
HAL Id: lirmm-00163244
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00163244

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An On-Line Fault Detection Scheme for SBoxes in
Secure Circuits

Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre

To cite this version:
Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre. An On-Line Fault Detection Scheme for
SBoxes in Secure Circuits. IOLTS 2007 - 13th IEEE International On-Line Testing and Robust
System Design Symposium, Jul 2007, Heraklion, Crete, Greece. pp.57-62, �10.1109/IOLTS.2007.16�.
�lirmm-00163244�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00163244
https://hal.archives-ouvertes.fr

An On-Line Fault Detection Scheme for SBoxes in Secure Circuits

G. Di Natale, M. L. Flottes, B. Rouzeyre
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier

Université Montpellier II / CNRS UMR 5506
161 rue Ada, 34392 Montpellier Cedex 5, France

{dinatale,flottes,rouzeyre}@lirmm.fr

Abstract

In this paper we propose an on-line fault detection

architecture for bijective Substitution Boxes used in
cryptographic circuits. Concurrent fault detection is
important not only to protect the encryption/decryption
process from random and production faults, it also
protects the system against side-channel attacks, in
particular those based on fault injection. We will prove
that our solution is very effective while keeping the
area overhead very low. Besides, we will analyze the
correlation between the information processed by the
circuit and the power consumption in order to asses
the quality of the solution with respect to other side-
channel attacks such as Power Analysis techniques.

1. Introduction

From a mathematical point of view the
cryptographic device is a function that allows
calculating the encoded text based on the value of its
clear text to encode and the secret key. All the classical
cryptographic attacks try to identify some additional
associations between the input and the output of the
function to discover some hidden relations that allow
gathering the secret key.

The classic cryptanalysis is purely theoretical. On
the other hand, when the function is implemented in
hardware, other attacks are possible because the
attacker has access to the physical cryptographic
device and he can play around with it. These types of
attacks are called “Implementation Attacks” which
target the cryptographic device itself. These attacks
can range from the physical opening of the
cryptographic device to changing and/or observing the
environmental conditions, e.g. attacks based on the
observation of the inherent leakage of the
cryptographic device.

Among all the attacks proposed in the literature,
Side-Channel Attacks exploit the fact that the

cryptographic device itself leaks physical information
during the processing of a cryptographic algorithm.
This physical leakage (e.g., power dissipation, timing
information, ...) can be captured externally and can
then be used to compromise secret keys of
cryptographic algorithms by using standard statistical
tools. On the other side, Fault Attacks (e.g., [1] [2] [3])
aim to cause errors during the processing of a
cryptographic device. An additional information flow
can be caused if the cryptographic device returns
erroneous cryptograms or a modified execution path is
entered. By comparing the results obtained with and
without the fault injection the secret key can be
retrieved.

Designing a secure circuit requires to implement
protections against such attacks. It is also important to
be sure that the implementation of one countermeasure
for a specific attack will not enable an attacker to use a
different attack more easily.

In this paper we propose a low cost concurrent
error detection technique able to resist to fault attacks.
At the same time, we will analyze the properties of the
proposed solution when the circuit is under side-
channel attacks based on the observation of the power
consumption.

The technique we propose in this paper is not
designed particularly for circuits implementing a
specific cryptographic algorithm but for all those that
resort to bijective Substitution Boxes. A substitution
box (or Sbox) is a basic component of symmetric key
algorithms, used to obscure the relationship between
the plaintext and the ciphertext. In general, an Sbox
takes some number of input bits, m, and transforms
them into some number of output bits, n. Fixed tables
are normally used, as in the Data Encryption Standard
(DES) or in the Advanced Encryption Standard (AES),
but in some ciphers the tables are generated
dynamically from the key (e.g. the Blowfish and the
Twofish encryption algorithms).

