objects. Same remark holds for the umodular decompo-
sition algorithm of self-complemented homogeneous relation of local congruence greater than two. One can
expect better than O(|X|4. log(|X|)).

We have noticed here the great importance of the seidel switch operation, and following the notion of
vertex minor as defined in [38, 39], let us called H a seidel minor of a graph G, if H can be obtained from
G by the two following operations:

• delete a vertex,

• choose a vertex and do a seidel switch on this vertex

It could be of interest to study seidel minors.

21

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Analysis of Computer algorithms. Assison-Wesley, 1974.

[2] G. E. Andrews. The theory of partitions. Addison-Wesley, 1976. Chapter 4: Compositions and Simon
Newcomb’s problem.

[3] V. Arvind, B. Das, and P. Mukhopadhyay. On isomorphism and canonization of tournaments and
hypertournaments. In 17th International Symposium of Algorithms and Computation (ISAAC), volume
4288 of LNCS, pages 449–459, 2006.

[4] L. Babai and E. M. Luks. Canonical labeling of graphs. In 15th Annual ACM Symposium on Theory
of Computing (STOC), pages 171–183, 1983.

[5] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer Monographs
in Mathematics. Springer-Verlag, 2001.

[6] A. Brandstadt, V.B. Le, and J.P. Spinrad. Graph Classes: A Survey. SIAM Monographs on Discrete
Mathematics and Applications. Society for Industrial and Applied Mathematics, 1999.

[7] A. E. Brouwer. The enumeration of locally transitive tournaments, 1980. Technical report ZW138 of
stichting mathematisch centrum, Amsterdam.

[8] B.-M. Bui-Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Algorithmic aspects of a novel modular
decomposition theory. Technical report, http://hal.archives-ouvertes.fr/hal-00111235, 2006.
Submitted.

[9] B.-M. Bui Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. Homogeneity vs. adjacency: generalising
some graph decomposition algorithms. In 32nd International Workshop on Graph-Theoretic Concepts
in Computer Science (WG), volume 4271 of LNCS, June 2006.

[10] B.-M. Bui-Xuan, M. Habib, V. Limouzy, and F. de Montgolfier. On modular decomposition concepts:
the case for homogeneous relations. Electronic Notes in Discrete Mathematics, 27, 2006.

[11] M. Chein, M. Habib, and M. C. Maurer. Partitive hypergraphs. Discrete Mathematics, 37(1):35–50,
1981.

[12] E. Clarou. Une hiérarchie de forçage pour les tournois indécomposables. PhD thesis, Université Claude
Bernard Lyon I, 1996.

[13] D. A. Cohen, M. C. Cooper, and P. G. Jeavons. Generalising submodularity and Horn clauses: Tractable
optimization problems defined by tournament pair multimorphisms. Technical Report CS-RR-06-06,
Oxford University, 2006.

[14] C. J. Colbourn and D. G. Corneil. On deciding switching equivalence of graphs. Discrete Applied
Mathematics, 2(3):181–184, 1980.

[15] D. G. Corneil. Private communication. Dagstuhl, 2007.

[16] W. H. Cunningham. A combinatorial decomposition theory. PhD thesis, University of Waterloo, Wa-
terloo, Ontario, Canada, 1973.

[17] A. Ehrenfeucht, T. Harju, and G. Rozenberg. The Theory of 2-Structures- A Framework for Decompo-
sition and Transformation of Graphs. World Scientific, 1999.

[18] A. Ehrenfeucht and G. Rozenberg. Theory of 2-structures. Theoretical Computer Science, 3(70):277–342,
1990.

[19] M. G. Everett and S. P. Borgatti. Role colouring a graph. Mathematical Social Sciences, 21:183–188,
1991.

22

http://hal.archives-ouvertes.fr/hal-00111235

[20] M. G. Everett and S. P. Borgatti. Regular equivalence: General theory. Journal of Mathematical
Sociology, 18:29–52, 1994.

