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Abstract they are defined, thus allow the user to find new sequen-
tial patterns, but they are still too stiff. Consequentty, i
Many applications require techniques for temporal may become necessary to make several attempts with vari-
knowledge discovery. Some of those approaches can haneus combinations of these parameters before getting satis-
dle time constraints between events. In particular some factory results. In this domain, to our knowledge, no papers
work has been done to mine generalized sequential pat-have proposed an automatic determination of the most ap-
terns. However, such constraints are often too crisp or needpropriate time constraints.
a very precise assessment to avoid erroneous information.Besides, for some applications, it could also be intergstin
Therefore, in this paper we propose to soften temporal con-to soften the constraints specified by the experts of the do-
straints used for generalized sequential pattern minirg. T main to refine their knowledge: the expert knowledge is
handle these constraints while data mining, we design anused as a starting point and mining results complete it.
algorithm based on sequence graphs. Moreover, as these reTo make the constraints specification easier, we propose a
laxed constraints may extract more generalized patteres, w method that softens user-specified time constraints. e als
propose temporal accuracy measure for helping the analy- propose an efficient algorithm, GETC (Graph for Extended
sis of the numerous discovered patterns. Time Constraints), in order to handle these constraints.

Otherwise the discovered sequential patterns, according

to the specified time constraints, can quickly become so nu-

1 Introduction merous that their analysis becomes less effective. In this
regard, a measure that could facilitate the analysis ofrgene

In many fields searching for temporal knowledge is nec- alized sequential patterns would be a valuable tool.

essary, for instance in order to identify temporal profiles W& thus propose to provide the end-user with a time satis-
or detecting frauds and failures. Some learning techniqueg@ction degree that will indicate how well the user-spedifie
can handle such knowledge. [4] defines operations andinitial constraints are fulfilled.
rules associated with time intervals. In data mining, some  In this paper, we describe our proposal including the fol-
approaches can extract recurring episodes within |0ng seJOWing points. First, we define extended time constraints fo
quences [12, 17] or sequence databases [1, 2, 13]. SearcHeneralized sequential patterns. Secondly, we state a-defin
ing for such information is all the more interesting that it tion of time accuracy for frequent sequence analysis. yastl
can handle constraints between events: shortest or longes¥e focus on the algorithm we designed in order to handle
time_gap between two events [18, 20, 14, 15], or regu|ar soft time constraints and to compute time accuracy.
expression and repetition constraints [9, 6, 10, 3]. In the next section, we define the fundamental concepts
Within this framework, generalized sequential pattern associated with sequential patterns and generalized seque
mining was introduced in [18]. This data mining tech- tial patterns and we introduce existing algorithms that+man
nique extracts frequent sequences that meet user-specifiedge time constraints. In section 3, we briefly introduce the
constraints from a sequence database (e.g. successive pufdzzy set theory. We define the soft time constraints and the
chases of customers in a supermarket). temporal accuracy of a sequence. Then section 4 details our
However, although these methods are effective and ro-algorithm to implement the handling of soft time constraint
bust, the user has to know the exact constraint values toSection 5 illustrates our proposal on a running example. We
be specified. Then there is a risk that erroneous or use-then propose some experiments on synthetic data and we
less knowledge may be gathered. Moreover, in some casegyive brief results about experiments run on web access logs
these values are somewhat uncertain. Time constraints, as section 6, thus showing the benefits of our soft time con-



straints and measure. Finally, we conclude in section 7 oncondition freq(s) > minFreqholds. Given a database of

the prospects opened by our work. object records, the problem of sequential pattern mining is
to find all maximal sequences whose frequency is greater
2 Sequential patterns and time constraints than a specified thresholdn{inFreq [2]. Each of these

sequences represents a sequential pattern, also called a

. . , . . aximal frequent sequence.
This section defines the concepts used in the generallzeé‘n q q

sequential pattern mining task. It broadly summarizes the

L : . Thi n finition is rather strict and turn
formal description of the problem introduced in [2, 18]. s sequence definition is rather strict and turns out to

be inappropriate for many applications, because time con-
straints are not handled. When verifying whether a candi-
date sequence is included within another one, record parti-
tioning enforces a strong constraint since only pairs afiite
Sequential patterns were initially defined in [2] as maxi- sets are compared. However, if the interval between two
mal frequent sequences as follows. records of an object is short enough, they could be consid-
Let O be a set of objects. Each objects described by  ered as simultaneous. On the contrary, two events that are
a list of records- consisting of three information elements: g0 distant could have no link together. That is why general-
an object-id, a record timestamp, which is an integer, andjzed sequential patterns were proposed in [18], introdycin

a set of items in the record. L&t = {i1,4s,....i} be @  time constraints in order to improve the subsequence defi-
set of items. Anitemsetis a non-empty non-ordered set nition.

of items, denoted byiqis ... 7). A sequence is a non-

empty ordered list of itemsets, denoted Qys;ss...5, >. 2.2 Generalized sequential patterns
A n-sequencés a sequence of items (or of sizen).

2.1 Sequential patterns

Time constraints restrict the time gap between sets of
records that contain consecutive elements of the sequence.
There are three different constraints. Fimstingapis the
minimal time gap thamustseparate two consecutive item-
sets in a sequence. Thenaxgapis the maximal time
gap within which two consecutive itemsets of a sequence
mustoccur. Finally,windowSizes a sliding window dur-
ing which several record®aybe grouped into one itemset.
Handling time constraints, [18] redefined when a data se-

One sequence s} s ...s, > is asubsequencef an- ~ quence supports a sequence as follows.
other one< s; sa...s, > if there are integer$, < I» <
w. < lpsuchthats] C s, s5 C siyyeey Shy, C 8y
We should also mention that is includedin s.