The main idea of the approach is to use two parity
bits, one for the input word of the Sbox and one for its
output word. SBoxes perform an operation that is not
linear and thus is not invariant with respect to the
parity of the processed data, i.e., the parity bit is not
preserved after the transformation. It is necessary to
insert an additional circuit able to predict the value of
the output parity bit starting from the input value.
However, since we focus on bijective SBoxes (like the
one used for the AES), it is possible to predict the
value of the input parity bit starting from the output
value.

We will compare our solution with other
concurrent error detection techniques for an AES
implementation, since AES is nowadays the state-of-
the-art algorithm for symmetric cryptography.

We will prove that, compared to previous works,
our solution has higher fault coverage and lower area
overhead. Moreover, we will prove that this solution
does not increase the chances for an hacker to use
power analysis attacks.

The paper is organized as follows. Section 2
introduces the basic concepts and the characteristics of
the Advanced Encryption Standard algorithm, used as
test-bench for the experimental results. Section 3
summarizes the state-of-the-art on this topic, while
Section 4 presents the parity-based concurrent error
detection approach. Section 5 discusses the results in
terms of area overhead, fault detection capability (to
both stuck-at and bit-flip on the registers of the
circuit), and power analysis. Eventually, Section 6
concludes the paper.

2. Advanced Encryption Standard

The Advanced Encryption Standard (AES) [4] is a
block cipher adopted as an encryption standard by the
U.S. government. Several hardware implementations
for AES circuit have been proposed [5]. No matter the
type of implementation, the most expensive part of the
circuit in terms of area is the so called SBox.

The AES is an iterative algorithm. Each iteration is
called a round. The total number of rounds is 10. At
the start of encryption, input is copied to the State
array. After the initial key addition, 10 rounds of
encryption are performed. The first 9 rounds are the
same, with small difference in the final round. As
illustrated in Figure 1, each of the first 9 rounds
consists of 4 transformations: SubBytes, ShiftRows,
MixColumns and AddRoundKey. The final round
excludes the MixColumns transformation.

The encryption structure in Figure 1 can be
inverted to get a straightforward structure for
decryption.

SubBytes Transformation
The SubBytes transformation is a non-linear byte

substitution that operates independently on each byte
of the State using a substitution table (SBox). This
transformation can be pre-calculated for each possible
input value since it works on a single byte, therefore
there are only 256 values. Implementations of the
SBox are discussed in Section 3.
ShiftRows Transformation

In this transformation, the bytes in the first row of
the State do not change. The second, third, and fourth
rows shift cyclically to the left one byte, two bytes, and
three bytes, respectively.

Plaintext (128 bits)

Ciphertext (128 bits)

key

for i=1 to 9

SubBytes

ShiftRows

MixColumns

roundkey(i)

SubBytes

ShiftRows

roundkey(10)

Figure 1: AES Algorithm (encryption)

MixColumns Transformation

The MixColumns transformation is performed on
the State array column-by-column. Each column is
considered as a four-term polynomial over GF(28) and
multiplied by a(x) modulo x4 + 1, where:

a(x) = (00000011)2 x3 + (00000001)2 x2 +
(00000001)2 x + (00000010)2

AddRoundKey Transformation
In AddRoundKey transformation, a roundkey is

added to the State array by bitwise XOR operation.
Each roundkey consists of 16 words generated from
Key Expansion described below.
Key Expansion

The key expansion routine, as part of the overall
AES algorithm, takes the input key of 128 bits.
The output is an expanded key of 11*128 bits, i.e.,
the expanded key is composed of the secret key and 10
roundkeys, one for each round. Details of the
algorithm that allows determining the value of each
roundkey are given in [4].

3. State-of-the-Art

Fault detection and tolerance schemes for various
implementations of cryptographic algorithm have
recently been considered. Several motivations led to
increase the reliability of these circuits. From one side

the circuit implementation of cryptographic algorithms
can be quite area consuming, increasing the probability
of device failures. Fault detection is therefore helpful
in finding faults during the production tests. From the
other side, intentional intrusions and attacks based on
the malicious injection of transient faults into the
device are very efficient in order to extract the secret
key [6] [7] and must be prevented.

