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Abstract

Many applications require techniques for temporal
knowledge discovery. Some of those approaches can han-
dle time constraints between events. In particular some
work has been done to mine generalized sequential pat-
terns. However, such constraints are often too crisp or need
a very precise assessment to avoid erroneous information.
Therefore, in this paper we propose to soften temporal con-
straints used for generalized sequential pattern mining. To
handle these constraints while data mining, we design an
algorithm based on sequence graphs. Moreover, as these re-
laxed constraints may extract more generalized patterns, we
propose temporal accuracy measure for helping the analy-
sis of the numerous discovered patterns.

1 Introduction

In many fields searching for temporal knowledge is nec-
essary, for instance in order to identify temporal profiles
or detecting frauds and failures. Some learning techniques
can handle such knowledge. [4] defines operations and
rules associated with time intervals. In data mining, some
approaches can extract recurring episodes within long se-
quences [12, 17] or sequence databases [1, 2, 13]. Search-
ing for such information is all the more interesting that it
can handle constraints between events: shortest or longest
time-gap between two events [18, 20, 14, 15], or regular
expression and repetition constraints [9, 6, 10, 3].

Within this framework, generalized sequential pattern
mining was introduced in [18]. This data mining tech-
nique extracts frequent sequences that meet user-specified
constraints from a sequence database (e.g. successive pur-
chases of customers in a supermarket).

However, although these methods are effective and ro-
bust, the user has to know the exact constraint values to
be specified. Then there is a risk that erroneous or use-
less knowledge may be gathered. Moreover, in some cases,
these values are somewhat uncertain. Time constraints, as

they are defined, thus allow the user to find new sequen-
tial patterns, but they are still too stiff. Consequently, it
may become necessary to make several attempts with vari-
ous combinations of these parameters before getting satis-
factory results. In this domain, to our knowledge, no papers
have proposed an automatic determination of the most ap-
propriate time constraints.
Besides, for some applications, it could also be interesting
to soften the constraints specified by the experts of the do-
main to refine their knowledge: the expert knowledge is
used as a starting point and mining results complete it.
To make the constraints specification easier, we propose a
method that softens user-specified time constraints. We also
propose an efficient algorithm, GETC (Graph for Extended
Time Constraints), in order to handle these constraints.

Otherwise the discovered sequential patterns, according
to the specified time constraints, can quickly become so nu-
merous that their analysis becomes less effective. In this
regard, a measure that could facilitate the analysis of gener-
alized sequential patterns would be a valuable tool.
We thus propose to provide the end-user with a time satis-
faction degree that will indicate how well the user-specified
initial constraints are fulfilled.

In this paper, we describe our proposal including the fol-
lowing points. First, we define extended time constraints for
generalized sequential patterns. Secondly, we state a defini-
tion of time accuracy for frequent sequence analysis. Lastly
we focus on the algorithm we designed in order to handle
soft time constraints and to compute time accuracy.

In the next section, we define the fundamental concepts
associated with sequential patterns and generalized sequen-
tial patterns and we introduce existing algorithms that man-
age time constraints. In section 3, we briefly introduce the
fuzzy set theory. We define the soft time constraints and the
temporal accuracy of a sequence. Then section 4 details our
algorithm to implement the handling of soft time constraint.
Section 5 illustrates our proposal on a running example. We
then propose some experiments on synthetic data and we
give brief results about experiments run on web access logs
in section 6, thus showing the benefits of our soft time con-



straints and measure. Finally, we conclude in section 7 on
the prospects opened by our work.

2 Sequential patterns and time constraints

This section defines the concepts used in the generalized
sequential pattern mining task. It broadly summarizes the
formal description of the problem introduced in [2, 18].

2.1 Sequential patterns

Sequential patterns were initially defined in [2] as maxi-
mal frequent sequences as follows.

Let O be a set of objects. Each objecto is described by
a list of recordsr consisting of three information elements:
an object-id, a record timestamp, which is an integer, and
a set of items in the record. LetI = {i1, i2, ..., iq} be a
set of items. Anitemsetis a non-empty non-ordered set
of items, denoted by(i1i2 . . . ik). A sequences is a non-
empty ordered list of itemsets, denoted by< s1s2...sp >.
A n-sequenceis a sequence ofn items (or of sizen).

Example 1 Let us consider an example of market basket analy-
sis. The object is a customer, records are the transactions made
by this customer. Timestamps are the date of transactions. If a
customer purchases products1, 2, 3, 4, and5 according to the se-
quences =< (1) (2 3) (4) (5) >, then all items of the sequence
were bought separately, except products2 and3 which were pur-
chased at the same time. In this example,s is a 5-sequence.

One sequence< s′1 s′2 ...s′m > is asubsequenceof an-
other one< s1 s2...sp > if there are integersl1 < l2 <

... < lm such thats′1 ⊆ sl1 , s′2 ⊆ sl2 , ..., s′m ⊆ slm .
We should also mention thats′ is includedin s.

Example 2 The sequences′ = <(2) (5)> is a subsequence ofs

above, because (2)⊆ (2 3) and (5)⊆ (5). However,<(2) (3)> is
not a subsequence ofs.

All records from the same object are grouped together
and sorted in increasing order of their timestamp. They
are called a data sequence. In order to efficiently aid de-
cision making, the aim is to discard non-typical behaviors
according to the user’s viewpoint. Performing such a task
requires allocating any data subsequence inO with a fre-
quency valuefreq(s). The frequencyof a sequence is de-
fined as the percentage of objects supportings with respect
to the number of objects in the database. An objectsup-
portsa sequences iff s is included within the data sequence
of this object.

In order to decide whether a sequence is frequent or
not, a minimum frequency valueminFreq is specified by
the user and the sequence is said to be frequent if the

condition freq(s) ≥ minFreq holds. Given a database of
object records, the problem of sequential pattern mining is
to find all maximal sequences whose frequency is greater
than a specified threshold (minFreq) [2]. Each of these
sequences represents a sequential pattern, also called a
maximal frequent sequence.

