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Abstract. Semantic matching of schemas in heterogeneous data shar-
ing systems is time consuming and error prone. Existing mapping tools
employ semi-automatic techniques for mapping two schemas at a time.
In a large-scale scenario, where data sharing involves a large number of
data sources, such techniques are not suitable. We present a new robust
mapping method which creates a mediated schema tree from a large set
of input XML schema trees and defines mappings from the contribut-
ing schema to the mediated schema. The result is an almost automatic
technique giving good performance with approximate semantic match
quality. Our method uses node ranks calculated by pre-order traversal.
It combines tree mining with semantic label clustering which minimizes
the target search space and improves performance, thus making the al-
gorithm suitable for large scale data sharing. We report on experiments
with up to 80 schemas containing 83,770 nodes, with our prototype im-
plementation taking 587 seconds to match and merge them to create
a mediated schema and to return mappings from input schemas to the
mediated schema.

1 Introduction

Schema matching relies on discovering correspondences between similar elements
of two schemas. Several different types of schema matching tools [8, 9] have been
studied, demonstrating their benefit in different scenarios. In data integration
schema matching is of central importance [1]. The need for information inte-
gration arises in data warehousing, OLAP, data mashups [6], and work flows.
Omnipresence of XML as a data exchange format on the web and the presence
of metadata available in that format force us to focus on schema matching, and
on matching for XML schemas in particular.

We consider schemas to be rooted, labeled trees. This supports the compu-
tation of contextual semantics in the tree hierarchy. The contextual aspect is ex-
ploited by tree-mining, making it feasible to use almost automated approximate
schema matching [4] and integration in a large-scale scenario. The individual
semantics of node labels have their own importance. We utilize linguistic match-
ers, based on tokenisation, and synonym and abbreviation tables, to extract the



concepts hidden within them. The use of synonym and abbreviation tables is
considered to be a form of user intervention.

Tree mining techniques extract similar sub tree patterns from a large set of
trees and predict possible extensions of these patterns. A pattern starts with one
node and is incrementally augmented. There are different techniques [11] which
mine rooted, labeled, embedded or induced, ordered or unordered sub-trees. The
function of tree mining is to find sub-tree patterns that are frequent in the given
set of trees, which is similar to schema matching that tries to find similar con-
cepts among a set of schema trees.

Our Contributions
a) Matching, merging and the creation of a mediated schema with semantically
approximate mappings, in one algorithm which has good performance.
b) Use of tokenisation, abbreviation and synonym matching of label tokens, in-
tuitively supporting the clustering of similar labels to minimize the search space.
c) Extension of a tree mining data structure [11] to schema matching, using an-
cestor/ descendant properties for quality contextual semantic matching.
d) Ability to produce element level [8] simple 1:1 mappings, and complex map-
pings, including 1:n(leaf mapped to non-leaf) and n:1(non-leaf mapped to leaf).
e) Experiments with real XML schema instances (OAGIS, XCBL3) showing per-
formance appropriate for a large scale scenario.
f) Quality evaluation based on precision, showing that our method is reliable.

The remainder of the paper is organized as follows. Section 2 presents the
related work in large-scale schema integration. Section 3 defines the concepts. In
Section 4 we describe our approach, Performance Oriented Schema Matching,
along with a running example. Section 5 presents the experimental evaluation.
Section 6 gives a discussion, outlines future work and concludes.

2 Related Work

Nearly all schema-matching systems compare two schemas at a time and aim for
quality matching but require significant human intervention. Several surveys [3,
8, 9] shed light on this aspect and show that extending the matching to data
integration is time consuming and limited in scope. Large scale schema matching
has been investigated in the web interface schema integration [5, 10] using data
mining. Matching of two large bio-medical taxonomies [3, 7] was demonstrated
using COMA++ [3] and Protoplasm [2].

There are numerous issues in the semantic integration of a large number
of schemas. For example, Semantic Web, by definition, offers a large-scale dy-
namic environment where individual service providers are independent. In such
a situation the mappings can never be exact, rather they are approximate [4, 5].

Performance is an open issue in schema matching [3, 8, 9]. The complexity of
the schema matching task is proportional to the size of participating schemas
3 OAGIS : http://www.openapplications.org/, XCBL : http://www.xcbl.org/



and the number of match algorithms employed, i.e. O(nma), where n and m are
node counts in the source and target schema and a is the number of algorithms
applied. The quality of mappings depends on the type and number of matching
algorithms and their combination strategy [2, 3].