Since crypto chips are consumer products of mass
production, cheap solutions for concurrent error
detection and correction are of great importance [8] [9]
[10] [11]. A natural choice for concurrent error
detection is the application of parity codes. Concurrent
checking for the AES by parity prediction was first
introduced in [13] and [14]. One of the main problems
targeted in the literature is the prediction of the output
parity given the input state and the input parity bit.

The prediction of the output parity bit (when a
parity bit is added to each byte) is almost
straightforward for the ShiftRows, MixColumns and
AddRoundKey steps because these transformations are
either linear or they just perform some permutation of
the position of the bits in the state array (see [13] for
more details). On the contrary, the prediction of the
output parity bit is not trivial for the Sbox. In this
section we summarize the solutions based on the parity
bit for the SBox.

The SBox is usually implemented either as a 256x8
bits memory consisting of a data storage section and an
address decoding circuit, or a combinational circuit.
The incoming data bytes will normally have properly
generated even parity bits. A solution to generate the
outgoing parity bits is proposed in [14]: an even parity
bit is either stored with each data byte in the SBox
(memory implementation, see Figure 2.a), or on-line
generated with an ad-hoc combinational circuit (in the
case of combinational logic implementation for the
SBox). This solution is not very expensive and it
guarantees acceptable fault coverage.

SBox

Parity
=

SBox

Parity
=

*256x9
512x9

(a) (b)

Parity

*
*
*
**
**
*

Figure 2: State-of-the-Art solutions based on parity bit.
a) solution presented in [14]; b) solution presented in [13]

To increase the dependability and to detect
additional input parity errors and some internal
memory errors (data or decode), [13] proposes
replacing the original 8-bit decoder with a 9-bit one,
yielding a 512x9 bits memory (Figure 2.b). If a 9-bit
address with an even parity is decoded, the
corresponding output byte with its associated even
parity bit is produced. Otherwise, a constant word of 9
bits with a deliberately odd parity is output, e.g.,
“00000000 1”. Thus, half of the entries in the SBox
memory will be deliberately wrong (in the Figure, all
the rows marked with a ‘*’). In case of a single error in
the input value, a wrong cell will be addressed. That
cell will contain an erroneous parity bit that will be
detected during the parity bit check. This solution
guarantees higher fault coverage but it is very
expensive in terms of area overhead.

4. Architecture Description

The technique we propose in this paper is designed
for all the circuits implementing symmetric
cryptographic algorithms that resort to bijective
Substitution Boxes.

The main idea of the approach is to use two parity
bits, one for the input word of the Sbox and one for its
output word. SBoxes perform an operation that is not
linear and thus is not invariant with respect to the
parity of the processed data, i.e., the parity bit is not
preserved after the transformation. It is necessary to
insert an additional circuit able to predict the value of
the output parity bit starting from the input value.
Moreover, since we focus on bijective SBoxes, it is
possible to predict the value of the input parity bit
starting from its output value.

We do not add any parity bit in the memory that
stores the SBox values (or into the combinational logic
that implements it). On the contrary, we calculate the
parity of the input value and we compare it with the
parity bit predicted starting from the output value of
the Sbox. In addition, we calculate the parity bit of the
output of the SBox and we compare it with the
prediction of this bit starting from the input value (see
Figure 3).

If we compare this solution with those presented in
the past, we can find that they were based on the
prediction of the output parity, only. In [13], a parity
bit of the input value has been used to detect an even
number of faults in the input word. It was anyway not
predicted starting from the output. Therefore an odd
number of faults in the input word leads to an
undetectable fault. We will prove that our solution is
able to identify a certain number of faults in this
category.

We calculated the Output Parity Predictor and the
Input Parity Predictor using the truth tables of the
SBox and of the parity bits, calculated for both the
input value and the output value.

This scheme allows double parity bit prediction of
the SBox circuit and it should allow covering more
faults than the architectures proposed in the literature.
Section 5 will prove that actually this scheme is more
effective.