Example 1 Let us consider an example of market basket analy-
sis. The object is a customer, records are the transactions made
by this customer. Timestamps are the date of transactions. If a
customer purchases produdts2, 3, 4, and5 according to the se-
quences =< (1) (2 3) (4) (5) >, then all items of the sequence
were bought separately, except produztnd 3 which were pur-
chased at the same time. In this examplis, a 5-sequence.

Definition 1 Given user-specified  windowSize,
minGapand  maxGapvalues, a data sequence
d =< dy...d,, > supports a sequence=< s; ---s, > if

Example 2 The sequence = <(2) (5)> is a subsequence of there exist integers < uy <ls < uz <..<l, <u, Such that

above, because (2) (2 3) and (5)C (5). However<(2) (3)> is Vi€ [1,n]:
not a subsequence of i, s; C UZ;l.dk;

. ii. timestamp{,,,) - timestampq;.) < windowSize;
All records from the same object are grouped together andVi € [2 ?ﬁ“l) Pli.) < windowSize

and sorted in increasing order of their tlme':s'tamp. 'They iiiimestamp(,) - timestampga, ) > minGap;
are called a data sequence. In order to efficiently aid de-. . ; :

. . I . . . iv. timestampd,,,) - timestamp{;, _,) < maxGap;
cision making, the aim is to discard non-typical behaviors ’ ’
according to the user’s viewpoint. Performing such a task  We will refer to timestamp{;,) as start-timgs;) and
requires allocating any data subsequenc®iwith a fre- timestampd,,,) as end-timés;). In other words,start-
guency valudreq(s). Thefrequencyof a sequence is de- timg(s;) and end-timés;) correspond to the first and last
fined as the percentage of objects supportimgth respect  timestamps of the set of records that contains
to the number of objects in the database. An obgeri-
portsa sequenceiff s is included within the data sequence Time constraints allow a more flexible handling of

of this object. records, insofar as the end user is then provided with the
In order to decide whether a sequence is frequent orfollowing advantages for mining sequences:
not, a minimum frequency valuminFreqis specified by e to group together itemsets when their timestamps are

the user and the sequence is said to be frequent if the sufficiently close via thevindowSize constraint;



e to regard itemsets as too close to appear in the samepear in data sequence C1, the purchases of days 1, 2 and 3 must
frequent sequence with theinGap constraint (i.e. to  be grouped together. However, this itemset does not meet con-
be considered as related); straint (ii), since end-timey ) - start-timegz) =day 3 -day 1 =2

e to regard itemsets as too distant to appear in the same>windowSize. There are no other possibilities to findn this

frequent sequence with theazGap constraint (i.e. to  data sequence. Thus data sequence C1 does not support
be considered as related). To make sequenceappear in data sequence C2, the purchases

of days 1 and 2 must be grouped together. This itemset meets
These time constraints, as well as the minimum frequencythe windowSize constraint, since it was built over two consec-
condition, are parameterized by the user. utive days. The minimum gap between this first itemset and the
next is then day 3 - day 2 = + 0 = minGap, which meets the
Example 3 In this example, we take the same context as for the minGap constraint (iii). So does thewazGap constraint (iv).
previous examples: records refer to the purchases of customers inData sequence C2 supports sequesice
a supermarket. Consider the data sequences C1 and C2 of cus-
tomers 1 and 2 given iABLE 1. Note that if the specified values arginGap=0,
maxGap=00 and windowSize=0, we get back the notion
of sequential patterns, as introduced in section 2.1, where
Table 1. Purchases made by two customers there are no time constraints and where items in an itemset
during one week come from a single record.

Days|| 1 2 3 4 5 6|7
C1 a b cd efg|h|i
c2 a|bcd|ef|gh

2.3 Related work

In the next sections (3 and 4) we introduce our extension
of time constraints and how handling them with our algo-
rithm GETC. Before that, we describe in this section some
constraint parametersininGap=0, consecutive itemsets mustbe @PProaches for generalized sequential pattern miningrunde
at least one-day distantnazGap=7, consecutive itemsets must UM constraints.
be at most seven-day distantjndowSize=1, purchases may be Various algorithms were proposed to handle these con-
grouped together over at most two consecutive days. Then Fig.Straints. Some push them directly into the mining process,
1 shows how these time constraints are applied in order to deter- like the GSP algorithm [18] and the DELISP algorithm [11].

mine whether data sequences C1 and C2 support the candidatdn contrast some others propose a preprocess applying the
sequences =< (a b cd) > or not. To make sequenceap- constraints to the sequences, which are then analyzed by

some sequential pattern tool. The GTC algorithm, proposed
in [14], is based on this principle.

Lets =<(a b ¢ d)> be a sequence and the following time

ho1 wma S RI MM The GSP algorithm proposed in [18] aims at mining
L(a) 2(b) 3(c d)” 5etg) ||6(h) || 7(i) | Generalized Sequential Patterns. It extends previous pro-
PE— posals for sequence mining by handling time constraints
Zws=1 and taxonomiesig-a hierarchies). It uses a generate-and-
(a)C1, customer 1 data sequence prune approach, that uses the frequent sequences of size
to generate candidate sequences of &ize 1. Then the
=1 uy =2 12:3“2 13:4“3 frequency of thesék + 1)-sequences is calculated. Time

| @) d)” 3(ef)” i h)| constraints are handled when parsing a data sequence. For
each candidate sequence, GSP checks whether it is con-
ws=1 % tained in the data sequence. Because of the sliding windows
J and minimum and maximum time gaps, it is necessary to
MaxG =17 . .
switch between forward and backward phases during ex-
(b) C2, customer 2 data sequence . .
amination. Forward phases are performed to deal progres-

“(a b) denotes the itemset ¢) bought at daté sively with items and, while selecting itemsindowSize is
used for resizing records partitioning. Backward phases ar
Figure 1. Time constraints, windowSize (ws), required as soon as thewxzGap constraint is no longer ful-
minGap (mg) and mazGap (MazG), on data se- filled. In such a case, it is necessary to discard all items
guences C1 and C2 for which themazGap constraint is violated and to resume

parsing the sequence starting with the earliest item mgetin
themaxGap condition.