This sequence definition is rather strict and turns out to
be inappropriate for many applications, because time con-
straints are not handled. When verifying whether a candi-
date sequence is included within another one, record parti-
tioning enforces a strong constraint since only pairs of item-
sets are compared. However, if the interval between two
records of an object is short enough, they could be consid-
ered as simultaneous. On the contrary, two events that are
too distant could have no link together. That is why general-
ized sequential patterns were proposed in [18], introducing
time constraints in order to improve the subsequence defi-
nition.

2.2 Generalized sequential patterns

Time constraints restrict the time gap between sets of
records that contain consecutive elements of the sequence.
There are three different constraints. First,mingap is the
minimal time gap thatmustseparate two consecutive item-
sets in a sequence. Thenmaxgap is the maximal time
gap within which two consecutive itemsets of a sequence
mustoccur. Finally,windowSizeis a sliding window dur-
ing which several recordsmaybe grouped into one itemset.
Handling time constraints, [18] redefined when a data se-
quence supports a sequence as follows.

Definition 1 Given user-specified windowSize,
minGapand maxGapvalues, a data sequence
d =< d1...dm > supports a sequences=< s1 · · · sn > if
there exist integersl1 ≤ u1 <l2 ≤ u2 <...<ln ≤ un such that
∀i ∈ [1, n]:

i. si ⊆ ∪ui

k=li
dk;

ii. timestamp(dui
) - timestamp(dli ) ≤ windowSize;

and∀i ∈ [2, n],
iii.timestamp(dli) - timestamp(dui−1

) > minGap;
iv. timestamp(dui

) - timestamp(dli−1
) ≤ maxGap;

We will refer to timestamp(dli ) as start-time(si) and
timestamp(dui

) as end-time(si). In other words,start-
time(si) and end-time(si) correspond to the first and last
timestamps of the set of records that containssi.

Time constraints allow a more flexible handling of
records, insofar as the end user is then provided with the
following advantages for mining sequences:
• to group together itemsets when their timestamps are

sufficiently close via thewindowSize constraint;



• to regard itemsets as too close to appear in the same
frequent sequence with theminGap constraint (i.e. to
be considered as related);

• to regard itemsets as too distant to appear in the same
frequent sequence with themaxGap constraint (i.e. to
be considered as related).

These time constraints, as well as the minimum frequency
condition, are parameterized by the user.

Example 3 In this example, we take the same context as for the
previous examples: records refer to the purchases of customers in
a supermarket. Consider the data sequences C1 and C2 of cus-
tomers 1 and 2 given inTABLE 1.

Table 1. Purchases made by two customers
during one week

Days 1 2 3 4 5 6 7
C1 a b c d e f g h i
C2 a b c d e f g h

Let s =<(a b c d)> be a sequence and the following time
constraint parameters:minGap=0, consecutive itemsets must be
at least one-day distant;maxGap=7, consecutive itemsets must
be at most seven-day distant;windowSize=1, purchases may be
grouped together over at most two consecutive days. Then Fig.
1 shows how these time constraints are applied in order to deter-
mine whether data sequences C1 and C2 support the candidate
sequences =< (a b c d) > or not. To make sequences ap-

1(a) 2(b) 3(c d) 5(e f g) 6(h) 7(i)

2≥ ws = 1

l1 = 1 u1 = 3

l2 = u2

= 5

l3 = u3

= 6

l4 = u4

= 7

(a)C1, customer 1 data sequence

1(a)2(b c d) 3(e f) 4(g h)

ws = 1
mg = 0

MaxG = 7

l1 = 1 u1 = 2

l2 = u2

= 3

l3 = u3

= 4

(b) C2, customer 2 data sequence

i(a b) denotes the itemset (a b) bought at datei

Figure 1. Time constraints, windowSize (ws),
minGap (mg) and maxGap (MaxG), on data se-
quences C1 and C2

pear in data sequence C1, the purchases of days 1, 2 and 3 must
be grouped together. However, this itemset does not meet con-
straint (ii), since end-time(s1) - start-time(s2) = day 3 - day 1 = 2
>windowSize. There are no other possibilities to finds in this
data sequence. Thus data sequence C1 does not supports.
To make sequences appear in data sequence C2, the purchases
of days 1 and 2 must be grouped together. This itemset meets
the windowSize constraint, since it was built over two consec-
utive days. The minimum gap between this first itemset and the
next is then day 3 - day 2 = 1> 0 = minGap, which meets the
minGap constraint (iii). So does themaxGap constraint (iv).
Data sequence C2 supports sequences.

Note that if the specified values areminGap=0,
maxGap=∞ and windowSize=0, we get back the notion
of sequential patterns, as introduced in section 2.1, where
there are no time constraints and where items in an itemset
come from a single record.

2.3 Related work

In the next sections (3 and 4) we introduce our extension
of time constraints and how handling them with our algo-
rithm GETC. Before that, we describe in this section some
approaches for generalized sequential pattern mining under
time constraints.

Various algorithms were proposed to handle these con-
straints. Some push them directly into the mining process,
like the GSP algorithm [18] and the DELISP algorithm [11].
In contrast some others propose a preprocess applying the
constraints to the sequences, which are then analyzed by
some sequential pattern tool. The GTC algorithm, proposed
in [14], is based on this principle.