SBox

Input
Parity

Prediction

=

Output
Parity

Prediction

=

Register FF FF

Parity

Parity

Parity

Figure 3: Double parity bit prediction scheme

5. Experimental Results

In this section we provide some results related to
the area overhead, the stuck-at fault coverage, the bit-
flip coverage, and power consumption of the device
implemented with the proposed approach. We also
compare these results with the architectures proposed
in [13] and [14].
Area Overhead

The architecture proposed in Figure 3 has been
described in VHDL and synthesized using Cadence
RTL Compiler [16]. Both the SBox and the prediction
circuits have been synthesized as combinational logic.
However, the proposed solution can be implemented
using a ROM for the SBox.

Table 1 summarizes the area of the circuit
described in Figure 3. The area overhead is 38,33%.

Table 1: Area
Instance Cells Cell Area Net Area
--
SboxInOutPredictionV3 765 51979 16758
 inst_sbox 553 34707 10134
 inst_Outprediction 93 5879 1377
 inst_Inprediction 91 5606 1377
 inst_OutParity 4 710 27
 inst_InParity 4 710 27
 inst_InParityFF 4 710 27

Comparative results with state-of-the-art are shown

in Table 2.
Stuck-at Fault Coverage

In order to measure the detection capability of the
proposed architecture, we used the fault simulator
provided by Synopsys [16] (TetraMax). The circuit has
been modified in such a way that the only output
signals visible by the fault simulator are the
comparator signals. In this way, the obtained fault
coverage gives a measure of the detection capability
when a single error affects the circuit. The obtained
fault coverage is equal to 99.55%.

Table 2 summarizes some comparison between our
solution and the architectures proposed in [14] and
[13], sketched respectively in Figure 2.a and Figure 2.b.
Architectures proposed in [13] and [14] have been
synthesized using the same technological library in
order to get comparable results. In both cases the SBox
has been implemented as combinational logic.

The solution proposed in [14] allows covering
91.95% of the faults only, guaranteeing anyway a
lower area overhead. The solution proposed in [13]
guarantees higher fault coverage than the solution
proposed in [14], but at the expense of a very high
overhead (47.28%). Furthermore, the area overhead is
even higher when the Sbox is implemented by mean of
a ROM (about 125%).

Table 2: Comparison

Architecture
Area

Overhead
Fault

Coverage

Our approach 38.33% 99.55%
[14] (Figure 2.a) 18.17% 91.95%
[13] (Figure 2.b) 47.28% 93.43%

Bit-Flip Fault Coverage

Besides the stuck-at coverage, we used Verilog
simulation in order to calculate the Bit-flip detection
capability of the approach.

Bit flip in the flip-flops of the circuit are very
important because all the techniques of fault attacks
target this behavior. A fault may be induced in many
ways, such as power glitch, clock pulse or radiation of
many kinds (laser, etc...).

The simulation has been performed considering the
occurrence of all the combinations of N concurrent bit
flips, with 1≤N≤10 (8 flip flops for the input register,
plus two flip flops for the two parity bits). Moreover,
for each combination, all the possible input values
have been simulated. Thus, we performed a number of
injections equal to:

261888256
10

#
10

1
=•








=∑

=N N
Injections

The simulation of the bit flip is detailed in Figure 4.
After setting the input pattern, the bit flip is forced
right after the rising edge of the clock. The output
value is sampled at the next clock cycle, after that the
bit flip is released and a new input pattern is applied.

Pattern is set

Bit Flip is forced Bit Flip is released
Output is
sampled

New pattern
is set

Figure 4: Bit-Flip Injections
Results of the fault coverage are shown in Table 3.

Each row in the table corresponds to a set of
experiments performed with the same amount of bit
flips. The first column indicates the number of bit flips
(#BF) in that experiment. In the second column there is
the overall number of possible faults (all the
combinations of #BF faults over 10 flip flops). The
third column contains the number of detected faults
while the last column expresses this result in
percentage.