In [13], another approach called PSP (Prefix-Tree for 3.1 Fuzzy Set Theory
Sequential Patterns) was proposed. It again fully utilizes
the fundamental principles of GSP, while using a differ-  The Fuzzy Set Theory was introduced by [19]. This the-
ent structure for organizing the candidate sequencesfwhic ory generalizes crisp set theory, assuming intermediary si
thus improves retrieval efficiency. uations between all and nothing. Whereas in the classical
More recently, the DELISP algorithm [11] was proposed theory an element belongs or not to a set, in fuzzy set
for mining sequential patterns with time constraints. It is theorya may partially belong toA (then called a fuzzy set)
based on the mining scheme of Prefix-SPAN. Actually, the and thus partially belong to its complement. Besides en-
original database is divided into multiple subsets for each abling this partial membership, fuzzy set theory allows a
prefix of a potential sequential pattern. While writing of gradual transition of an object from one state to the next.
subsets, DELISP reduces the size of the projected databases
by boundedandwindowedprojection techniques. The ex- Example 4 Let X be the universe of all possible sizes for a
periments proposed by the authors show a clear improve-luman being. One fuzzy sét(e.g. SMALL, MEDIUM Or BIG)
ment of DELISP over GSP. However, this technique is re- is defined by a me_mbers_h|p functipn expressing for every
stricted to prefix-growth algorithms, although there exist of X the degree with whictr belongs tod. This degree is in

- . interval [0,1]. An exemple of these three f sets is graphicall
a lot of different approaches and structures for sequentlallreprgsergted]on Figx > pThus a person OfLIJ’lZeZi;hﬂ.mGIO ganpb:e y
pattern mining [5, 21, 16].

simultaneously small and medium-sized with for example a degree
Therefore the GTC algorithm [14] was developed. The of 0.7 for the fuzzy setMALL (ua(x)=0.7) and a degree of 0.3

GTC (Graph for Time Constraints) algorithm, taking a data for the fuzzy setEDIUM (p2as (2)=0.3).

sequence, precalculates a relevant set of sequences to be

tested. By precalculating this set, the time spent analysin

a data sequence when verifying candidate sequences is re- 0 smaLL MEDIUM BIG
duced. Since this approach is efficient and adapted to any 1

sequential pattern mining algorithm, we instigated our own

algorithm GETC, detailed in section 4, using the same Vi

structure and principles as GTC. Tme5 M

3 Soft time constraints

Figure 2. BIG and sMmALL fuzzy sets describ-

The main drawback of time constraints, as definedinsec- ing a person’s height
tion 2.2, is that they are user-specified. They require the
data and constraint values to be a priori well-known. The
results thus depend on the good knowledge of the end-user.
Misvalued time constraints could indeed lead to erroneous Fuzzy logic operators are a generalization of crisp logic
or incomplete knowledge. However, to our knowledge, no operators. In particular, we consider negation, intefsect
studies have been proposed to automatically determine optiand union. The operator or t-norm operator (triangu-
mal time constraints for sequential pattern mining. We here lar norm) is the fuzzy equivalent of the binary intersec-
propose to extend the above time constraints for genedalize tion: panp(z) = T(ua(z),up(x)). The operatorl or
sequential patterns using some Fuzzy Set Theory principlest-conorm operator (triangular conorm) is similar to the bi-

Moreover, extracted patterns become increasingly nu-nary union:zaup(z) = L(pa(z), pp(z)). We denotel
merous, particularly during sequential pattern mining. So (resp..L) as the operator (resp. 1) generalized to the n-
it becomes necessary to provide the end-user with tools toary case. Different operators can be used as a t-norin,(
analyse the sequential patterns obtained. In the case of gerproduct...). They are associated with their dual operator
eralized sequential patterns, some useful informatiotdcou for the t-conorm (e.gmaz is the t-conorm for thenin t-
be derived from the duration of data sequences correspond0rm). As themin operator is idempotent, we use it for the
ing to time constraints. This is the purpose of soft time t-norm and consequently theax operator as t-conorm.
constraints, which we define in this section. These soft time
constraints enable us to define a measure of temporal ac3.2 Principles and notations
curacy expressing how well a sequence fulfills the initial
user-specified values of the time constraints. We thus pro- Our proposal of soft time constraints for sequential pat-
vide the user with flexibility in time constraint specifiaaii terns is built by analogy with fuzzy sets. Thus a sequence
and with a tool to help analyze the extracted patterns. will no longer meet a constraint in a binary way, because



the user may relax these time constraints. Each constrainfAll details about this definition can be found in [7].

can then be regarded as a fuzzy set, with its membership

function giving a temporal satisfaction degree. This degre In the remainder of this section, we use the notations
is thus calculated for each possible value of that time con-given in TABLE 2, to distinguish the three time constraints.
straint, and tells the end-user the extent to which thesilhyti Parameterswsinit, mginie and MGin;; are the ini-
specified constraint value has been fulfilled. tial user-specified values for the constraintsidowSize,

In order to fulfill users’ needs and to make our approach minGap andmazGap andpy,s, pmg andpy are the min-
flexible, a minimum temporal satisfaction degygecan be imum temporal satisfaction degrees associated with them.
specified for constraint’ of initial valuex;,,;. These coefficients enable the user to limit time constraint
As the satisfaction degree of constraints is based on thevariation, according to his/her own requirements. The4den
membership function of each constraint, specified coeffi- tifier ws (resp. mg or MG) denotes the variable associ-
cients are in the interval [0,1]. It is also possible to set a ated with thewindowSize (resp.minGap or mazGap) CON-
constraint with certainty: straint, andp(ws) (resp. p(mg) or p(MG@G)) denotes the