The GSP algorithm proposed in [18] aims at mining
Generalized Sequential Patterns. It extends previous pro-
posals for sequence mining by handling time constraints
and taxonomies (is-a hierarchies). It uses a generate-and-
prune approach, that uses the frequent sequences of sizek

to generate candidate sequences of sizek + 1. Then the
frequency of these(k + 1)-sequences is calculated. Time
constraints are handled when parsing a data sequence. For
each candidate sequence, GSP checks whether it is con-
tained in the data sequence. Because of the sliding windows
and minimum and maximum time gaps, it is necessary to
switch between forward and backward phases during ex-
amination. Forward phases are performed to deal progres-
sively with items and, while selecting items,windowSize is
used for resizing records partitioning. Backward phases are
required as soon as themaxGap constraint is no longer ful-
filled. In such a case, it is necessary to discard all items
for which themaxGap constraint is violated and to resume
parsing the sequence starting with the earliest item meeting
themaxGap condition.



In [13], another approach called PSP (Prefix-Tree for
Sequential Patterns) was proposed. It again fully utilizes
the fundamental principles of GSP, while using a differ-
ent structure for organizing the candidate sequences, which
thus improves retrieval efficiency.

More recently, the DELISP algorithm [11] was proposed
for mining sequential patterns with time constraints. It is
based on the mining scheme of Prefix-SPAN. Actually, the
original database is divided into multiple subsets for each
prefix of a potential sequential pattern. While writing of
subsets, DELISP reduces the size of the projected databases
by boundedandwindowedprojection techniques. The ex-
periments proposed by the authors show a clear improve-
ment of DELISP over GSP. However, this technique is re-
stricted to prefix-growth algorithms, although there exists
a lot of different approaches and structures for sequential
pattern mining [5, 21, 16].

Therefore the GTC algorithm [14] was developed. The
GTC (Graph for Time Constraints) algorithm, taking a data
sequence, precalculates a relevant set of sequences to be
tested. By precalculating this set, the time spent analysing
a data sequence when verifying candidate sequences is re-
duced. Since this approach is efficient and adapted to any
sequential pattern mining algorithm, we instigated our own
algorithm GETC, detailed in section 4, using the same
structure and principles as GTC.

3 Soft time constraints

The main drawback of time constraints, as defined in sec-
tion 2.2, is that they are user-specified. They require the
data and constraint values to be a priori well-known. The
results thus depend on the good knowledge of the end-user.
Misvalued time constraints could indeed lead to erroneous
or incomplete knowledge. However, to our knowledge, no
studies have been proposed to automatically determine opti-
mal time constraints for sequential pattern mining. We here
propose to extend the above time constraints for generalized
sequential patterns using some Fuzzy Set Theory principles.

Moreover, extracted patterns become increasingly nu-
merous, particularly during sequential pattern mining. So
it becomes necessary to provide the end-user with tools to
analyse the sequential patterns obtained. In the case of gen-
eralized sequential patterns, some useful information could
be derived from the duration of data sequences correspond-
ing to time constraints. This is the purpose of soft time
constraints, which we define in this section. These soft time
constraints enable us to define a measure of temporal ac-
curacy expressing how well a sequence fulfills the initial
user-specified values of the time constraints. We thus pro-
vide the user with flexibility in time constraint specification
and with a tool to help analyze the extracted patterns.

3.1 Fuzzy Set Theory

The Fuzzy Set Theory was introduced by [19]. This the-
ory generalizes crisp set theory, assuming intermediary sit-
uations between all and nothing. Whereas in the classical
theory an elementa belongs or not to a setA, in fuzzy set
theorya may partially belong toA (then called a fuzzy set)
and thus partially belong to its complement. Besides en-
abling this partial membership, fuzzy set theory allows a
gradual transition of an object from one state to the next.

Example 4 Let X be the universe of all possible sizes for a
human being. One fuzzy setA (e.g. SMALL , MEDIUM or BIG)
is defined by a membership functionµA expressing for everyx
of X the degree with whichx belongs toA. This degree is in
interval [0,1]. An exemple of these three fuzzy sets is graphically
represented on Fig. 2. Thus a person of heightx=1m60 can be
simultaneously small and medium-sized with for example a degree
of 0.7 for the fuzzy setSMALL (µM (x)=0.7) and a degree of 0.3
for the fuzzy setMEDIUM (µM (x)=0.3).

Figure 2. BIG and SMALL fuzzy sets describ-
ing a person’s height

Fuzzy logic operators are a generalization of crisp logic
operators. In particular, we consider negation, intersection
and union. The operator⊤ or t-norm operator (triangu-
lar norm) is the fuzzy equivalent of the binary intersec-
tion: µA∩B(x) = ⊤(µA(x), µB(x)). The operator⊥ or
t-conorm operator (triangular conorm) is similar to the bi-
nary union:µA∪B(x) = ⊥(µA(x), µB(x)). We denote⊤
(resp.⊥) as the operator⊤ (resp.⊥) generalized to the n-
ary case. Different operators can be used as a t-norm (min,
product...). They are associated with their dual operator
for the t-conorm (e.g.max is the t-conorm for themin t-
norm). As themin operator is idempotent, we use it for the
t-norm and consequently themax operator as t-conorm.

3.2 Principles and notations

Our proposal of soft time constraints for sequential pat-
terns is built by analogy with fuzzy sets. Thus a sequence
will no longer meet a constraint in a binary way, because



the user may relax these time constraints. Each constraint
can then be regarded as a fuzzy set, with its membership
function giving a temporal satisfaction degree. This degree
is thus calculated for each possible value of that time con-
straint, and tells the end-user the extent to which the initially
specified constraint value has been fulfilled.

In order to fulfill users’ needs and to make our approach
flexible, a minimum temporal satisfaction degreeρx can be
specified for constraintX of initial valuexinit.
As the satisfaction degree of constraints is based on the
membership function of each constraint, specified coeffi-
cients are in the interval [0,1]. It is also possible to set a
constraint with certainty:

• If ρx = 0, the user want constraintX to take each pos-
sible value; the temporal satisfaction degree depends
on the constraint value generating the sequence.