One of the most recent matching and merging tool is Coma++ [3] which pro-
duces quality matches. Coma is a composite matcher which can reuse previous
mappings. It uses user defined synonym and abbreviation tables, along with
other matchers. Coma can map large schemas with the help of user input. The
user can identify fragments of the schema to be mapped. This option is intended
to manage the namespace/ include characteristics of XML schemas. However,
human intervention in the schema mapping and merging process is needed. Sys-
tems like Coma, which produce mappings and no integrated schema, do not
support automated data integration suitable for application environments with
hundreds of schemas.

Semantically, a match between two nodes can be either an equivalence or
a partial equivalence. In a partial match, the similarity is partial, e.g., an ele-
ment Name = ‘John M. Brown’ in source schema is partially matched to Last-
Name=‘Brown’ and FirstName =‘John’ in the target, because Name also con-
tains the MiddleInitial=‘M’. If there are several possible matchings of the source
element to the mediated schema, the best/most correct match can be selected
(manual in [2, 3]). The choice can depend upon match quality confidence com-
puted at run time [2, 3, 8, 9]. We use a hybrid approach which automatically
selects the best match and performs the binary integration of schemas using
the ladder technique [1]. Our method caters both for the quality as well as
performance in large scale scenarios, using domain specific linguistic matching
(synonym and abbreviation oracles), clustering, and tree mining.

3 Preliminaries

Fig. 1. Input Schema Trees Sa and Sb.

Semantic matching requires the comparison of concepts which are structured
as schema elements. Node labels of schema elements are considered to be con-
cepts and each element’s contextual placement in the schema enhances the se-
mantics of the concept. For example, in Fig. 1 Sb, the elements writer/name
and publisher/name have similar labels but their contexts are different, which



makes them conceptually disjoint. In an XML tree, the combination of the ele-
ment label and the structural placement of the element produces the concept.

Def. 1 (Schema Tree) : A schema tree is a rooted, labeled tree [11]. A schema
tree, S=(V,E), consists of V={0,1,. . . ,n}, a set of nodes, and E={(x,y) | x,y ∈
V}, a set of edges. One distinguished node r ∈ V is designated the root, and for
all x ∈ V, there is a unique path from r to x. Further, lab:V → L is a labeling
function mapping nodes to labels in L={l1, l2,. . . }, and vt:L → P(V ) is a func-
tion which returns for each label li∈ L a set of nodes Vi ⊆V with labels similar
to li.
Def. 2 (Node Scope) : Nodes x ∈ V are numbered according to their posi-
tion in the pre-order traversal of the tree S (where the root is numbered 0, and
x is numbered X). Let T(x) denote the sub-tree rooted at x, and let y be the
rightmost leaf (or highest numbered descendant) under x, numbered Y. Then
the scope of x is defined as scope(x)=[X,Y]. Intuitively, scope(x) is the range
of nodes under x, and includes x itself (Fig. 1). The count of nodes in T(x) is
Y-X+1.
Def. 3 (Label Semantics) : Label semantics corresponds to the conceptual
meaning of the label (irrespective of context). It is a composition of concepts
attached to the tokens making up the label. Cl : l → (C(t1), . . . , C(tm)) where
m is the number of tokens making up the label.
Def. 4 (Node Semantics): Node semantics for x ∈ V, Cx, combines the se-
mantics of the node label Clx with its contextual placement in the tree, TreeCon-
text(x), as follows [11]: Cx : x → (Clx , T reeContext(x)). TreeContext of a node
x is its scope (Def. 2).

3.1 Scope Properties

Scope properties describe the contextual placement of a node [11]. Property test-
ing involves simple integer comparisons.
Unary Properties, given a node x with scope [X,Y]
Pr. 1: Leaf Node(x): X=Y, Pr. 2: Non-Leaf Node(x): X < Y.
Binary Properties, given x [X,Y], xd[Xd,Yd], xa[Xa,Ya], and xr[Xr,Yr]
Pr. 3: Descendant (x,xd), xd is a descendant of x: Xd>X ∧ Yd≤Y
Pr. 4: DescendantLeaf (x,xd) combines Pr. 1 and 3:
Xd>X ∧ Yd≤Y ∧ Xd=Yd
Pr. 5: Ancestor (x,xa), complements Pr. 3, xa is ancestor of x: Xa<X ∧ Ya≥Y
Pr. 6: RightHandSideNode (x,xr) with non-overlapping scope, xr is RHSNode
of x: Xr>Y.

