
HAL Id: lirmm-00173030
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00173030

Submitted on 21 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPoID: Do Not Throw Meaningful Incomplete
Sequences Away!

Céline Fiot, Anne Laurent, Maguelonne Teisseire

To cite this version:
Céline Fiot, Anne Laurent, Maguelonne Teisseire. SPoID: Do Not Throw Meaningful Incomplete
Sequences Away!. EUSFLAT, European Society For Fuzzy Logic and Technologies, Sep 2007, Ostrava,
Czech Republic. pp.329-336. �lirmm-00173030�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00173030
https://hal.archives-ouvertes.fr

SPoID: Do Not Throw Meaningful Incomplete Sequences Away!

Céline Fiot
LIRMM - CNRS

161 rue Ada
34392 Montpellier, France

fiot@lirmm.fr

Anne Laurent
LIRMM - CNRS

161 rue Ada
34392 Montpellier, France

laurent@lirmm.fr

Maguelonne Teisseire
LIRMM - CNRS

161 rue Ada
34392 Montpellier, France

teisseire@lirmm.fr

Abstract

Industrial databases often contain a large
amount of unfilled information. During the
knowledge discovery process one processing
step is often necessary in order to remove
these incomplete data either by deleting or
assessing them. When the data mining task
consists in mining for frequent sequences, in-
complete data are, most of the time, deleted,
which leads to an important loss of informa-
tion. Extracted knowledge then becomes less
representative of the database. Therefore we
propose a method that uses the partial infor-
mation contained in incomplete records, only
temporary ignoring the missing part of the
record. Experiments run on various synthetic
datasets show the validity of our proposal as
well in terms of quality as in terms of the
robustness to the rate of missing values.

Keywords: Data mining, sequential pat-
terns, missing values, incomplete data.

1 Introduction

For the last decade, data mining application fields have
widened. Approaches which were designed for specific
applications are now applied to other ones. Especially
it is the case of sequential patterns. This data mining
technique aims at discovering knowlegde from tempo-
ral databases. First designed to analyse customer be-
havior, they are now used in various industrial or bio-
logical fields. The searched datasets are sets of time-
stamped records. Each of them is constituted of a set
of values.

But sequential pattern approaches must be adapted,
these kinds of data having different format or some
of them being imperfect. In particular, industrial
databases often contain incomplete data (records con-
taining unfilled attributes) due to breakdowns or er-

rors, for instance. However existing methods only al-
low the analysis of complete data, without considering
incomplete records, which may represent an important
loss of information. Besides, replacement of missing
values or their estimation are often either too simplis-
tic to perform unbiased results, or too time-consuming
to be applied on large datasets. For this reason it could
be useful to implement a method for mining sequential
patterns within incomplete databases.

In this paper we propose an extension of the princi-
ples originally developed by [2] in order to discover
frequent sequences within databases containing values
missing at random. This approach was designed on the
basis of an association rule method for mining incom-
plete databases [14] and of a technique often used in
machine learning [8]: ignoring missing values without
ignoring the whole involved record. This principle con-
sists in only making use of available information (i.e.
filled-in attributes) and ignoring missing information.
Thus only partial complete databases are mined for
each pattern and the whole dataset is used to discover
all the patterns.
We here redefine this principle for sequential pattern
mining, thus proposing to discover maximal frequent
sequences within time-stamped incomplete databases.
For this reason, we adapt the concepts linked to se-
quential pattern discovery, leading to the SPoID (Se-
quential Patterns over Incomplete Data) algorithm.
This algorithm uses a well-known and efficient sequen-
tial pattern mining algorithm, PSP [9]. It has been
tested on synthetic datasets to show the validity of
our approach.

