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Abstract. Recent advances in data and knowledge engineering have
emphasized the need for formal concept analysis (FCA) tools taking into
account structured data. There are a few adaptations of the classical FCA
methodology for handling contexts holding on complex data formats, e.g.
graph-based or relational data. In this paper, relational concept analy-
sis (RCA) is proposed, as an adaptation of FCA for analyzing objects
described both by binary and relational attributes. The RCA process
takes as input a collection of contexts and of inter-context relations, and
yields a set of lattices, one per context, whose concepts are linked by
relations. Moreover, a way of representing the concepts and relations ex-
tracted with RCA is proposed in the framework of a description logic.
The RCA process has been implemented within the Galicia platform,
offering new and efficient tools for knowledge and software engineering.

1 Introduction

Formal concept analysis (FCA) has been successfully applied to a range of knowl-
edge engineering problems [22, 26, 28]. Nevertheless, FCA methods and tools
aimed at directly processing data –for producing knowledge units represented
within a knowledge representation language based on description logic (DL) [1]
such as OWL– are still under study [26]. One key difficulty lies in the presence
and management of relational attributes or links in the data, such as spouse,
reference, and part-of. For example, a target group for a marketing campaign
may be to analyze the class of “spouses of Master Gold credit card holders”,
that involves both binary and relational attributes.

Current FCA methods and tools have no capabilities for taking into account
relational attributes. This is a rather hard problem to solve, since relational
attributes introduce dependencies and even cycles between the data items. A
standard way for producing DL-like concept descriptions from a formal context
including binary and relational attributes remains to be designed. Accordingly,
one of the objectives of this paper is to present a methodology for taking into
account relational attributes within FCA, leading to what could be called “re-
lational concept analysis” or RCA.



The introduction of relational information, e.g. relational attributes, in the
data formats for FCA has been studied for almost a decade now, leading to three
main categories of research lines: (i) the relational attributes remain within the
formal objects [12–14], (ii) relational attributes are considered as first-class cit-
izens and organized into an independent lattice, separated from the standard
concept lattice [17] (just like relation types are represented within the concep-
tual graph formalism [21]), (iii) relations between concepts are established inde-
pendently from concept construction, on a manual or semi-automated basis [18].
Although these three approaches successfully deal with relational attributes for
solving a specific task, they are still not general enough and do not allow to
combine and process binary and relational attributes as object descriptors at
the concept formation step. Such a need arises in various practical situations,
for example in model engineering for software development or in ontology learn-
ing from data.

A first introduction of relational concept analysis (RCA) has been proposed in
[11]. The data structure on which is based the relational concept analysis process
is called a “relational context family” (RCF): it is composed of a collection of
contexts and inter-context relations, the latter being binary relations between
pairs of object sets lying in two different contexts. The objective is to build a set
of lattices whose concepts are related by relational attributes, similar to DL roles
or to UML associations. In addition, there are needs for associating restrictions
with relational attributes for describing specific characteristics. RCA has been
initially motivated by an application on the engineering of UML static models
(see [7]) with an emphasis on expressiveness and algorithmic aspects. Meanwhile,
the needs for processing complex data such as relational data has become an
important problem, especially in the knowledge discovery in databases field [9],
and calls for a formalization of RCA.

In this paper, we propose a global and declarative description of the relational
structure within the RCA approach, based on a set of lattices resulting from the
processing of the contexts that are successively considered. One feature of the
relational structure is that an object lying in the extent of an RCA concept can be
connected with another object in the extent of another RCA concept, through a
set of relational attributes or links. The inter-concept links can be nested leading
to a relational structure of an arbitrary depth. An auxiliary graph structure is
defined for covering these inter-object links.

Moreover, as experiences with UML model analysis reveal, the complexity
of the final concept descriptions calls for a knowledge representation formalism,
for managing and taking into account the semantics of the inter-concept links,
e.g. classifying links or checking their consistency. In the second part of the
paper, it is shown how concepts and relations from RCA can be mapped into a
knowledge base (KB) represented within a DL of the FL0 family. The connection
between the structure of the original data mapped into the ABox of the KB (set
of individuals) and the RCA concepts stored in the TBox of the KB (set of
concepts) is also studied.