• If ρx = 1, the specified minimum temporal satisfac-
tion degree is 1, i.e. the user does not want the value of
constraintX to vary. That constraint is set at the ini-
tial value and will not change; all generated sequences
have a temporal satisfaction degree of 1.

• In all other cases,ρx ∈]0,1[ and the valuex of con-
straintX may vary from its user-specified valuexinit

and a limit valuexρ for which the temporal satisfaction
degree isρ(x) = ρx.

Note that if the specified values for the minimum sat-
isfaction degree of each time constraint is 1, we get back
crisp time constraints, and thus, the notion of generalized
sequential patterns as introduced in section 2.2.

The useful limit value of time constraints (extreme val-
ues) first have to be determined. These values correspond
to the variation on the whole search space (i.e. forρx=0).
These values are computed from the crisp time constraints
(ii), (iii) and (iv) in section 2.2. They are given by the limit
value allowed by these definitions.

The windowSize and maxGap constraints define the
maximal gap between two itemsets. For any given object,
the maximal value they can be set at is thus the duration
between the first and last record. For the whole database,
this common extreme value will thus be the maximal gap,
over all objects, between the minimal and maximal record
timestamp for the same object:

M = max
o∈O

(timestamp(romax) − timestamp(romin)) (1)

TheminGap constraint defines the minimal gap between
two consecutive itemsets. We have defined the limit value
of this constraint by taking the crisp inequality it implies
into account. Then, the limit valuem for minGap is:

max(min
o∈O

( min
r∈Ro

(timestamp(r + 1) − timestamp(r))) − 1, 0)

(2)

All details about this definition can be found in [7].

In the remainder of this section, we use the notations
given in TABLE 2, to distinguish the three time constraints.
Parameterswsinit, mginit and MGinit are the ini-
tial user-specified values for the constraintswindowSize,
minGap andmaxGap andρws, ρmg andρMG are the min-
imum temporal satisfaction degrees associated with them.
These coefficients enable the user to limit time constraint
variation, according to his/her own requirements. The iden-
tifier ws (resp. mg or MG) denotes the variable associ-
ated with thewindowSize (resp.minGap or maxGap) con-
straint, andρ(ws) (resp. ρ(mg) or ρ(MG)) denotes the
satisfaction degree obtained by the valuews (resp. mg or
MG values) of this variable.

Table 2. Notations
M maximal possible value forwindowSize andmaxGap

given by equation 1

ws variable for thewindowSize constraint; may vary from
wsinit to M

wsinit initial value of parameterwindowSize, user-specified
wsρ limit acceptable value forws, computed fromρws

ρws lowest acceptable satisfaction degree forwindowSize
ρ(ws) temporal satisfaction degree obtained by the valuews of

windowSize

MG variable for themaxGap constraint; may vary from
MGinit to M

MGinit initial value of parametermaxGap, user-specified
MGρ limit acceptable value forMG, computed fromρMG

ρMG lowest acceptable satisfaction degree formaxGap
ρ(MG) temporal satisfaction degree obtained by the valueMG of

maxGap

m minimal possible value forminGap
given by equation 2

mg variable for theminGap constraint; may vary fromm to
mginit

mginit initial value of parameterminGap, user-specified
mgρ limit acceptable value formg, computed fromρmg

ρmg lowest acceptable satisfaction degree forminGap
ρ(mg) temporal satisfaction degree obtained by the valuemg of

minGap

3.3 Extending time constraints to soft
time constraints

We now detail how the soft time constraints are built,
using the extension ofwindowSize as an example. Then
we illustrate each soft time constraint with a brief example.

The valuews of windowSize constraint may vary from
its user-specified valuewsinit to its limit value M . This
soft constraint is described with a fuzzy set for which the
membership function (3) gives the accuracy for a specific



valuews:

ρ(ws) =







1 if ws ≤ wsinit
ws−M

wsinit−M
if wsinit < ws ≤ M

0 else
(3)

The user can then choose to allow the temporal satisfaction
degree of thewindowSize constraint to be somewhere be-
tween 1 and the lowest acceptable valueρws. This lowest
degree will be attained for a valuewsρ >wsinit of ws.
More specifically, this largest acceptable window size is
given by:

wsρ = ⌊(wsinit − M)ρws + M⌋ (4)

Example 5 Consider the two data sequences shown in exam-
ple 3 and the sequences=<(a b c d)>. Suppose that the user-
specified time constraint parameters arewsinit=1, mginit=0 and
MGinit=7, with ρws=0.7, ρmg=1 andρMG=1.
Thus,ρws is the only lowest acceptable satisfaction degree differ-
ent from 1, andwindowSize is thus the only constraint possibly
having several values. Applying equation (4) withM = max((7−

1), (4 − 1))=6 (TABLE 2, we getwsρ = ⌊(1 − 6) ∗ 0.7 + 6⌋= 2.
The valuews of windowSize will successively be 1 then 2.
For ws=1, grouping the pruchases of days 1 to 3 of data sequence
C1 in order to accept the candidate sequences would violate the
windowSize constraint. However withws=2, we can indeed
group them and thisws value, by equation (3), yields a temporal
satisfaction degreeρ(ws) = ρ(2) = 0.8. The other constraints
are fulfilled as well, then data sequence C1 supports candidate se-
quences.
For data sequence C2, the purchases of days 1 and 2 are grouped
together. Note that thewindowSize

constraint is fulfilled withws=wsinit=1 and the corresponding
satisfaction degree isρ(ws) = 1. The other constraints are also
respected, data sequence C2 supports sequences.

The maxGap constraint is described with a fuzzy set
whose the membership function (5) gives the accuracy for a
specific valueMG:

ρ(MG) =







1 if MG ≤ MGinit
MG−M

MGinit−M
if MGinit < MG ≤ M

0 else
(5)

As a results, the largest acceptable gap is given by:

MGρ = ⌊(MGinit − M)ρMG + M⌋ (6)

Example 6 Consider the two data sequences shown in example
3 and the candidate sequences=<(a b c d) (g h)>. Suppose
that the user-specified time constraint parameters arewsinit=2,
mginit=0 andMGinit=3, with ρws=1, ρmg=1 andρMG=0.3.