The remainder of the paper is organized as follows.
Section 2 introduces the methods for association rule
mining in the presence of missing values, and the con-
cepts linked to sequential pattern discovery. Section
3 details our approach to mine for sequential patterns
within incomplete data, and we describe our algorithm
in Section 4. Section 5 is then dedicated to experi-
ments that show the validity of our approach. Finally,

SPoID: Do Not Throw Meaningful Incomplete Sequences Away! 329

we discuss in Section 6 further work opened by this
proposal and we conclude in Section 7.

2 Sequential Patterns and

Incompleteness

Sequential patterns are often introduced as an exten-
sion of association rules, initially proposed in [1]. They
highlight correlations between database records as well
as their temporal relationship. Even so these algo-
rithms do not mine incomplete records contained in
the database. These missing values must then be re-
moved either by deletion or replacement. Quality of
results then depends on this preprocess. Moreover this
step is often time-consuming. In order to reduce the
preprocessing due to missing values and to improve the
sequential pattern quality, we propose a method for se-
quential pattern mining within incomplete databases.
This method is based on association rules approaches.
In this section we first define the concepts linked to
sequential pattern mining, then we detail our motiva-
tions before introducing techniques that allow associ-
ation rule mining handling missing values.

2.1 Sequential Patterns

Sequential patterns are based on the idea of maximal
frequent sequences.
Let R be a set of objects records where each record R
consists of three information elements: an object-id, a
record timestamp and a set of attributes/items in the
record. Let I = {i1, i2, ..., im} be a set of items or at-
tributes. An itemset is a non-empty set of attributes
ik, denoted by (i1i2 . . . ik). It is a non-ordered repre-
sentation. A sequence s is a non-empty ordered list of
itemsets sp, denoted by < s1s2...sp >. A n-sequence
is a sequence of n items (or of size n).

Example 1. Let us consider an example of market
basket analysis. The object is a customer, and records
are the transactions made by this customer. Times-
tamps are the date of transactions. If a customer pur-
chases products e, a, k, u, and f according to the se-
quence s =< (e) (a k) (u) (f) >, then all items of
the sequence were bought separately, except products a
and k which were purchased at the same time. In this
example, s is a 5-sequence.

One sequence S =< s1 s2...sp > is a subse-
quence of another one S′ =< s′1 s′2 ...s′m > if
there are integers l1 < l2 < ... < lp such that
s1 ⊆ s′l1 , s2 ⊆ s′l2 , ..., sp ⊆ s′lp .

Example 2. The sequence s′ = <(a) (f)> is a sub-
sequence of s because (a) ⊆ (a k) and (f) ⊆ (f). How-
ever, <(a) (k)> is not a subsequence of s.

All records from the same object o are grouped to-

gether and sorted in increasing order of their times-
tamp. They are called a data sequence. An object
supports a sequence s if it is included within the data
sequence of this object (s is a subsequence of the data
sequence). The frequency of a sequence (freq(s)) is de-
fined as the percentage of objects supporting s in the
whole set of objectsO. In order to decide whether a se-
quence is frequent or not, a minimum frequency value
(minFreq) is specified by the user and the sequence is
said to be frequent if the condition freq(s) ≥ minFreq
holds. A sequence that may be frequent is a candi-
date sequence. Given a database of object records, the
problem of sequential pattern mining is to find all max-
imal sequences of which the frequency is greater than
a specified threshold (minFreq) [2]. Each of these se-
quences represents a sequential pattern, also called a
maximal frequent sequence.

Several extensions were proposed to consider incre-
mental mining for sequential patterns [10], to handle
numerical and quantitative values [7, 3, 6] or to gener-
alize sequential patterns with respect to various tem-
poral parameters (time-interval between events of a
sequence, grouping several records into a single item-
set...) [15, 11, 5]. However, no technique was proposed
to deal with missing values while sequential pattern
mining. For this reason, in the following sections, we
propose an approach that can mine maximal frequent
sequences from an incomplete sequence database.

2.2 Motivations

Let us consider the database given by Table 1. The
goal is to extract the sequential patterns with a mini-
mum frequency equal to 50%.

Table 1:
Complete database.