The paper starts with a recall of basic notions from FCA (section 2) and
from DL (section 3) that are necessary. Then, the RCA framework is presented
in section 4. Section 5 describes the translation of the set of relational concepts
into a knowledge base represented within a knowledge representation language.
Finally, related work is summarized in section 6.
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ra x

ad x x

dd x x x x x x x x x x x x x x x x x x x x x x x x

sm x x x x x x x x x x x x x x x x x x x x x x x

Table 1. Formal context Kpapers of papers. Paper descriptors are: requirement analysis
(ra), architectural design (ad), detailed design (dd), software maintenance (sm).

2 FCA basics

FCA is the process of abstracting conceptual descriptions from a set of individu-
als described by attributes [10]. Formally, a context K associates a set of objects
(O) to a set of attributes (A) through an incidence relation I ⊆ O × A. An
example of formal context, namely Kpapers, is depicted in table 1, where O is a
set of scientific publications on the applications of FCA in software engineering,
and A the set of ISO software engineering activities (this example is adapted
from [24]). Two operators, both denoted by ′, connect the powerset of objects,
2O and the powerset of attributes 2A as follows:

′ : 2O → 2A, X ′ = {a ∈ A | ∀o ∈ X, oIa}

The operator ′ is dually defined on attributes. The pair of ′ operators induces
a Galois connection between 2O and 2A [4]. The composition operators ′′ are
closure operators and induce two families of closed sets, respectively Co ⊆ 2O and
Ca ⊆ 2A. These two sets, provided with set-inclusion order, form two complete
lattices (anti-isomorphic by ′). A pair (X, Y ) where X ∈ 2O, Y ∈ 2A, X = Y ′,
and Y = X ′, is a (formal) concept, with X as extent and Y as intent. The
set CK of all concepts extracted from K ordered by extent inclusion forms a
complete lattice, LK = 〈CK,≤K〉, called the concept lattice of the context –or
the Galois lattice– of the binary relation I). The lattice of Kpapers associated
with the formal context Kpapers is drawn on the left-hand side of Figure 1.
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Fig. 1. Left: Initial lattice L
0

papers. Right: The corresponding TBox.

The lattice represents in an exhaustive way the sharing of structures among
objects: two objects are in the same concept extent iff they share at least one
attribute, meaning, in mathematical terms, that a concept extent may be con-
sidered as the intersection of the extent of the attributes associated with the
concept. As it will be shown in section 4, RCA relies on a similar principle,
extended to relational attributes.

As it will be shown in section 4, RCA relies on a similar closure operator,
extended to relational attributes.

Conceptual scaling deals with non-binary data descriptions, organized into a
many-valued context K = (O, A, V, J), where J is a ternary relation between ob-
jects, attributes and values V [10]. The scaling replaces a many-valued attribute
by a set of binary attributes, each one representing a value that the attribute
holds. In RCA, as explained farther, scaling is used as well, for structure sharing
between referred and referring objects, and managing multi-valued dependencies
between objects.

3 Description logics basics

Description logics (DL) are knowledge representation (KR) formalisms based
on concepts, roles and individuals [1]. A concept represents a set of individuals
while a role determines a binary relationship between concepts. Concepts and
roles are designed according to a syntax and a semantics, as in any logic-based
formalism. The subsumption relation is a partial ordering relation, used for de-
tecting specialization relations between concepts and roles, and for organizing
concepts and roles within a hierarchy. Instance and concept classification are
the basic reasoning mechanisms: the former for finding the concepts an individ-
ual is an instance of, the latter for searching for the most specific subsumers



(ascendants) and the most general subsumees (descendants) of a concept in the
concept hierarchy.

The representation of concepts and roles in DL and in FCA is considered with
different points of view: (i) FCA approach is “inductive” and is mainly interested
in building concepts from a formal context, (ii) DL approach is “deductive”
and is mainly interested in designing concept and inferring subsumption and
instantiation relations for reasoning purposes. Accordingly, FCA and DL may
play complementary roles in understanding and managing complex data and
knowledge units. Attempts for the integration of both approaches may be found
in, e.g. [16, 2, 20].

From a practical point of view, a KB in DL consists in a set of concept and
role descriptions (respectively comparable to unary and binary predicates in first
order predicate logic), that may be primitive or defined (also called a TBox).
Primitive concepts are ground description that are used for forming more com-
plex descriptions, the defined concepts, by means of a set of constructors, such
as conjunction (⊓), universal value restriction (∀), existential value restriction
(∃), disjunction (⊔), negation (¬), and others. While a primitive concept can
be considered as an atom of the KB, a defined concept is described by a set
of conceptual expressions –role introductions– that can be regarded as a set of
necessary and sufficient conditions for detecting that an individual is an instance
of the concept, allowing for classification-based reasoning.