ThusρMG is the only lowest acceptable satisfaction degree dif-
ferent from 1 andmaxGap is thus the only varying constraint.
Applying equation (6) withM=6, we getMGρ = 5. The value
MG will successively be 3, 4 and 5.
For data sequence C1, purchases of days 1 to 3, as well as days 5
and 6, are grouped together in order to accept candidate sequence
s. However, withMG=3, themaxGap constraint is violated, as
with MG=4. WithMG=5, this constraint is fulfilled and the tem-
poral satisfaction degree is thenρ(MG) = ρ(5) = 0.3 (5). The
other constraints are also fulfilled, then data sequence C1 supports
candidate sequences.
For data sequence C2, the records of days 1 and 2 are grouped
together, meeting themaxGap constraint withMG=MGinit=3
and the corresponding satisfaction degree isρ(MG = 3) = 1.
The other constraints are also fulfilled, and data sequence C2 sup-
ports sequences.

The minGap constraint is described with a fuzzy set
whose the membership function (7) gives the accuracy for a
specific valuemg:

ρ(mg) =







1 if mg ≥ mginit
mg−m

mginit−m
if mginit > mg ≥ m

0 else
(7)

As a results, the smallest acceptable gap is given by:

mgρ = ⌈(mginit − m)ρmg + m⌉ (8)

Example 7 Consider the two data sequences shown in exam-
ple 3 and the candidate sequences=<(a b c d) (e f)>. Suppose
that the user-specified time constraint parameters arewsinit=2,
mginit=2 andMGinit=7, with ρws=1, ρmg=0 andρMG=1.
Thus,ρmg is the only lowest acceptable satisfaction degree dif-
ferent from 1 andminGap is thus the only varying constraint.
Applying equation (8) withm = 0, we getmgρ=0. mg will suc-
cessively be 2, 1 and 0.
For data sequence C1, the purchases of days 1, 2 and 3. The
minGap constraint is not fulfilled withmg=2, but it is with
mg=1. In this case, the satisfaction degree forminGap is
ρ(mg) = ρ(1)=0.5 (equation (7)). The other constraints are ful-
filled, so data sequence C1 supports sequences. For the second
data sequence, the purchases of days 1 and 2. TheminGap con-
straint is not fulfilled whilemg is greater than 0.mg=0 yields, by
equation (7), to a temporal satisfaction degreeρ(mg) = ρ(0)= 0.
The other constraints are fulfilled, data sequenceC2 supportss.

Note that these soft constraints defined above are based
on fuzzy sets where the temporal satisfaction degree is de-
scribed by a linear membership function between the initial
constraint value and its extreme valueM or m. However,
these functions could also be defined in a different way, e.g.
by a step function or by a function representing the propor-
tion of objects in the dataset meeting each constraint value.



3.4 Temporal Accuracy of a Sequence

We now define the level of time constraint satisfaction
for a sequence considering the three constraints (ii), (iii)
and (iv), together. At the end of the mining task, we get
a list of frequent sequences. For each object, each frequent
sequence has been generated using specific time constraint
valuesws, mg andMG. These values are used to compute
the satisfaction degree of each constraint. These satisfaction
degrees are then combined into a global measure associated
with the sequence.

For an objecto, thetemporal accuracy of a sequence s is
defined as the satisfaction degree yielded by the three time
constraints considered simultaneously. It is calculated using
a t-norm operator (⊤). For each object, several occurrences
of s may appear. So the occurrence satisfying the most the
initial values (i.e. with the highest temporal satisfaction de-
gree) is searched through the setςo of subsequences ofo
using a t-conorm operator (⊥).

We define the temporal accuracy of a sequence
s =< s1 · · · sn > for objecto by the following equation:

̺(s, o) = ⊥s∈ςo

“

⊤i∈[1,n]

`

ρws(end-time(si) − start-time(si))
´

,

⊤i∈[2,n](ρmg(end-time(si) − start-time(si−1)),
ρMG(end-time(si) − start-time(si−1)))

”

(4)
For the whole dataset, the temporal accuracy of a se-

quences is given by the average aggregation of each object
accuracy, i.e.:

Υ(s) =
1

|O|

∑

o∈O

̺(s, o) (5)

Example 8 Consider the two data sequences from example 3
and the frequent sequences =< (a b c d) (e f) > with the fol-
lowing parameters for soft constraints:wsinit = 1, mginit = 2,
MGinit = 4 andρws=0.6,ρmg=0.4 andρMG=0.5. We still have
M=6 and m=0. In this example, we use the min and max opera-
tors for the generalized t-norm (⊤) and the generalized t-conorm
(⊥) respectively.
For data sequence C1,s appears by grouping together days 1 to
3 on the one hand and days 5 and 6 on the other. Then, start-
time(s1)=1, end-time(s1)= 3, start-time(s2)=5 and end-time(s2)=
6. It is the single occurrence ofs in this data sequence. Thus for
C1, the temporal accuracy ofs is (details omitted):

̺(s, C1) = min(ρws(2), ρws(1),
min

`

ρmg(1), ρMG(5)
´

)
= min(0.8, 1, min

`

0.5, 0.5
´

)
= 0.5

Then the same computation is done for data sequence C2. Simi-
larly, we get̺ (s, C2) = 0.5. The temporal accuracy of sequence
s for the whole database is thus given by:

Υ(s) =
̺(s, C1) + ̺(s, C2)

2
= 0.5

4 Graph for Extended Time Constraints

Our implementation of these soft time constraints is
based on the GTC algorithm (Graph for Time Constraints)
proposed in [14] and sketched in section 2.3. The main
idea is to transform the data sequence of an object into a
sequence graph in which each path is a subsequence that
fulfills the time constraints. The sequence graphs of the
data sequences are then used to determine the frequent se-
quences by a sequential pattern mining algorithm. Since
handling of time constraints is done prior to and separate
from the counting frequency step of a data sequence, we
propose to use this method to implement the soft time con-
straints. The graph structure will thus be used both for se-
quential pattern mining and for computing the temporal ac-
curacy of sequential patterns in a second step.