O. Seq.

O1 (a b) (b c d) (b c e)
O2 (a) (b c) (b d)
O3 (a b) (b c) (b c d)

Table 2:
Incomplete database.

O. Seq.

O1 (a b) (? ? c) (? b c)
O2 (a) (? c) (b d)
O3 (a b) (? c) (? ? c)

The sequential patterns obtained are: <(a b)(b c d)>,
<(a b)(b c)(b c)> and <(a)(b c)(b d)>. Now, let us
consider the incomplete database given by Table 2.

Some information in the data sequences has not been
filled in and these values are missing. Let us consider
that these values are identified as missing and unfilled.
In order to mine for patterns, previous approaches re-
quire the suppression of missing values.

During the pre-processing step, incomplete records
may either be completely deleted, which leads to the
dataset in Table 3, or be partially but definitively
deleted (only missing values are removed), as shown

330 Fuzzy Methods in Learning and Data Mining

by Table 4.

Table 3: After incomplete
record deletion.
O. Seq.

O1 (a b)
O2 (a) (b d)
O3 (a b)

Table 4: After missing
value deletion.
O. Seq.

O1 (a b) (c) (b c)
O2 (a) (c) (b d)
O3 (a b) (c) (c)

Considering the first pre-processing, discovered pat-
tern minFreq = 50% is: <(a b)>. In the best case,
Table 4, resulting patterns for minFreq = 50% are:
<(a b)(c)(c)> and <(a)(c)(b)>.

Note that only a short part of the database is used
to discover information and only part of frequent pat-
terns and frequent items of the complete dataset are
found. In particular, item d is not frequent in the in-
complete database.
As deleting missing values or incomplete records leads
to an important loss of information, using the whole
dataset without deletion appears essential. In Sec-
tion 3, we thus propose an approach that uses par-
tial and temporary disabling of incomplete data. All
the records will then be used for discovering all the se-
quential patterns, but each of them is extracted from a
partial dataset. This method has been instigated from
an association rule approach.

2.3 Association Rules and Missing Values

Some works were proposed to discover association
rules within incomplete databases. Especially, [12, 13]
implement an assessment systems based on a proba-
bilistic distribution. With this approach one missing
value can represent various values while mining for as-
sociation rules. These methods are particularly well-
suited to classical non-historized relational databases,
but they are not easily adaptable to the specific format
of data sequence detailed in section 2.1.

That is the reason why we chose to start our approach
from the RAR algorithm (Robust Association Rules),
proposed by [14]. This method, fully compatible with
the original proposal [1], allow the user to consider
incomplete data while association rule mining within
incomplete relational databases, thanks to partial and
temporary omission of such incomplete records. The
main idea consists in only taking into account filled-in
attributes in incomplete records. The whole database
is not used to discover each rule but to generate the
whole set of rules. This technique is based on the valid
database concept, which is a complete dataset for a
given itemset. The remaining part of the database is
temporary ignored.
In order to consider this dataset partitioning, defini-
tions of support (percentage of records in database

that include the rule items) and confidence (proba-
bility for a record to contain the right part of the rule
knowing it contains the left part) were reformulated.
Furthermore, a new concept was introduced to take
into account the size of the complete sample used to
compute the rule support. This representativity mea-
sure also allow to prune rules that are slightly signifi-
cant with respect to the initial database.

From this principle we redefine in the next section the
definitions linked to sequential pattern mining previ-
ously detailed. These new definitions are then used by
our algorithm to mine incomplete sequence database.

3 SPoID: Dealing with Incomplete

Data

3.1 Sequential Patterns over Incomplete
Data (SPoID)

As deleting incomplete records leads to an important
loss of information we adapted an association rule min-
ing approach robust to missing values. In this section
we describe our method, SPoID (Sequential Patterns
over Incomplete Data), based on the principles of the
RAR algorithm proposed by [14].