The choice of a set of constructors has a direct influence on the complexity
of the reasoning, i.e. classification and instantiation (see, e.g. [8]). In the follow-
ing, a simple representation language, called FL0, is considered, based on the
constructors ⊓, ∀, the top concept (⊤, whose extension if the set of all individ-
uals), the bottom concept (⊥) (whose extension is the empty set), and concept
definition ≡.

For example, based on the data introduced in figure 2, primitive concepts
for describing the content of articles on software engineering can be AboutDe-
tailedDesign, AboutMaintenance, AboutArchitecture, and AboutRequirements. A
primitive role can be cites, for expressing that a paper cites another paper. In
addition, the description of all papers dealing with detailed design and citing
only papers on maintenance can be the following concept, denoted by ADD:

AboutDetailedDesign ⊓ ∀cites.AboutMaintenance

The semantics of the descriptions in a KB is defined by means of an interpre-
tation, i.e., a pair I = (∆I , .I) where ∆I is a set of individuals called the inter-
pretation domain and .I is the interpretation function. The later maps a concept

description to a subset of 2∆I

and a role description to a subset of 2∆I×∆I

. For
example, the interpretation of the concept ADD with respect to an interpreta-
tion based on the paper context (in Table 1) and the cite relation (figure 2) is:
{1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25}.

The subsumption relationship between concepts is the main inferential service
provided by a DL reasoner: a concept C subsumes D, denoted D ⊑ C, iff DI ⊆
CI . Subsumption is a pre-ordering relation, that can be considered as a partial



ordering up to an equivalence, two concepts being equivalent as soon as the first
subsumes the second, and reciprocally, i.e. they have the same set of instances. A
concept definition A ≡ C assigns a concept description C to a concept name A. In
this way, a KB may be composed of a TBox aT and an ABox A, where assertions
about the actual individuals are stored. Assertions are of two kinds: concept and
role names are respectively used as unary and binary predicates, for describe the
relations between individuals and concepts, e.g. AboutDetailedDesign(12) and
cite(12,13) belong to the ABox representing the current example on scientific
papers.

It can be noticed that DL concept descriptions share with formal concept
intents from FCA a similar descriptive pattern: both are conjunctions of de-
scriptors which act as predicates on individuals or objects. This observation
calls for the introduction of relation between objects in FCA, similar to the re-
lations between individuals in DL, materialzed by roles. In this way, a direct
mapping could be obtained by concept description produced by FCA and DL-
based description, leading to FCA as a method for building an ontology from
data [23, 5, 19]. This is the purpose of the next section.

4 Relational Concept Analysis

Relational Concept Analysis (RCA) is an original approach for extracting formal
concepts from sets of data described by attributes and relational attributes. In
this section, the formal background of RCA is introduced and detailed.

4.1 Data Model

In RCA, data are organized within a structure composed of a set of contexts
K = {Ki} and of a set of binary relations R = {rk}, where rk ⊆ Oi × Oj , Oi

and Oj being sets of objects (respectively in Ki and Kj). The structure (K,R)
is called a relational context family (RCF) and can be compared to a relational
database schema, including both classes of individuals and classes of relations.
The following definition gives a formal account of RCF.

Definition 1. A relational context family R is a pair (K,R), where K is a set
of contexts Ki = (Oi, Ai, Ii), R is a set of relations rk ⊆ Oi × Oj where Oi and
Oj are the object sets of the formal contexts Ki and Kj.

A relation r ⊆ Oi × Oj can be seen as a set-valued function r : Oi → 2Oj .
Two functions are defined on relation sets in RCF, domain and range:

– dom : R → O with dom(r : Oi → 2Oj ) = Oi

– ran : R → O with ran(r : Oi → 2Oj ) = Oj ,

where O is the set of all object sets in the RCF, O = {O|K = (O,A, I) ∈ K}.
Moreover, an auxiliary function maps a context into the set of all relations whose
domain corresponds to the object set of the context:

rel : K → 2R; rel(K == (O,A, I)) = {r|dom(r) = O}.



The instances of a relation rk, say rk(oi, oj), where oi ∈ Oi and oj ∈ Oj ,
are called links. For example, the figure 2 shows the binary table of the cite

relation on the paper example, thus the set of links that are considered in the
following. The links can be “scaled” in order to be included as binary attributes
in a formal original context, through a mechanism called relational scaling and
explained in the following sections.
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(23) Ton99 x x x x
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(25) Van98 x x x x

Fig. 2. The table of citations between papers of the formal context Kpapers.