4.1 General Strategy of the Algorithm

Our approach described in Fig. 3 includes all the funda-
mental principles of GTC. It contains a number of iterations.
Each iteration finds all frequent sequences of the same size.
GETC is used as a preprocess for handling soft time con-
straints. Once a data sequence has been transformed into
a sequence graph that fulfills the soft time constraints, fre-
quent sequences are searched within the subsequence set of
the sequence graph. As a result, using the sequence graph,
checking the time constraints becomes useless during the
candidate parsing: only inclusion must be verified. Once
the sequential patterns are extracted, the sequence graphs
are weighted, then explored one last time to calculate the
temporal accuracy of each generalized sequential patterns.

Main - Input: minFreq, DB
Ouput: F , frequent sequences onDB,

k longest length of frequent sequences

F0 ← ∅ ; k ← 1 ;

F1 ← {{< i >}/i ∈ I&freq(i) > minFreq}};

addWindowSize(S) ;

While (Candidate(k) 6= ∅) do
For eachd ∈ DB do

(G)← GETC(d) ;
countFrequency(Candidate(k), minFreq, (G)) ;

End For
Fk ← {s ∈ Candidate(k)/freq(s) > minFreq};
Candidate(k + 1)← generate(Fk) ;
k++;

End While
ComputeAccuracy(Fk);

return F ←
k[

j=0

Fk

Figure 3. Main algorithm



4.2 Sequence Graph Building

From an input data sequenced, the GETC algorithm
(Fig. 4) builds a sequence graphGd(V,E) in which ver-
tices are itemsets and paths represent subsequences satis-
fying the time constraints. First each itemset of the input
sequence is associated with a vertex. Then the subfunction
addWindowSizecombines records, in an attempt to meet the
soft windowSize constraint. It adds to the graph any satis-
fying combination as a new vertex. Vertices are allocated
to “levels” according to theirend-timein order to reduce
the time spent in checking gap constraints. The next step
consits in building the edges satisfying bothminGap and
maxGap soft constraints. Thus for each vertex, the first
“level” of vertices satisfying the softminGap constraint is
retrieved. For each vertex of this set, theminGap constraint
is fulfilled and themaxGap constraint is checked. If it is
fulfilled, a new edge is built between both vertices.

Some optimization is done by theaddEdgeandpropa-
gatesubfunctions in order to reduce the number of sequence
inclusions. Finally, the remaining included subpaths are
deleted from the graph by the subfunctionspruneMarked
andconvertEdges, [7].

We have proven that at the end of this process
GETC has built exactly all the longest sequences, fulfill-
ing the soft time constraintswindowSize, minGap and
maxGapgenerated from the input data sequence, [7]. The
GETC algorithm can thus be used as a preprocessing phase
to handle soft time constraints before sequential patternsare
mined. After this step, the candidate sequence support is
computed on these sequence graphs.

4.3 Temporal Accuracy Computation

Once the sequence graphs have been built, we know
which sequences are allowed by the time constraints and
which are forbidden. However, some sequences fulfill the
crisp constraints while others are built only by applying the
soft constraints. Thus their “quality” is not the same. There-
fore we propose to calculate the temporal accuracy level of
each longest path of the sequence graph (each maximal se-
quence) and to allocate it to each subsequence composing
it. In order to determine the time constraint values satis-
fyed by the paths in the graph, each edge (x,y) is weighted
by ⊤(µmg(y.begin()-x.end()),µMG(y.end()-x.begin())) de-
pending on themg andMG values used to build this edge;
each vertex is similarly weighted byµws. These weights
are computed by thevalueGraph function, Fig. 5. The
temporal accuracy of a sequence is then given by equation
(5) in section 3.4. This computation requires an additional
iteration after sequential pattern mining in order to return
each of them with its temporal accuracy.

GETC - Input: d, a data sequence
Ouput: Gd(V, E), d graph sequence,

V vertice set ofGd, E edge set

V← buildVertices(d); addWindowSize(V) ;

While (x 6= V.first()) do
l← x.level().prec() ;mg ← mginit ;
While (x.start-time() -l.end-time()≤ mg) do

contmg ← FALSE ;
If (x.start-time()> l.end-time())Then

While (mg ≥ mgρ) do
If (constming(x,l)) Then

contmg ← TRUE ;mg ← mgρ-1 ;
Else

mg - - ;
End If

End While
End If
If (contmg == FALSE)Then

propagate(x,l) ; l← l.prec() ;
End If

End While
For chqw ∈ l do

included← TRUE ;MG←MGinit ;
While (MG ≤MGρ) do

If (constMaxG(x,w)) Then
addEdge(w,x) ; MG←MGρ + 1;

Else
MG++;

End If
End While

End For
x← S.next(x) ;

End While
pruneMarked(Gd(V, E)) ; convertEdges(Gd(V, E)) ;

return Gd(V, E);

Figure 4. GETC

valueGraph - Input: Gd(V, E), non valued sequence graphe
for a data sequenced
µws, µmg , µMG, membership functions
for time constraints.

Output: Gd(V, E), valued sequence graph ford

For eachs ∈ V do
s.valuate(µws(s.end()-s.begin()) ;
For eacht ∈ s.succ()do

edge(s,t).valuate(⊤( µmg(t.begin()-s.end()),
µMG(t.end()-s.begin()))) ;

End For
End For

Figure 5. valueGraph

5 A Running Example

Consider the dataset in TABLE 3 (from the data,M =
17 andm = 0) and the following parameters for soft time
constraints: forwindowSize, wsinit=2 andρws = 0.86,
then wsρ=4; for maxGap, MGinit=4 andρMG = 0.84,
thenMGρ=6; for minGap, mginit=2 andρmg = 0.5, then
mgρ=1.