[21] J. Fiala and D. Paulusma. The computational complexity of the role assignment problem. In 30th
International Colloquium on Automata, Languages and Programming (ICALP), pages 817–828, 2003.

[22] J. Fiala and D. Paulusma. A complete complexity classification of the role assignment problem. Theo-
retical Computer Science, 349(1):67–81, 2005.

[23] H. N. Gabow. A representation for crossing set families with applications to submodular flow problems.
In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
202–211. ACM/SIAM, 1993.

[24] J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari. Modular decomposition of protein-protein
interaction networks. Genome Biology, 5(8), 2004.

[25] T. Gallai. Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar., 18:25–66, 1967.

[26] M. R. Garey and D. S. Johnson. Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York, 1979.

[27] Lopez Grard and Rauzy Claire. Reconstruction of binary relations from their restrictions of cardinality
2, 3, 4 and (n-1). Z. Math. Logik Grundlag. Math., 38(1):27–37 and 157–168, 1992. in two parts.

[28] M. Habib and M. C. Maurer. 1-intersecting families. Discrete Mathematics, 53:91–101, 1985.

[29] R. B. Hayward. Recognizing 3-structure: A switching approach. Journal of Combinatorial Theory,
Serie B, 66(2):247–262, 1996.

[30] A. Hertz. On perfect switching classes. Discrete Applied Mathematics, 94(1-3):3–7, 1999.

[31] W.-L. Hsu and R. M. McConnell. PC-trees and circular-ones arrangements. Theoretical Computer
Science, 296:99–116, 2003.

[32] J. Kratochv́ıl, J. Nešetřil, and O. Zýka. On the computational complexity of Seidel’s switching. In Fourth
Czechoslovakian Symposium on Combinatorics, Graphs and Complexity (Prachatice, 1990), volume 51
of Ann. Discrete Math., pages 161–166. North-Holland, Amsterdam, 1992.

[33] R. M. McConnell and F. de Montgolfier. Linear-time modular decomposition of directed graphs. Discrete
Applied Mathematics, 145(2):189–209, 2005.

[34] R. H. Möhring and F. J. Radermacher. Substitution decomposition for discrete structures and connec-
tions with combinatorial optimization. Annals of Discrete Mathematics, 19:257–356, 1984.

[35] F. de Montgolfier. Décomposition modulaire des graphes. Théorie, extensions et algorithmes. PhD
thesis, Université Montpellier II, 2003.

[36] F. de Montgolfier and M. Rao. The bi-join decomposition. In ICGT ’05, 7th International Colloquium
on Graph Theory, 2005.

[37] F. de Montgolfier and M. Rao. Bipartitive families and the bi-join decomposition. Technical report,
http://hal.archives-ouvertes.fr/hal-00132862, 2005. Submitted.

[38] S.-I. Oum. Graphs Of Bounded Rank Width. PhD thesis, Princeton University, 2005.

[39] S.-I. Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B, 95(1):79–100,
2005.

[40] R. Paige and R. E. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

23

http://hal.archives-ouvertes.fr/hal-00132862

[41] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer-Verlag, 2003.

[42] J. J. Seidel. A survey of two-graphs. In Colloquio Internazionale sulle Teorie Combinatorie (Rome,
1973), Tomo I, pages 481–511. Atti dei Convegni Lincei, No. 17. Accad. Naz. Lincei, Rome, 1976.

[43] N. J. A. Sloane. The on-line encyclopedia of integer sequences .
http://www.research.att.com/∼njas/sequences/.

[44] E. Speckenmeyer. On feedback problems in digraphs. In 15th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 411 of LNCS, pages 218–231, 1989.

[45] D. R. White and K. P. Reitz. Graph and semigroup homomorphisms on networks of relations. Social
Networks, 5:193–234, 1983.

24

http://www.research.att.com/~njas/sequences/