B . satisfaction degree obtained by the value (resp. mg or
e If p, = 0, the user want constraid to take each pos- MG values) of this variable.

sible value; the temporal satisfaction degree depends
on the constraint value generating the sequence.

o If p, = 1, the specified minimum temporal satisfac- Table 2. Notations

tion degree is 1, i.e. the user does not want the value of a7 maximal possible value favindow Size andmazGap

constraintX to vary. That constraint is set at the ini- given by equation 1

tial value and will not change; all generated sequences ws variable for thewindow Size constraint; may vary from

have a temporal satisfaction degree of 1. WSinit 10 M . . .
WSinst  initial value of parametewindow Size, user-specified

In all other 1[ and the val f con- wsp limit acceptable value_fon;s,_ computed fl’pn’pws .

* a. other casesp, 6]0.’ [ and the a _uec ot co Pws lowest acceptable satisfaction degreedamdowSize
Stramt_X may vary from I_tS user-specified Va_‘lu@nié p(ws)  temporal satisfaction degree obtained by the valueof
and a limit valuer , for which the temporal satisfaction windowSize
degree i9(x) = p,. MG variable for themaxzGap constraint; may vary from

MGinit toM

Note that if the specified values for the minimum sat- A/, initial value of parametemazGap, user-specified
isfaction degree of each time constraint is 1, we get back MG, limitacceptable value foM G, computed fromps
crisp time constraints, and thus, the notion of generalized Pmc  lowestacceptable satisfaction degreerfonz Gap

. . . . p(MG) temporal satisfaction degree obtained by the val{i&' of
sequential patterns as introduced in section 2.2. mazGap

The useful limit value of time constraints (extreme val-

minimal possible value fominGap

ues) first have to be determined. These values correspond given by equation 2
to the variation on the whole search Space (':eﬂM)- _ mg variable for theminGap constraint, may vary fromn to
These values are computed from the crisp time constraints MGinit
(ii), (iii) and (iv) in section 2.2. They are given by the litni Mgini¢  initial value of parameteminGap, user-specified
value allowed by these definitions mgp limit acceptable value fomg, computed fronpy, 4
i ] ) . . Pmg lowest acceptable satisfaction degreerfeinGap

The windowSize and ma.xGap constraints d‘-f’fme th_e p(mg) temporal satisfaction degree obtained by the valug of

maximal gap between two itemsets. For any given object, minGap

the maximal value they can be set at is thus the duration
between the first and last record. For the whole database,

this common extreme value will thus be the maximal gap,

over all objects, between the minimal and maximal record 3.3 Extending time constraints to soft
timestamp for the same object: time constraints

M = timest omaz) — timest Omin 1 : : : ;
Icfleac%(( imestamp(r ) = timestamp(r ) @ We now detail how the soft time constraints are built,

TheminGap constraint defines the minimal gap between USing the extension obindowSize as an example. Then
two consecutive itemsets. We have defined the limit value We illustrate each soft time constraint with a brief example
of this constraint by taking the crisp inequality it implies

into account. Then, the limit value for minGap is: ~ The valuews of windowSize constraint may vary from
‘ o _ its user-specified values;,;; to its limit value M. This
max(min( min (timestamp(r + 1) — timestamp(r))) —=1,0)  soft constraint is described with a fuzzy set for which the

@) membership function (3) gives the accuracy for a specific



valuews: Thuspane is the only lowest acceptable satisfaction degree dif-
] ferent from 1 andnaxGap is thus the only varying constraint.
1 .y if WS < WSinit Applying equation (6) with\/=6, we getM G, = 5. The value
p(ws) =< womar I WS <ws <M (3) MG will successively be 3, 4 and 5.
else For data sequence C1, purchases of days 1 to 3, as well as days 5

The user can then choose to allow the temporal s:atisfactionand 6, are grouped togetherin order to accept candidate sequence

degree of thavindowSize constraint to be somewhere be- s. However, with\/ G=3, the maxGap constraint is violated, as

tween 1 and the lowest acceptable v This lowest with M G=4. With M G=5, this constraint is fulfilled and the tem-

degree will be attained for a values, >ws: '_t of ws poral satisfaction degree is thef{(M G) = p(5) = 0.3 (5). The
p mnt .

o . . ._ . other constraints are also fulfilled, then data sequence C1 supports
More specifically, this largest acceptable window size is .
given by: candidate sequence

For data sequence C2, the records of days 1 and 2 are grouped
4) together, meeting thewaxGap constraint withAM G=M Gi:=3

and the corresponding satisfaction degree(/G = 3) = 1.
Example 5 Consider the two data sequences shown in exam- The other constraints are also fulfilled, and data sequence C2 sup-
ple 3 and the sequence<(a b ¢ d)>. Suppose that the user- POrts sequence.
specified time constraint parameters are;,;:=1, mgi»:+=0 and
MGinit=7, With p,s=0.7, pmge=1 and para=1.
Thus,p.s is the only lowest acceptable satisfaction degree differ- The minGap constraint is described with a fuzzy set

ent from 1, andvindowSize is thus the only constraint possibly whose the membership function (7) gives the accuracy for a
having several values. Applying equation (4) with= max((7— specific valueng:

1), (4 —1))=6 (TABLE 2, we getws, = |(1 —6) 0.7+ 6]=2.

ws, = L(wsinit - M)pws + MJ

The valuews of windowSize will successively be 1 then 2. 1 if mg > Mmginit
For ws=1, grouping the pruchases of days 1 to 3 of data sequence  p(mg) = { o s it mginie >mg>m  (7)
C'1 in order to accept the candidate sequenogould violate the 0 else

windowSize constraint. However withvs=2, we can indeed

group them and thisvs value, by equation (3), yields a temporal As aresults, the smallest acceptable gap is given by:

satisfaction degre@(ws) = p(2) = 0.8. The other constraints mg, = [(MGinit — M) pmg +m] (8)
are fulfilled as well, then data sequence C1 supports candidate se-
quences. Example 7 Consider the two data sequences shown in exam-