To solve the obvious identification mismatches, all the elements that are
manipulated here — contexts, objects, attributes, both initial and relational
ones — are assumed to hold unique names within a name space holding for
the entire RCF. Contexts are uniquely determined by their respective object
sets which remain invariant during the relational analysis process. Hence we can
speak about the ’same’ context on tho different iterations although these may
well be two different relations as the attribute sets could diverge. In the same



way, formal concepts are uniquely determined by their extents, which, once the
concept is created remain the same along the iterations while intents can grow
after each relational scaling step. The addition of new attributes in a formal
context leads to an expansion of the underlying lattice: the augmented lattice
contains a join-sub-semi-lattice isomorphic to the original one [27, 15].

4.2 Scaling of relations

Provided that the intent of a formal concept is modeled upon concept descrip-
tions in DL which possibly include expressions like ∀ r.C or ∃ r.C, where C is
the name of a concept, the attribute set of a relational scale should be based
on concept names. Thus, given a relation r of the RCF with dom(r) = Oi and
ran(r) = Oj , new attributes will be added to the context Ki via r. Although
several variants exist, the most reliable source of concept names is the lattice
of the context Kj underlying the object set Oj . Hence, the relation r basically
introduces the abstractions from Kj into Ki. The resulting attributes should
clearly bear an indication of the relation that generated them. Now, it only re-
mains to fix the circumstances under which such an attribute is awarded to an
object from Ki.

Intuitively, the scaling works as follows. First, observe that the value of r for
o ∈ Oi is a set of objects in Oj (r(o) ⊆ Oj). Strictly following the DL model,
a scale attribute combining a relation r with a formal concept c = (X, Y ) from
the lattice Lj is assigned to an object o ∈ Oi whenever r(o) is “correlated” with
the extent of c. Strong correlation means inclusion whereas an alternative is
to search for non-empty intersection between both sets. The two corresponding
encoding schemes for relational scaling are called narrow (for∀ r.C) and wide
(for ∃ r.C) encodings.

In mathematical terms, given Ki = (Oi, Ai, Ii), the scaling of Ki for a relation
r ∈ rel(Ki) such that ran(r) = Oj with respect to the lattice Lj yields an
extension of Ai and Ii, but keeps Oi unchanged. The attributes added to Ai are
of the form r : C, and this is made precise in the definition below:

Definition 2. Given a relation r ∈ rel(Ki) and a lattice Lj on Kj = ran(r),

the narrow scaling operator sc
(r,Lj)
× : K → K is defined as follows:

sc
(r,Lj)
× (Ki) = (O

(r,Lj)
i , A

(r,Lj)
i , I

(r,Lj)
i )

where O
(r,Lj)
i = Oi, A

(r,Lj)
i = Ai ∪ {r : c|c ∈ Lj}, and

I
(r,Lj)
i = Ii ∪ {(o, r : c)|o ∈ Oi, c ∈ Lj , r(o) 6= ∅, r(o) ⊆ extent(c)}).

The wide scaling operator sc
(r,Lj)
+ is defined in a way similar to the narrow

scaling operator. The only difference lies in the incidence relation for sc
(r,Lj)
+ (Ki)

which is defined as follows:

Ii ∪ {(o, r : C)|o ∈ Oi, c ∈ Lj , r(o) ∩ extent(c) 6= ∅}).



However, in the following, only narrow scaling is considered. For example,
suppose that the context Kpapers has to be scaled with respect to the lattice
given in Fig. 1. The papers exclusively citing papers on detailed design (dd
attribute) correspond to the concept whose intent exclusively includes dd, i.e.
the concept denoted by 5. The papers lying in the extent of 5 are all papers
except 21. Accordingly, in the scaled context, these objects are associated with
the attribute r through the construction ∀ r.C, with r being cite and C the concept
5, i.e. ∀ r.C.

The complete relational scaling of a context Ki is the scaling of all the rela-
tions in rel(Ki). Considering a context Ki, the relation set rel(Ki) = {rl}l=1..pi

,
and Ljl

the lattice associated to the context of the range object set for rl for
each l in [1, pi], the result of the scaling of Ki on all pairs (rl,Ljl

) is denoted by:

Krel
i = sc

(r1,Lj1
)

× (sc
(r2,Lj2

)
× (. . . sc

(rki
,Ljpi

)

× (Ki)))

Thus, when all the contexts of a RCF are scaled for lattice construction,
a scaled version of a context Kj may possibly be no more consistent with a

prior scaling sc
(r,Lj)
× . When there is no loop within relations in the whole RCF,

the inconsistent situation may be avoided by properly ordering contexts and
the associated lattice construction tasks. A general method for constructing the
lattices of a RCF is presented in the next section.