In opposition to detection schemes based on a
single parity bit, this solution allows covering also a
percentage of even faults.

Table 3: Bit-Flip Coverage
Bit flip # Faults # Detected Faults Coverage [%]

1 2560 2560 100 %
2 11520 3387 29.4 %
3 30720 30720 100 %
4 53760 13548 25.2 %
5 64512 64512 100 %
6 53760 14892 27.7 %
7 30720 30720 100 %
8 11520 2707 23.5 %
9 2560 2560 100 %
10 256 135 52.9 %

Power analysis

Although the results of the previous section
showed that the circuit is well protected against fault
attacks, there are other types of side-channel attacks
that allow finding the secret key. To reach high
security it is necessary to guarantee good protection
from all the types of attacks. In fact, it would be
useless to spend resources to be protected from one
type of attack if this addition facilitates other types of
attacks.

Since their introduction by Kocher in 1998 [17],
power analysis attacks have attracted significant
attention within the cryptographic community. While
early works in the field mainly threatened the security
of smart cards and simple processors, several recent
publications have shown the vulnerability of hardware
implementations as well.

In this section we will prove that the correlation
between power consumption and processes data is not
increased due to the fault detection technique. This
information guarantees that the power analysis attacks
does not become easier because of the introduction of
the error detection scheme.

We carried out gate level power estimation by the
Synopsys Power Compiler, which is included in the
framework of the Synopsys Design Compiler. Cell
internal power and net toggling (i.e. the frequency of
the input transitions) have a direct effect on the
dynamic power of a design. Power Compiler needs
such information in order to perform power reporting
or optimizations; net toggling is also called switching
activity. Switching activity can be given to the tool in
two ways: (a) by specifying the toggle rate in terms of
static probability, in which case the results are
potentially inaccurate; and (b) by measuring the
switching activity under a certain simulation scenario
and back-annotating it to the power estimation tool;
measurements can be carried out on some or all design
objects. Switching activity annotation is performed by
compiling and simulating the design within an HDL
simulator that can capture switching activity; in our
case, Cadence Verilog XL verilog_toggle command
was used.

The power consumption of the circuit has been
calculated for each transition of the input signal, i.e.
considering all the possible couples of different inputs.
In particular, we simulated 256*255=65280
transitions.
The results of the power consumption have been
classified as in Table 4. The first column contains the
input transition, while the second column contains the
related output transition (the output of the Sbox). For
both columns, in parenthesis it is reported the
Hamming distance between the two words. The last
column contains the power (expressed in mW) that has
been consumed for that transition.

Table 4: Power analysis

Input Transition Output Transition Power [mW]
00000000 00000001 (#1) 01100011 01111100 (#5) 0.8043
00000000 00000010 (#1) 01100011 01110111 (#2) 0.9522

… … …

We estimated the power consumption for both the
circuit with the double parity prediction and for the
circuit without any error detection mechanism. We
calculated then the correlation between the Hamming
distance of the output transition and the estimated
power, in two cases:
1. for all the items in the array. In this case we

obtained a correlation of 0.025 for the circuit
without error detection and 0.065 for the circuit
with double prediction;

2. for the items in the array grouped by Hamming
distance, and with the related average of estimated
power consumption. Figure 5 shows these results.
In this case the correlation is equal to 0.361 for the
circuit without error detection and 0.338 for the
circuit with double prediction.

1,731,74 1,73 1,74 1,74 1,74 1,76 1,73

6,94 6,85 6,90 6,89 6,91 6,93 6,92 6,80

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

1 2 3 4 5 6 7 8

of bit transitions

Po
w

er
 [m

W
]

Without Parity Bit With Parity Bit

Figure 5: Correlation between Hamming distance and power

consumption, with and without parity bit
Thus, while our technique successfully prevents

from fault injection attacks, it also does not make
easier side-channel attacks based on the observation of
the power consumption, such as DPA.