For data sequence C2, the purchases of days 1 and 2 are grouped'® 3 and the candidate sequence<(a b ¢ d) (e f)>. Suppose
together. Note that theindowSize that the user-specified time constraint parametersag,+=2,
constraint is fulfilled withws=ws:n;:=1 and the corresponding ~ ™Yinit=2 8nd M Ginit=7, With p,,s=1, pmg=0 and parg=1.
satisfaction degree ig(ws) = 1. The other constraints are also ~ 1NUS:pmg iS the only lowest acceptable safisfaction degree dif-
respected, data sequence C2 supports sequence ferent from 1 andminGap is thus the only varying constraint.
Applying equation (8) witn = 0, we getmg,=0. mg will suc-
cessively be 2, 1 and 0.
For data sequence C1, the purchases of days 1, 2 and 3. The

The mazGap constraint is described with a fuzzy set minGap constraint is not fulfilled withmg=2, but it is with
whose the membership function (5) gives the accuracy for amg=1. In this case, the satisfaction degree forinGap is

specific valuel/G: p(mg) = p(1)=0.5 (equation (7)). The other constraints are ful-
filled, so data sequence C1 supports sequendeor the second
1 if MG < MGinit data sequence, the purchases of days 1 and 2.nTh&>ap con-
p(MG) = % if MGinie < MG <M  (5) straint is not fulfilled whilemg is greater than 0mg=0 yields, by
else equation (7), to a temporal satisfaction degygeng) = p(0)=0.

The other constraints are fulfilled, data sequeatzsupportss.

As a results, the largest acceptable gap is given by: ) ]
Note that these soft constraints defined above are based

MG, = [(MGinit — M)puc + M) (6)  on fuzzy sets where the temporal satisfaction degree is de-
scribed by a linear membership function between the initial
Example 6 Consider the two data sequences shown in example constraint value and its extreme valii¢ or m. However,
3 and the candidate sequense<(a b ¢ d) (g h)>. Suppose these functions could also be defined in a different way, e.g.
that the user-specified time constraint parameterswagg,;:=2, by a step function or by a function representing the propor-
Myini+=0 and M Gin;+=3, With p,s=1, pmy=1 and par¢=0.3. tion of objects in the dataset meeting each constraint value



3.4 Temporal Accuracy of a Sequence 4 Graph for Extended Time Constraints

We now define the level of time constraint satisfaction Our implementation of these soft time constraints is

for a sequence considering the three constraints (i), (i |, qaq on the GTC algorithm (Graph for Time Constraints)
and (Iv), together. At the end of the mining task, we get roposed in [14] and sketched in section 2.3. The main
a list of frequent sequences. For each object, each frequeni%ea is to transform the data sequence of an object into a
sequence has been generated using specific time ConStrai@equence graph in which each path is a subsequence that
valuesws, mg and)MG. These values are used to COMpUte ¢ iiq the time constraints. The sequence graphs of the
the satisfaction degree of each constraint. These sdtiac data sequences are then used to determine the frequent se-

d(_egrees are then combined into a global measure associate&henCeS by a sequential pattern mining algorithm. Since
with the sequence. . handling of time constraints is done prior to and separate

I_:or an objec, thetemporal accura(_:yof asequencesis  — from the counting frequency step of a data sequence, we
defmed.as the sgﬂsfactpn degree yleldeq by the three tlrnepropose to use this method to implement the soft time con-
constraints considered simultaneously. Itis calculaszag straints. The graph structure will thus be used both for se-

a t-norm operatorT). For each object, se_ver_al occurrences guential pattern mining and for computing the temporal ac-
of s may appear. So the occurrence satisfying the most the

initial values (i.e. with the highest temporal satisfantae- curacy of sequential patterns in a second step.
gree) is searched through the sgtof subsequences of
using a t-conorm operatod {.

We define the temporal accuracy of a sequence
s =< s1 -8, > for objecto by the following equation: Our approach described in Fig. 3 includes all the funda-
mental principles of GTC. It contains a number of iterations

4.1 General Strategy of the Algorithm

o(s,0) = Loeq, (iie[h"] (p“’sm/”jttif"e(s.’”v) - Sf:"fiﬁ?"’e(sf)))’ Each iteration finds all frequent sequences of the same size.
ie[z’n](ZZQG((CZLJ-ZK&Z;)__Zf;,,;_,fﬁéf;:]))))’) GETC is used as a preprocess for handling soft time con-
) straints. Once a data sequence has been transformed into
4) a sequence graph that fulfills the soft time constraints, fre

For the whole dataset, the temporal accuracy of a se-quent sequences are searched within the subsequence set of
quences is given by the average aggregation of each object the sequence graph. As a result, using the sequence graph,

accuracy, i.e.: checking the time constraints becomes useless during the
1 candidate parsing: only inclusion must be verified. Once
Y(s) = 729(5’ 0) (5) the sequential patterns are extracted, the sequence graphs
|O|o€@ are weighted, then explored one last time to calculate the

) temporal accuracy of each generalized sequential patterns
Example 8 Consider the two data sequences from example 3

and the frequent sequenge=< (a b c d) (e f) > with the fol-

lowing parameters for soft constraint&s;n:: = 1, mginit = 2, Main- Input. minFreq, DB

MGinit = 4andpys=0.6, prmg=0.4 andparr¢=0.5. We still have Ouput: F, frequent sequences dnB,

M=6 and m=0. In this example, we use the min and max opera- k longest length of frequent sequences
tors for the generalized t-normT() and the generalized t-conorm  f, «— @k « 1;