Example 3.1 : In Fig. 1 Sa, Pr. 1 for node price[3,3] defines it as a leaf.
Pr. 2 for author[1,2] states that it is a non-leaf (an inner node).
Example 3.2 : The task is to find a mapping for Sa tree node author/name in
Sb. In Fig. 1 Sb there are two nodes called name: [2,2] and [4,4]. Given synonymy
between words author and writer, and top down traversal, Sa author[1,2] is
already mapped to Sb writer [1,2], we perform the descendant node check on



nodes [2,2] and [4,4] with respect to writer[1,2]. Node [2,2] is a descendant of
[1,2], using Pr. 3, and node [4,4] is not a descendant of [1,2], thus author/name
is mapped to writer/name.

4 Our Approach

We assume that only schema trees are available as input. Our method accepts a
set of schema trees and outputs the mediated schema tree and the corresponding
mappings.

Def. 5 (Semantic Mediation)
INPUT: A set of schema trees SSet={S1,S2 . . .Su}.
OUTPUTS:
a) A mediated schema tree Sm, which is a composition of all distinct concepts in
SSet. Sm = Pu

i=1(Si), P (Si) = {C1 ρ C2 ρ . . . Cn} includes all distinct concepts
in Si (Def. 4). P is the composition function and ρ denotes the composition
operator.
b) A set of mappings M = {M1, M2, . . . Mw} from the concepts of input schema
trees to the concepts in the mediated schema.

The mediated schema tree Sm is a composition of all nodes representing
distinct concepts in the set of schemas. During the integration process if a node
is not present in Sm, a new edge e′ is created in Sm and a node is added to it.

4.1 Assumptions

We make the following assumptions, valid in domain specific schema integration
(extended from [10]).
a) Schemas in the same domain contain the same domain concepts, but differ in
structure and concept naming.
b) We select the input schema with the highest number of nodes as the initial
mediated schema. Since each node represents a concept, this covers the maximum
number of concepts. This choice minimizes the addition of new concepts (nodes
not present in the mediated schema) to the mediated schema and improves
performance.
c) Only one type of matching between two labels is possible. For example, author
is a synonym of writer.
d) In one schema, different labels for the same concept are rarely present.
e) A node from the input schema is only matched to the set (cluster) of similarly
labeled nodes present in the mediated schema.

4.2 Example of Schema Integration

We developed an algorithm which works in three steps. First, we perform pre-
mapping. Schema trees are input to the system as a stream of XML and the
node number and parent for each node, node scope, schema size, and schema



depth are calculated. A listing of nodes and of distinct labels for each tree is
constructed.

Next, a linguistic matcher identifies semantically similar node labels. The
user can set the level of similarity of labels as A) Label String Equivalence, B)
Label Token Set Equivalence (using abbreviation table), or C) Label Synonym
Token Set Equivalence (synonym table). The matcher derives the meaning for
each individual token and combines these meanings to form a label concept. Sim-
ilar labels are clustered. Since each input node corresponds to its label object,
this intuitively forms clusters of similarly labeled nodes within the group
of schemas to be merged.

Table 1. Before Node Mapping

a. List of labels, ordered alphabetically

0 1 2 3 4 5 6 7 8

author book name name price pub title writer ROOT

b. Input Schema Nodes’ Matrix : Row 1 is Sa and Row 2 is Sb

1,2,0 0,3,-1 2,2,1 3,3,0

0,5,-1 2,2,1 4,4,3 3,4,0 5,5,0 1,2,0

c. Initial Mediated Schema, Sm, renumbered after adding ROOT
to Sb

1,6,0 3,3,2 5,5,4 4,5,1 6,6,1 2,3,1 0,6,-1

*Column entries show node scope and parent

Example 4.1 : Consider labels “POShipDate” and “PurchaseOrderDeliver-
Date”. In the abbreviation table PO stands for purchase order and in the syn-
onym table ‘deliver’=‘ship’. This implies that the two labels are similar.