4.3 Lattice construction

The construction of the set of lattices associated to a RCF is an iterative fixed-
point-bound process that alternates pure lattice construction and expansion of
the contexts through relational scaling. The process starts with a “bootstrap-
ping” step, i.e., lattice construction on each context which processes all formal
objects exclusively with their original binary attributes while ignoring all the re-
lational information. The resulting lattices provide the basis for relational scaling
which is universally applied on every relation of the RCF at the next iteration.
A new step of lattice construction is then carried on, followed by a new scaling
step, and this goes on until the lattices stop evolving between iterations (two
consecutive steps produce lattices that are isomorphic). This means that a fixed
point for the RCF scaling operator has been met, and the computation ends up.

More formally, consider the evolution of the content of each context, i.e.,
the gradual increase of its attribute set and hence of its set of incidence pairs
along the iterative process. Given a context Ki from the RCF, its evolution is
captured in a series of context contents Kp

i . The starting element is the original
configuration of the context Ki, K0

i = (Oi, A
0
i , I

0
i ). Each subsequent member

of the series is obtained from the previous one by complete relational scaling:
Kp+1

i = (Kp
i )relp , where the relp operator denotes the fact that the scaling is

computed with respect to the content of the RCF at the step p of the process. The
series satisfies an important monotony property. Indeed, although at each step
a different set of new attributes is added to the context, it may be proven that
the concepts which have appeared at a step k of the process, will not disappear



on further steps. Hence the sizes of the concept set in the subsequent variants of
Ki from the above series form a non-deceasing series themselves. However, the
size of the set is bound from above by 2|Oi|, for obvious reasons. Therefore, the
series converges towards K∞

i , which represents the least fixed-point of the scaling
operator. This fact guarantees a termination of the global analysis process.

Furthermore, to express the global evolution of the context set within its
RCF, a composite operator is defined for Kn, that is considered as a vector of
contexts. The operator, denoted .rel∗p , denotes the application of .relp to all con-
texts in K. Here again, a series Kn can be defined by K0 = K, Kp+1 = (Kp)rel∗p

for all p ≥ 0. The resulting series has an upper bound since all component series
are upper bounded. The series is non-decreasing as well, and thus has a limit.
This limit, denoted by K∞, is the element where scaling produces no more con-
cepts in any of the contexts. In the paper example, the final lattice L∞

papers is
given in Fig. 3. s

From a pure computational standpoint, one knows the fixed point is reached
whenever at two subsequent steps all the pairs of corresponding lattices remained
isomorphic.

5 Mapping the RCA constructs to a DL KB

RCA provides relational descriptions that can be fully exploited by means of a
representation formalism supporting reasoning, classification, instance and con-
sistency checking. Hence the choice of the DL formalism is totally appropriate
and this is shown and discussed in the section hereafter.

In the following, the DL formalism that is considered is FL0, where con-
structors are conjunction, universal quantification, top and bottom concepts,
with the introduction of defined concepts. A knowledge base in FL0 is a pair
(TBox,ABox), denoted by B = (T (TC , TR),A), can be designed w.r.t. a RCF R
and the corresponding set of final lattices L = {Li} in the following way. First,
the set of symbols in R for context, attribute, object and relation (relational
attribute) names are mapped into B by a bijection α as follows:

– ∀Ki ∈ K: α[Ki] ∈ TC ,
– ∀ai ∈ Ai: α[ai] ∈ TC ,
– ∀ri ∈ R: α[ri] ∈ TR,
– ∀oi ∈ Oi: α[oi] ∈ individuals(A),
– ∀ci ∈ L∞

i : α[ci] ∈ definitions(T ).

This means that contexts and attributes become primitive concepts, relations
(relational attributes) become roles, objects become individuals (constants), and
formal concepts in L∞

i become defined concepts. Based on this mapping, the
actual content of the KB is created.

On the basis of this transformation, the ground facts of the ABox are con-
structed. Hereafter is presented the translation of all initial incidence facts from
A0

i , all incidences between contexts and objects, the basic relational links, and
the concept extents:
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Fig. 3. Left: The final relational lattice L
∞

papers. Right: The corresponding TBox.