(L) respectively. Fi — {{<i>}/i € T& freq(i) > minFreq}};

For data sequence CX, appears by grouping together days 110 4qqwindowSize(S) ;
3 on the one hand and days 5 and 6 on the other. Then, start-\ynile (Candidate(k) # @) do

time(s1)=1, end-time§; )= 3, start-time2)=5 and end-time{z)= For eachd € DB do
6. It is the single occurrence @fin this data sequence. Thus for (G) — GETC(@);
C1, the temporal accuracy &fis (details omitted): } countFrequency(andidate(k), minFreq, (G));
End For
0(s,C1) = min(pws(2), pws(1), Fy, — {s € Candidate(k)/freq(s) > minFreq};
Candidate(k + 1) < generateky,) ;

min(pmg (1), pra(5)))

—  min(0.8,1,min(0.5,0.5)) et
= 05 ComputeAccuracyi{y);
k

Then the same computation is done for data sequence C2. SiMitoryn F — UF
larly, we geto(s, C2) = 0.5. The temporal accuracy of sequence =0
s for the whole database is thus given by:

o(s, C1) + o(s, C2)
2

Figure 3. Main algorithm

T(s) = =05




4.2 Sequence Graph Building GETC- Input: d, a data sequence

Ouput: G4(V, E), d graph sequence,
V vertice set ofG 4, E edge set

V « buildVerticesg); addWindowSize(V) ;

From an input data sequendg the GETC algorithm
(Fig. 4) builds a sequence gragh(V, E) in which ver-
tices are itemsets and paths represent subsequences satihile (z # V-first) do - _
fying the time constraints. First each itemset of the input | L 1c el0-Precd img < mginit ;

While (z.start-time() 4.end-time()< mg) do
sequence is associated with a vertex. Then the subfunction
addWindowSizeombines records, in an attempt to meet the
soft windowSize constraint. It adds to the graph any satis-
fying combination as a new vertex. Vertices are allocated
to “levels” according to theiend-timein order to reduce
the time spent in checking gap constraints. The next step
consits in building the edges satisfying botlinGap and
maxGap SOft constraints. Thus for each vertex, the first
“level” of vertices satisfying the sofinGap constraint is
retrieved. For each vertex of this set, thenGap constraint
is fulfilled and themaxzGap constraint is checked. If it is
fulfilled, a new edge is built between both vertices.

Some optimization is done by tredldEdgeand propa-
gatesubfunctions in order to reduce the number of sequence
inclusions. Finally, the remaining included subpaths are
deleted from the graph by the subfunctigmsineMarked
andconvertEdged7].

We have proven that at the end of this process
GETC has built exactly all the longest sequences, fulfill-
ing the soft time constraint®indowSize, minGap and
maxGapgenerated from the input data sequence, [7]. T
GETC algorithm can thus be used as a preprocessing phas

contmg < FALSE ;
If (z.start-time()> l.end-time())Then
While (mg > mg,) do
If (constmingg,l)) Then
‘ contmg <« TRUE ;mg < mgp-1;
Else
| mg -
End If
End While
End If
If (contmg == FALSE) Then
| propagatet,l) ;1 « l.prec() ;
End If

End While
For chquw € I do

included < TRUE ; MG «— MGinis ;
While (MG < MGp) do
If (constMaxGg,w)) Then
\ addEdge@,x) ; MG — MG, + 1;
Else
‘ MG++;
End If
End While

End For
x «— S.nextf) ;
End While
he pruneMarkedG4(V, E)) ; convertEdgesty(V, E)) ;

Eturn Gq(V, E);

to handle soft time constraints before sequential patemes
mined. After this step, the candidate sequence support is

Figure 4. GETC

computed on these sequence graphs.

valueGraph - Input: G4(V, E), non valued sequence graphe

4.3 Temporal Accuracy Computation

for a data sequence
Hws, bmg, kMG, membership functions
for time constraints.

Output: G4(V, E), valued sequence graph fér

Once the sequence graphs have been built, we KNOWey eachs ¢ v do

which sequences are allowed by the time constraints and
which are forbidden. However, some sequences fulfill the
crisp constraints while others are built only by applying th
soft constraints. Thus their “quality” is not the same. Eaer

s.valuatefi, s (s.end()s.begin()) ;
For eacht € s.succ()do

edgeé,t).valuate(T ( umg(t.begin()s.end()),
rma(t-end()s.begin())) ;

nd For

fore we propose to calculate the temporal accuracy level ofend For

each longest path of the sequence graph (each maximal se-
guence) and to allocate it to each subsequence composing

it. In order to determine the time constraint values satis-
fyed by the paths in the graph, each edgg) is weighted

by T (ttmg(y-begin()z.end()) prsc(y.end()x.begin())) de-
pending on theng and M G values used to build this edge;

Figure 5. valueGraph

5 A Running Example

each vertex is similarly weighted hy,,,. These weights Consider the dataset inABLE 3 (from the dataM =
are computed by thealueGraph function, Fig. 5. The 17 andm = 0) and the following parameters for soft time
temporal accuracy of a sequence is then given by equatiorconstraints: forwindowSize, wsinix=2 andp,,s = 0.86,
(5) in section 3.4. This computation requires an additional then ws,=4; for mazGap, MGini=4 andpy e = 0.84,
iteration after sequential pattern mining in order to retur thenM G ,=6; for minGap, mgini=2 andp,,, = 0.5, then
each of them with its temporal accuracy. mg,=1.