In the integration and mapping part, we first select the input schema tree
with the highest number of nodes and designate it as the initial mediated schema
(Section 4.1). Next, we take each schema in turn and merge it with the mediated
schema, following the binary ladder technique highlighted in [1]. This requires
matching, mapping and merging. Concepts from input schemas are mapped to
the mediated schema.

The algorithm traverses the input schema depth-first, mapping parents before
siblings. If a new concept is found, with no match in the mediated schema, a new
concept node is created and added to the mediated schema as the right most
child of the node in the mediated schema, to which the parent of current node is
mapped. This new node is used as the target node in the mapping (Def. 5). The
algorithm combines node label similarity and contextual positioning, calculated
using properties defined in Section 3.1. Our example uses the two schemas shown
in Fig. 1 where Sa and Sb are shown with information calculated during pre-
mapping. A list of labels created in this traversal is shown in Table 1a. Nodes 2
and 3, with the same label ‘name’ but different parents (author and publisher)



Table 2. After Node Mapping

a. Labels List

0 1 2 3 4 5 6 7 8

author book name name price pub title writer ROOT

b. Mapping Matrix : Row 1 is Sa and Row 2 is Sb

1,2,0,7 0,3,-1,1 2,2,1,2 3,3,0,4

0,5,-1,1 2,2,1,2 4,4,3,3 3,4,0,5 5,5,0,6 1,2,0,7

c. Final Mediated Schema

1,7,0,
1.0,2.0

3,3,2,
1.2,2.2

5,5,4,
2.4

7,7,1,
1.3

4,5,1,
2.3

6,6,1,
2.5

2,3,1,
1.1,2.1

0,7,-1

*Column entries show node scope, parent and mapping

are shown to be disjoint. The last label is a new label, ROOT, created by our
algorithm.

Table 1b shows a matrix of size um, where u is the number of schemas and
m the total number of distinct labels in all schemas (the length of the label list).
A matrix row represents an input schema tree. Each non-null entry contains the
node scope and parent node number. Each node is placed in the column which
holds its label.

The larger schema tree Sb, see Fig. 1, is selected as the initial mediated
schema Sm. ROOT is added to Sm, and the nodes are renumbered to reflect
this. A list of size m (Table 1c) holds Sm, assuming the same column order as
in Table 1b.

The node mapping algorithm takes the data structures in Table 1 as input,
and produces mappings shown in Table 2b, and the integrated schema in Ta-
ble 2c. In the process, the input schema Sa is mapped to mediated schema Sm.
The mapping is read as the column number (Table 2b mapping) of node in the
mediated schema. Saving mappings as column number gives us the flexibility to
add new nodes to Sm, without disturbing the previous mappings. Scope values of
some existing nodes are affected, cf. Table 1c and Table 2c, because of addition
of new nodes (identified by Pr. 5 or 6; scope values adjusted accordingly), but
column numbers of all previous nodes remain the same. Thus, intuitively, none
of the existing mappings are affected.

Node mapping for input schema tree Sa (Table 1b row 1) starts from the
label ‘book’ with scope [0,3]. As it is a root node, with only one similar node
‘book’ [1,6] in Sm, mapping 1 is added in column 1 in Sa row, shown in bold
in Table 2b, for node Sa[0, 3]. This is now recorded in the mediated schema,
see Table 2c, as 1.0 i.e., node 0 in Schema 1 i.e., Sa mapped to node 0 in
Sm. Next node to map is Sa.author[1, 2], similar to Sm.writer[2, 3]. Both nodes
are internal and the ancestor check returns true since parent nodes of both are
already mapped. The resulting mapping for label 0 is 7. For node 2 with label
‘name’, there are two possibilities, nodes attached to label 2 (col. 2) and label
3 (col. 3). Descendant(name,writer) is true for node in column 2 and false for
3 by Pr. 3 (Example 3.2). Hence 2 is the correct map. The last node in Sa is



price[3,3]. There is no match in Sm, so a new node is added to Sm, as an entry in
the column with label ’price’ in the mediated schema list (Table 2c). This node
is created as the right most sibling of node in the mediated tree to which the
parent node of current input node is mapped, i.e. ‘book’. The scope and parent
node link are adjusted for the new node and its ancestors, and a mapping is
created from the input node to this newly created node.