– ∀ai ∈ A0
i ,∀oi ∈ a′

i: α[ai](α[oi]) ∈ A,
– ∀oi ∈ Oi: α[Ki](α[oi]) ∈ A,
– ∀ri ∈ R,∀o1, o2/r(o1, o2): α[ri](α[o1], α[o1]) ∈ A,
– ∀ci ∈ L∞

i ,∀oi ∈ ext(ci): α[ci](α[oi]) ∈ A.

Finally, the TBox is composed of the translation of the intents of the RCA
concepts where attributes rooted in relational scaling are translated into role
restrictions:

– ∀ai,j = rk ∈ cm,n ∧ cm,n ∈ A∞ \ A0
i : α[ai,j ] = ∀α[rk].α[cm,n] ∈ T ,

– ∀ci,j ∈ L∞
i : α[ci,j ] ≡ ⊓ai,j∈int(ci,j)α[ai,j ] ∈ T .

The connection between the data part in A and the schema part in T can
be made explicit. In this way, the interpretation domain ∆I is identified to the
ABox A, meaning that concept descriptions are interpreted in terms of individu-
als in the ABox, and role descriptions in terms of pairs of individuals. Moreover,
the formal concept extents in L∞

i have been explicitly translated into facts of
the ABox. A question remains whether all relations in the data have been ex-
pressed in the FL0 KB = (T ,A). The answer is that under some very reasonable
hypotheses, the set of all possible semantics, i.e., Actually, object sets that can
be described by a formula of FL0 with concept and role names in T (TC , TR),
are the TBox T constructed as above.

This can be stated in the following property. Given an arbitrary description
D in FL0, with T (TC , TR), there exists a concept C in T ((TC , TR) such that
D and C are semantically equivalent for the model provided by the ABox, i.e.
DA ≡ CA.

6 Related work

Extensions of the classical, i.e., binary, model of FCA to complex data de-
scriptions, e.g., including relational information, have been studied from var-
ious standpoints. For example, in the power context families framework [17],
inter-object links are regarded as higher-order entities and grouped into formal
concepts. Although a uniform way of processing n-ary links comes out of this
approach, the resulting layered representation of regularities (separate concept
lattices for each n) is hard to map to a classical knowledge representation lan-
guage where links are mostly binary and they are combined with objects’ own
properties.

Graph-based data descriptions are tackled in [12–14] whose authors propose
efficient extensions of the FCA machinery to complex data formats described
as graphs, e.g. chemical compound models, conceptual graphs, RDF triples.
Graphs, although complexly structured, are comparable to simple individuals
in that they do not refer to other graphs (except for nested graphs which have
yet not been studied for knowledge discovery purposes). Hence these works do
not face reference porblems and cicularity as we have to. Consequently, they can-
not — and are not intended to — provide DL-compatible concept descriptions
as we do.



Previous studies of combining FCA and DL [20, 2] have been focusing on
the construction of the concept intents out of a static set of DL primitives, i.e.,
concept and role names. In contrast, our approach is dynamic in the sense that
new concept are dicovered all along the analysis process whose names are then
used in the descriptions of further concepts, thus potentially creating in the so
called terminological cycles. Interstingly enough, such cycles have already been
tackled with FCA-based techniques in the study reported by F. Baader in [3].
However, our approach is based on a different way of establishing the semantics
of the cyclic descriptions, fixed point one as opposed to the descriptive semantics
used by Baader.

7 Discussion

In this paper, an extension of FCA to the representation and manipulation of
relational data has been proposed leading to a framework we called relational
concept analysis. Moreover, the concepts and relations extracted with RCA tech-
niques can be easily translated into DL knowledge base, allowing reasoning and
problem-solving.

The RCA approach has been implemented in the Galicia platform1 [25],
and validated within an application to software re-engineering [6]. The tool is
operational for relatively small datasets as scalability is a concern. Indeed, the
lattice of a context with some relational components can grow even larger be-
cause of the additional combinatorics brought by the links. So far, classical tech-
niques for complexity reduction have been used such as iceberg lattices or Galois
sub-hierarchies (which thaditionally work well for class hierarchies datasets in
software engineering). Computational cost has been fought by means of incre-
mental lattice construction whereby the principle is straightforward: only new
concepts at step k are used for scaling at the followong step.

A challenging research track leads to the coupling of Galicia with a DL
reasoner for knowledge representation purposes, and for ontology and software
engineering.
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