Table 3. Dataset: data sequences of three ob-
jects over 18 Days

1 3 4 5 6 8 9 10 12 17 18
o1 a - bc cd d d e f g h
02 | bc d - - e f -
03 | ab - c cd d - ef -

5.1 Sequence Graph Building

The first step consists of building the sequence graph ~~ 7 ‘m/ > Y ;I’I’ jnatinag

for data sequence O1. First, the vertex set is initialized:

each record is associated with one vertex. This is the first  Figure 7. Sequence graph for O1 after edge

line of the graph in Flg 6. Then theindowSize con- Creation, Showing edge creation

straint is applied on each possible combination of vertices

usingaddWindowSizeOnly combinations fulfilling the soft

windowSize constraint (i.e.end-timg01,)-start-timg01,)

< ws,=4) are kept. consists of deleting these inclusions, using subfunction
pruneMarked The final sequence graph obtained from data
sequenc@)1 is described by Fig. 8.

@ (bc) (cd) (d) (d) (e) ® @ O
[ ] L] ° ° [ ] [ ]

[ ] [ )
(abc)(bcd) (de) e (g h) (bcd) (de)
o@D o O Y0 ) °
@bcd) °® @09 @O © N\ @h

.@ (def) e — @0 —M > @0 ——> @0 —> @ —> @ —— > @

O S Y
S T S .
I 0 oM v vV VI VII VII X

@ denotes the building order (@ b.c d) (d ef)

VI denotes the sixth end-time “level”

Figure 8. Final sequence graph for data se-

Figure 6. Sequence graph for O1 at the end of quence O1 of TABLE 3

vertex set creation by addWindowSize

The longest sequences supported by data sequehce
Then edges fulfilling bothminGap and maxGap soft are then:

constraints are added to the graph using the main function” <@ E C)(g)(g efp -<(@ bbc d); def
and thepropagateandaddEdgesubfunctions. The building EE: b ggdigd)ﬁéﬁ iggb ggdggd 2)()](;

of edges starts with the last vertex (g h). The first level that _ <@b o)A@ ENGhy - <@ c)d)die h
can access (g h) that fulfill&inGap is vi1, then we build - <(a)(b c)(d)(d)(e)f)(ghy - <(a)b cd)d)(e f>
an edge for each vertex in this levelifaxGap is fulfilled. -<(@®cd)d)Ee)®ghy -<(@)bcdyde)
The first edge is then from (f) to (g h). When a level cannot
attain a vertex because ofvinGap, we need to check if the
vertices of this level can access vertices that are suasesso
of v. This is done by the functiopropagate. After this
step, every subsequence of the initial data sequence meet-
ing the three soft constraints is in the graph in Figute 7

5.2 Temporal Accuracy of Extracted Pat-
terns

The sequence graph of each data sequence is built, from
TABLE 3 and soft time constraints specified in the example
statement. Then sequential patterns are mined for. The gen-
eralized sequential patterns obtained witmFreq= 70%,

!Note that in Fig. 7, some vertices have been moved up from where gre those in ABLE 4, with each having a 100% frequency.
they were in Fig. 6, to improve the graph legibilty. . In order to analyse their relevance according to the user’s

The potentially included subsequences are shown with iieshin . .

Fig. 7. The potentially included vertices are marked (*) dgrthe edge ~ N€€ds, their temporal accuracy is computed. To do so, the

creation step. sequence graphs are weighted, as described in section 4.3.

However some inclusioAsmay remain. The last step




Vertices built withws=0,1 or 2 have a weight of 1, while a second phase, we compare the patterns extracted using ei-
those built withws=3, have a weight of 0.93 and those built ther soft or crisp constraints on synthetic data. All of thes
with ws=4, have a weight of 0.87. FerinGap, the edges  experiments were carried out on a PC - Linux 2.6.7 OS,
built with mg=1 have a weight of 0.5, and a weight of 1 CPU 2,8 GHz with 2 GB of DDR memory. All the algo-

if mg=2. FormazGap, the weight is 1 ifMG <4, 0.92 rithms were implemented in C++ and use the PSP principle
if MG=5 and 0.84 ifM G=6. The resulting weighted se- and structure to search for sequential patterns.

guence graph foD1 is shown on Fig. 5.2. The results presented here were obtained through pro-
cessing of several synthetic randomly generated datasets,
with each containing approximately 1000 data sequences of

bedy 4 (dex

1 ° e, 20 records on average. Each of these records contains an
(a)}m_+ G i @y 01 s (@D average of 15 items chosen among 1000 possible ones.
e—e——e_ 0 _—0—0——0 The first phase involved comparing runtime without time
(ab CW \QLQ(Q Uk constraints @indowSize=0, minGap=0 andmazrGap=0c)
[ ] [ ]

for GTC and for GETC, with a minimum accuracy equal to

(ab 0.4)"87 2 (d e:)om 1 for each soft constraint. We thus compared the runtime of
our algorithm with those of PSP and GTC and showed that
Figure 9. Weighted sequence graphs for data the GETC pehayior is similar to that of GTC, i.e. runtimes
sequences O1 are almost identical to extract the same patterns.

We then repeated these measures by processing crisp
time constraints (with an accuracy of 1 for GETC) to com-

Finally, these weights are used to compute the '[emporalIoare the behaviors of GETC and GTC. Fig. 10 shows the

accuracy of extracted patterns. The corresponding resultdUntime pattern as a function of theindowSize value.
are presented inABLE 4 GETC has a linear behavior close to that of the GTC. The

difference is due to the temporal accuracy calculation, step
by which the time increases slightly withindowSize, be-
cause the number of vertices in the sequence graphs in-

Table 4. Temporal accuracy computation of creases accordingly.
discovered sequential patterns

Running time according to the windowSize value

Sequential patterns  oc1 oci2 oci3 T T T .
<(bcd) > 1 1 0.87| 0.96 wor SIc A%
< (be)(d)(ef) > 0.5 0.5 0.5 0.5 100 | KA
< (b)(de) > 0.84 0.5 1 0.78 ~ el 1
< (cd)(e) > 0.84 1 1 0.95 8 K
< (cd)(f) > 0.5 0.5 1 0.67 @ 60F ¥
<(c)de) > 0.84 05 05| 061 = wl K gk
" Q,:;:/;Q’/'”/