Algorithm complexity: Given a set of input schemas S= {S1, S2, . . . Su},
we select as the mediated schema the schema tree with the highest number of
nodes, max(N(Si)) where N(Si)returns the number of nodes in a schema. We
match each node of each input schema to the mediated schema. The number of
input schema nodes Nt is given by Nt =

∑u
i=1 N(Si). Therefore the complexity of

Node Mapper algorithm is O(NtN(Sm)). This is quadratic in the size of schema
set that is to be integrated. Our experiments confirm this complexity.

5 Experimental Evaluation

The experiments were performed on a PC, Pentium 4-M, 1.80 GHz, 768 MB
RAM, running Windows XP, and Java 1.5. Three sets of schemas from different
domains were used, with ISN, Integrated Schema Nodes, giving the schema size
of the largest integrated schema.
1. Books: 176 synthetic schemas; Avg./Max/Min nodes 8/14/5, ISN 23
2. OAGIS: 80 real schemas; Avg./Max/Min nodes 1047/3519/26, ISN 70191
3. XCBL: 44 real schemas; Avg./Max/Min nodes 1678/4578/4, ISN 4803
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Fig. 2. Small synthetic schemas are matched faster than complex real life schemas

Performance was evaluated in three label similarity scenarios: A) Label
String Equivalence, B) Label Token Set Equivalence, and C) Label Synonym
Token Set Equivalence. Figures 2 and 3 demonstrate the performance of our
method. Our experiments show that the execution time reflects the number of
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Fig. 3. Influence of matchers A, B, C on schema integration time

schemas to be integrated, and appears to be at worst quadratic in the number
of nodes compared.

Fig. 2a shows a comparison of three kinds of matching: A, B, and C for
sets of 2, 4, 8, 16, 32, 64, 128, 176 Books schemas. There is no difference in the
performance of various matchers, which is possibly due to the fact that synthetic
schemas vary little in their labels. Fig. 2b shows time in seconds for Domains 2
and 3. Fig. 3a shows the time (s) against the number of nodes processed, for the
three similarity methods for XCBL. XCBL schemas are slower to match than
OAGIS schemas, see Fig. 3b. This is due to the higher average number of nodes
in XCLB schemas. It takes less than 600 seconds to match 80 OAGIS schemas,
while 44 XCLB schemas require more than 800 seconds.

Table 3. Quality Evaluation. A, B, C are the label similarity levels, and schemas are
at www.lirmm.fr/∼saleem/matching/schemas

Domain PurchaseOrd Books OAGIS XCBL

Schema S1 Sm S1 Sm S1 Sm S1 Sm

Size 14 18 8 15 26 34 647 743

Precision A/B/C 0.29/0.36/1 0.5/0.5/1 0.77 0.96

Since there is no established schema integration benchmark for a large scale
scenario, including both schemas and mappings, it is impossible to carry out
a full quality comparison. We evaluate the quality of our solution by look-
ing at a random schema pair in the set and counting the number of correctly
placed nodes in the integrated schema, correctlyPlacedNodes/ allPlacedNodes, as
our algorithm will always add a node if it cannot find a match. We establish
the precision measure by manual inspection of schemas, see Table 3 for results.
Since our method takes the larger schema as the initial mediated schema, the
smaller schema is integrated into the larger. Real domains schemas follow the
same namespaces, with no abbreviations and synonym applicability, as estab-



lished by manual inspection. Thus showing no variance in quality for the three
label similarity cases. Synthetic domain schemas show fluctuation because of the
abbreviated and synonym labels incorporated manually to study the algorithm.

6 Conclusions

We have introduced a novel technique based on tree mining, for schema match-
ing, integrating and mapping of a large set of schemas. We have investigated
its scalability with respect to time performance, in the context of approximate
mapping. The experimental results demonstrate that our approach scales to
hundreds of schemas and thousands of nodes. The linguistic matching of node
labels uses tokenisation, abbreviations and synonyms. The matching strategy is
hybrid, and optimized for schemas in tree format. Our algorithm provides an
almost automated solution to the large scale mediation problem.

Our results point to significant future work. We are planning to investigate
the application of our approach in P2P architectures, and enhancements to lin-
guistic matching. Another issue for the future is a benchmark for schema map-
ping evaluation in a large scale schema integration scenario. To further benefit
from tree mining, we are going to use it to identify co-relationships between sub-
trees within a forest of schema trees, which will help in identifying subsumptions
and overlaps, for the discovery of n:m complex mappings.
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