6. Conclusions

Crypto-systems are inherently computationally
complex, and in order to satisfy the high throughput
requirements of many applications, they are often
implemented by means of VLSI devices.

In this paper we proposed a low cost concurrent
error detection technique based on double parity
prediction, able to resist to fault attacks. At the same
time, we analyzed the properties of the proposed
solution when the circuit is under side-channel attacks
based on the observation of the power consumption.

The introduction of the parity bit prediction, both in
input and output, increased significantly the fault
coverage of the circuit, without resorting to expensive
solutions requiring large extra memory area and
without enabling an attacker to exploit power attacks
more easily.

7. References
[1] E. Biham, A. Shamir, “Differential fault analysis of

secret key cryptosystems,” In Advances in Cryptology –
CRYPTO’97, LNCS 1294, pp. 513–525, Springer-
Verlag, 1997

[2] P. Dusart, G. Letourneux and O. Vivolo, “Differential
Fault Analysis on A.E.S.,” Cryptology Archive of
IACR, No. 010, 2003

[3] C. Giraud, “DFA on AES,” Cryptology Archive of
IACR, No. 008, 2003

[4] “Advanced Encryption Standard (AES)”, Federal
Information Processing Standards Publication 197,
November 26, 2001.

[5] X. Zhang, K. K. Parhi, “Implementation Approaches for
the Advanced Encryption Standard Algorithm”, IEEE
Circuits and Systems Magazine, vol. 2, Issue 4, pp. 24-
46, 2002

[6] D. Boneh, R. DeMillo, R. Lipton, “On the Importance
of Eliminating Errors in Cryptographic Computations”,
Journal of Cryptology, vol. 14, pp. 101-119, 2001

[7] M. Akkar, C. Giraud, “An Implementation of DES and
AES, Secure against some Attacks”, Proc. Of CHES’01,
LNCS, vol. 2162, pp. 315-325, 2001

[8] G. Bertoni, et al., “Detecting and Locating Faults in
VLSI Implementations of the Advanced Encryption
Standard”, Proc. 18th IEEE Int’l Symp. Defect and Fault
Tolerance in VLSI Systems, pp. 105-113, Nov. 2003

[9] K. Wu, et al., “Low Cost Concurrent Error Detection for
the Advances Encryption Standard”, Proc. Int’l Test
Conference, pp. 1242-1248, 2004

[10] R. Karri, K. Wu, P. Mishra, Y. Kim, “Concurrent Error
Detection Schemes for Fault-Based Side-Channel
Cryptanalysis of Symmetric Block Ciphers”, IEEE
Trans. Computer-Aided Design of Integrated Circuits
and Systems, vol. 21, no. 12, Dec. 2002, pp. 1509-1517

[11] C. Yen, B. Wu, “Simple Error Detection Methods for
Hardware Implementation of Advanced Encryption
Standard”, IEEE Trans Computers, vol. 55, no. 6, June
2006, pp. 720-731

[12] G. Bertoni, et al., “A parity Code Based Fault Detection
for an Implementation of the Advanced Encryption
Standard”, Proc. IEEE Int. Symposium on Defect and
Fault Tolerance in VLSI, pp. 51-59, Nov. 2002

[13] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri
“Error Analysis and Detection Procedures for a
Hardware Implementation of the Advanced Encryption
Standard”, IEEE Trans. Computers, vol. 52, no. 4,
pp.492-505, Apr. 2003

[14] V. Ocheretnij, G. Kouznetsov, R. Karri, M. Gossel,
“On-Line Error Detection and BIST for the AES
Encryption Algorithm with Different S-Box
Implementations”, Proc. IEEE Int. On-Line Testing
Symposium, 2005, pp. 141-146

[15] http://www.cadence.com
[16] http://www.synopsys.com
[17] P. Kocher, J. Jaffe and B. Jun, “Introduction to

differential power analysis and related attacks,” 1998,
available at http://www.cryptography.com/dpa/technical