Once patterns have been obtained with their temporal %’“é . . .
precision, we can more accurately analyze the constraints °; 2 3 4 5 6
used to generate them. The closer the precision is to 1, windowSize

the more the initial user-specified values correspond to the

timestamps in the database. On the contrary, a low preci- Figure 10. Runtime as a function of
sion value indicates that the constraints are not well duite ~ windowSize With minGap=2, mazGap=oco and
to this dataset. minFreq=0.35 (for GETC, puws=pmc=pmg=1)

6 Experiments Finally, Fig. 11 shows, for GETC alone, the runtime pat-
tern according to the accuracy, for a minimum frequency
In this section, we compare the performances of the of 0.37. Note that the runtime reaches a maximum value

GETC algorithm for soft constraints with those of the GTC Which corresponds to the extreme values of the soft time
algorithm for crisp constraints. We compare the behaviors constraints) andm.

of these algorithms, while also using an implementation of

PSP, while integrating the handling of time constraints. In



Running time according to the accurracy value
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Figure 11. Runtime as a function of accu-
racy depending on several time constraints
(minFreq=0.37)

MGirni:=10;

e GETC with p:075, with wsmitZO, mgim'tzl and
MGinix=5, yieldingws, = 4, mg, = 0 and MG, =
10.

Note that, under these conditions, GETC with soft time con-
straints is as fast as GTC with the same constraint limit val-
ues, although, in addition to retrieving the same sequlentia
patterns, it uncovers their temporal accuracy.

Besides, if we ignore the optimal value of one or several
time constraints, it could be interesting to use GETC with a
minimum accuracy level different from 1, in order to extend
the search space. Analysis of the retrieved patterns aird the
accuracy can inform us about a more adequate time con-
straint value. So we compared patterns extracted by GTC
with patterns extracted by GETC, with the same initial time
constraints. The number of detected patterns is then greate
as shown on Fig. 13.

The second part of our experiments on synthetic datasets

dealt with an analysis of sequential patterns extracted by

GETC, compared to those extracted by GTC, according to
the accuracy required for the various soft constraints.

Running time according to the minSup value

4000 7 T T T T T
GTC f
L\ GETC-4-0-10-1 A |
300N GETC0-15:0.75 -
3000 Q 4
~ 2500 N\ E
o A
3
< 2000 g
5} NN
= %,
= 1500 EY R
1000 - N .
500 |- ]
O 1 1 1 1 1 ?
03 032 034 036 038 04 042
minSup

Figure 12. Runtime as a function of minFreq
regarding soft time constraints with accuracy
equal to 1 or not

Fig. 12 presents runtimes for GTC and GETC according
to the minimum frequency, depending on the sample val-

# of sequences according to the accuracy value
30 T T T

GTc /=

25 | GETC (ws=0, mg=1, MG=5) i=-=2 |
w |
3 20 B
c
E
T 15 —
@
12
S 10} ]
®= |
5 - -
O 1 1 1 1 1
7 v ] @ ™~
& & g 9 9
o o o o
) v \ \Y
S @ ~ b
IS IS o

accuracy

Figure 13. Pattern distribution depend-
ing on their temporal accuracy on syn-
thetic data (wsim-tZO, mgmif;l, MGinit:E) and
pws:pmg:pMGzo-s)

By classifying them in decreasing order of accuracy, we got
all patterns extracted by GTC (which have an accuracy of
1), then a list of patterns of lower temporal accuraciesszorr
sponding to the soft constraints. This histogram also shows
that for this synthetic dataset, the constraints allowisgou

ues chosen for each parameter. These values were calCusyiract the largest number of patterns corresponding to an

lated so that the time constraints used for GTC (crisp con-
straints) and for GETC with an accuracy of 1 (simulated
crisp constraints) correspond to the GETC limit valuest(sof
constraints) with a precision that differs from 1. These pa-
rameters are respectively:

e GTC withws=4, mg=0 andM G=10;

e GETC with P 1, with wsim-t=4, mgmit=0 and

accuracy of between 0.8 and 0.9.

Some experiments were done on web access logs to anal-
yse atypical behaviors. Comparison of performances and
runtimes between GETC and GTC gave quite the same re-
sults as with synthetic data. Regarding the quality of se-
guential patterns discovered by GETC, we obtained more
relevant information, since we got more descriptive pater
for atypical behavior, each of them being provided with its



temporal accuracy. Moreover, some additional information
is obtained by GETC, but not uncovered by GTC.

7 Conclusion and perspectives

(7]

(8]

The generalized sequential patterns presented in [18] re- 9]

define the inclusion of sequences in a broader way by in-

troducing time constraints. These constraints, whichaallo

the user to gather records or to separate them into differ

ent sequences, can highlight less immediate knowledge an
closer to his/her needs. However, this definition is still to
rigid, in particular if the user has only a vague idea of the
time constraints which bind his data. In this article, westhu

propose to soften these time constraints for generalized se [11]

guential patterns, by using some fuzzy set theory princi-
ples. We thus give more flexibility to the specification of

time constraint parameters. The implementation of our ap-
proach is based on the construction of sequence graphs t
handle time constraints during the sequential pattern min-

ing process.We show the efficiency of our GETC algorithm

to solve the problem of mining for generalized sequences [13]

under crisp or soft time constraints. We also highlight the
flexibility offered by our soft time constraints, as well &gt

advantages of the temporal accuracy measure to analyse sd14]
guential patterns by running experiments on both synthetic

and real-life datasets. Finally, we intend to extend theyuz

sequential patterns presented in [8] to generalized sequen

tial patterns, with time constraints (crisp or soft) in artte
mine quantitative timestamped data under time constraints
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