Table 3. Dataset: data sequences of three ob-
jects over 18 Days

1 3 4 5 6 8 9 10 12 17 18
O1 a - b c c d d d - e f g h
O2 b c d - - e f - - - - -
O3 a b - c c d d - e f - - - -

5.1 Sequence Graph Building

The first step consists of building the sequence graph
for data sequence O1. First, the vertex set is initialized:
each record is associated with one vertex. This is the first
line of the graph in Fig. 6. Then thewindowSize con-
straint is applied on each possible combination of vertices
usingaddWindowSize. Only combinations fulfilling the soft
windowSize constraint (i.e.end-time(O1i)-start-time(O1i)
≤ wsρ=4) are kept.

(a) (b c) (c d) (d) (d) (e) (f) (g) (h)

(a b c)
1

(a b c d)
2

(b c d)
3

(d e)
4 (e f)

6

(d e f)
5

(g h)
7

|{z}

I

|{z}

II

|{z}

III

|{z}

IV

|{z}

V

|{z}

VI

|{z}

VII

|{z}

VIII

|{z}

IX

i denotes the building order
VI denotes the sixth end-time “level”

Figure 6. Sequence graph for O1 at the end of
vertex set creation by addWindowSize

Then edges fulfilling bothminGap and maxGap soft
constraints are added to the graph using the main function
and thepropagateandaddEdgesubfunctions. The building
of edges starts with the last vertex (g h). The first level that
can access (g h) that fulfillsminGap is VII , then we build
an edge for each vertex in this level ifmaxGap is fulfilled.
The first edge is then from (f) to (g h). When a level cannot
attain a vertexv because ofminGap, we need to check if the
vertices of this level can access vertices that are successors
of v. This is done by the functionpropagate. After this
step, every subsequence of the initial data sequence meet-
ing the three soft constraints is in the graph in Figure 71.

However some inclusions2 may remain. The last step

1Note that in Fig. 7, some vertices have been moved up from where
they were in Fig. 6, to improve the graph legibility.

2The potentially included subsequences are shown with dashlines in
Fig. 7. The potentially included vertices are marked (*) during the edge
creation step.
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Figure 7. Sequence graph for O1 after edge
creation, showing edge creation

consists of deleting these inclusions, using subfunction
pruneMarked. The final sequence graph obtained from data
sequenceO1 is described by Fig. 8.

(a) (b c) (d) (d) (e) (f)

(a b c)

(a b c d)

(b c d) (d e)

(e f)

(d e f)

(g h)

Figure 8. Final sequence graph for data se-
quence O1 of TABLE 3

The longest sequences supported by data sequenceO1
are then:
- <(a b c)(d)(d e f)> - <(a b c d)>
- <(a b c)(d)(d e)(f)> - <(a)(b c)(d)(d e f)>
- <(a b c)(d)(d)(e f)> - <(a)(b c)(d)(d e)(f)>
- <(a b c)(d)(d)(e)(f)(g h)> - <(a)(b c)(d)(d)(e f)>
- <(a)(b c)(d)(d)(e)(f)(g h)> - <(a)(b c d)(d)(e f)>
- <(a)(b c d)(d)(e)(f)(g h)> - <(a)(b c d)(d e)(f)>

5.2 Temporal Accuracy of Extracted Pat-
terns

The sequence graph of each data sequence is built, from
TABLE 3 and soft time constraints specified in the example
statement. Then sequential patterns are mined for. The gen-
eralized sequential patterns obtained withminFreq= 70%,
are those in TABLE 4, with each having a 100% frequency.

In order to analyse their relevance according to the user’s
needs, their temporal accuracy is computed. To do so, the
sequence graphs are weighted, as described in section 4.3.



Vertices built withws=0,1 or 2 have a weight of 1, while
those built withws=3, have a weight of 0.93 and those built
with ws=4, have a weight of 0.87. ForminGap, the edges
built with mg=1 have a weight of 0.5, and a weight of 1
if mg=2. For maxGap, the weight is 1 ifMG ≤4, 0.92
if MG=5 and 0.84 ifMG=6. The resulting weighted se-
quence graph forO1 is shown on Fig. 5.2.

(a)1 (b c)1 (d)1 (d)1 (e)1 (f)1

(a b c)0.93

(a b c 4)0.87

(b c d)1 (d e)1

(e f)1

(d e f)0.87

(g h)1
0.84

0.5

0.5

0.5

0.5

0.5

0.50.5

0.84

1

0.5

0.5

1

1

Figure 9. Weighted sequence graphs for data
sequences O1

Finally, these weights are used to compute the temporal
accuracy of extracted patterns. The corresponding results
are presented in TABLE 4.

Table 4. Temporal accuracy computation of
discovered sequential patterns

Sequential patterns ̺Cl1 ̺Cl2 ̺Cl3 Υ
< (b c d) > 1 1 0.87 0.96
< (b c)(d)(e f) > 0.5 0.5 0.5 0.5
< (b)(d e) > 0.84 0.5 1 0.78
< (c d)(e) > 0.84 1 1 0.95
< (c d)(f) > 0.5 0.5 1 0.67
< (c)(d e) > 0.84 0.5 0.5 0.61

Once patterns have been obtained with their temporal
precision, we can more accurately analyze the constraints
used to generate them. The closer the precision is to 1,
the more the initial user-specified values correspond to the
timestamps in the database. On the contrary, a low preci-
sion value indicates that the constraints are not well suited
to this dataset.

6 Experiments

In this section, we compare the performances of the
GETC algorithm for soft constraints with those of the GTC
algorithm for crisp constraints. We compare the behaviors
of these algorithms, while also using an implementation of
PSP, while integrating the handling of time constraints. In

a second phase, we compare the patterns extracted using ei-
ther soft or crisp constraints on synthetic data. All of these
experiments were carried out on a PC - Linux 2.6.7 OS,
CPU 2,8 GHz with 2 GB of DDR memory. All the algo-
rithms were implemented in C++ and use the PSP principle
and structure to search for sequential patterns.

The results presented here were obtained through pro-
cessing of several synthetic randomly generated datasets,
with each containing approximately 1000 data sequences of
20 records on average. Each of these records contains an
average of 15 items chosen among 1000 possible ones.

The first phase involved comparing runtime without time
constraints (windowSize=0, minGap=0 andmaxGap=∞)
for GTC and for GETC, with a minimum accuracy equal to
1 for each soft constraint. We thus compared the runtime of
our algorithm with those of PSP and GTC and showed that
the GETC behavior is similar to that of GTC, i.e. runtimes
are almost identical to extract the same patterns.

We then repeated these measures by processing crisp
time constraints (with an accuracy of 1 for GETC) to com-
pare the behaviors of GETC and GTC. Fig. 10 shows the
runtime pattern as a function of thewindowSize value.
GETC has a linear behavior close to that of the GTC. The
difference is due to the temporal accuracy calculation step,
by which the time increases slightly withwindowSize, be-
cause the number of vertices in the sequence graphs in-
creases accordingly.

 0

 20

 40

 60

 80

 100

 120

 1  2  3  4  5  6

tim
e 

(s
ec

.)

windowSize

Running time according to the windowSize value

PSP
GTC

GETC

Figure 10. Runtime as a function of
windowSize with minGap=2, maxGap=∞ and
minFreq=0.35 (for GETC, ρws=ρMG=ρmg=1)

Finally, Fig. 11 shows, for GETC alone, the runtime pat-
tern according to the accuracy, for a minimum frequency
of 0.37. Note that the runtime reaches a maximum value
which corresponds to the extreme values of the soft time
constraints,M andm.
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The second part of our experiments on synthetic datasets
dealt with an analysis of sequential patterns extracted by
GETC, compared to those extracted by GTC, according to
the accuracy required for the various soft constraints.
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regarding soft time constraints with accuracy
equal to 1 or not

Fig. 12 presents runtimes for GTC and GETC according
to the minimum frequency, depending on the sample val-
ues chosen for each parameter. These values were calcu-
lated so that the time constraints used for GTC (crisp con-
straints) and for GETC with an accuracy of 1 (simulated
crisp constraints) correspond to the GETC limit values (soft
constraints) with a precision that differs from 1. These pa-
rameters are respectively:

• GTC withws=4, mg=0 andMG=10;

• GETC with ρ = 1, with wsinit=4, mginit=0 and

MGinit=10;

• GETC with ρ=0.75, with wsinit=0, mginit=1 and
MGinit=5, yieldingwsρ = 4, mgρ = 0 andMGρ =
10.

Note that, under these conditions, GETC with soft time con-
straints is as fast as GTC with the same constraint limit val-
ues, although, in addition to retrieving the same sequential
patterns, it uncovers their temporal accuracy.

Besides, if we ignore the optimal value of one or several
time constraints, it could be interesting to use GETC with a
minimum accuracy level different from 1, in order to extend
the search space. Analysis of the retrieved patterns and their
accuracy can inform us about a more adequate time con-
straint value. So we compared patterns extracted by GTC
with patterns extracted by GETC, with the same initial time
constraints. The number of detected patterns is then greater,
as shown on Fig. 13.
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Figure 13. Pattern distribution depend-
ing on their temporal accuracy on syn-
thetic data (wsinit=0, mginit=1, MGinit=5 and
ρws=ρmg=ρMG=0.5)

By classifying them in decreasing order of accuracy, we got
all patterns extracted by GTC (which have an accuracy of
1), then a list of patterns of lower temporal accuracies corre-
sponding to the soft constraints. This histogram also shows
that for this synthetic dataset, the constraints allowing us to
extract the largest number of patterns corresponding to an
accuracy of between 0.8 and 0.9.

Some experiments were done on web access logs to anal-
yse atypical behaviors. Comparison of performances and
runtimes between GETC and GTC gave quite the same re-
sults as with synthetic data. Regarding the quality of se-
quential patterns discovered by GETC, we obtained more
relevant information, since we got more descriptive patterns
for atypical behavior, each of them being provided with its



temporal accuracy. Moreover, some additional information
is obtained by GETC, but not uncovered by GTC.

7 Conclusion and perspectives

The generalized sequential patterns presented in [18] re-
define the inclusion of sequences in a broader way by in-
troducing time constraints. These constraints, which allow
the user to gather records or to separate them into differ-
ent sequences, can highlight less immediate knowledge and
closer to his/her needs. However, this definition is still too
rigid, in particular if the user has only a vague idea of the
time constraints which bind his data. In this article, we thus
propose to soften these time constraints for generalized se-
quential patterns, by using some fuzzy set theory princi-
ples. We thus give more flexibility to the specification of
time constraint parameters. The implementation of our ap-
proach is based on the construction of sequence graphs to
handle time constraints during the sequential pattern min-
ing process.We show the efficiency of our GETC algorithm
to solve the problem of mining for generalized sequences
under crisp or soft time constraints. We also highlight the
flexibility offered by our soft time constraints, as well as the
advantages of the temporal accuracy measure to analyse se-
quential patterns by running experiments on both synthetic
and real-life datasets. Finally, we intend to extend the fuzzy
sequential patterns presented in [8] to generalized sequen-
tial patterns, with time constraints (crisp or soft) in order to
mine quantitative timestamped data under time constraints.
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