The main idea of our approach, as the one of the RAR
method, is incomplete elements disabling, within our
context, incomplete sequences. While the RAR al-
gorithm only regards complete records for association
rules mining, we propose to only take into account the
complete data sequences for each candidate sequence.
In other words, when an incomplete data sequence is
scanned, only filled-in time-stamped attributes will be
considered for frequency calculation. Thus each candi-
date sequence will be considered as a frequent sequence
on a partial database, but the whole dataset will be
used to find the whole set of frequent sequences.

Let us consider a candidate sequence S, the set O of
objects in the database can be divided into three dis-
joint subsets (Figure 1):the set of data sequences sup-
porting S, denoted by OS , the set of data sequences
not supporting S, denoted by OS , and the set of data
sequences that we do not know if they support S or
not, denoted by O∗

S .

OS

{

Data sequences supporting S

O∗
S

{

Data sequences that may support S

OS

{

Data sequences not supporting S

Figure 1: Partition of the database depending on S
inclusion.

SPoID: Do Not Throw Meaningful Incomplete Sequences Away! 331

3.2 Definitions

For each candidate sequence S, only the subsets
OS ∪ OS will be kept to determine wether the sequence
S is frequent or not. This data sequence set represents
the valid database for S.

Definition 1. A valid database is a database only
containing complete data sequences for a given can-
didate sequence, i.e. each value of each record in the
data sequence corresponds to an identified item i of I,
the set of items in the database.

Constitution of a valid database leans on temporary
disabling data sequences that contain missing values
for items in the candidate sequence. This implies to
redefine the frequency calculation to take into account
the database partial deactivation.

Definition 2. A data sequence is disabled for a can-
didate sequence S if it is incomplete for S (i.e. we
cannot decide whether it supports S or not). The set
of data sequence disabled for a candidate sequence S
is denoted by Dis(S).

The frequency definition given in section 2.1 is then
modified in order to consider the valid database con-
cept, and thus that only one part of the dataset is used
for frequency calculation.

Definition 3. The frequency of a sequence S is the
appearance rate of this sequence among the data se-
quences that can support it. It is defined as the ratio
of the number of data sequences supporting S by the
number of data sequences that surely include S or not
(complete data sequences for S). It is given by:

Supp(S) =
|OS |

|O| − |Dis(S)|

Property 1. Considering minor restrictions, this def-
inition holds the antimonotonicity property of the sup-
port definition enonciated by [2].

Proof.

Supp(S) =
|OS |

|O| − |Dis(S)|
=

|OS |

|OS |+ |OS |
=

1

1 +
|OS|

|OS|

However, if S′ ⊆ S, then |OS′ | ≥ |OS |. Indeed, if a
sequence S′ is supported by the data sequence of an
object o, then either this object supports its superse-
quence S or it does not support it, or we do not know.
But in any case, any object that does not support S′

cannot include its supersequence S. Moreover, if S′ ⊆
S, then |OS | ≥ |OS′ |. Indeed, o ∈ OS′ ⇒ ∃i\s′i 6⊂ o,
however S′ ⊆ S ⇒ ∀i, ∃sk\s

′
i ⊆ sk, then ∃k\sk 6⊂ o

and, in that case, o does not include S.
Considering that none of these cardinalities is null,

both inequalities 3.2 and 3.2 can be multiplied member
to member. That leading to:

|OS ||OS′ | ≥ |OS ||OS′ | ⇒ 1 +
|OS|
|OS|

≥ 1 +
|O

S′ |

|OS′ |

⇒ 1

1+
|O

S′ |

|O
S′ |

≥ 1

1+
|O

S
|

|OS |

⇒ Supp(S′) ≥ Supp(S)

Then, the support definition for valid databases holds
the antimonotony property.

As the new support definition is antimonotonic, we
can use the various properties described in [2] in order
to implement the sequential mining algorithm within
incomplete databases. However, the frequency concept
must also be regarded taking into account the size of
the valid database used to compute it. Therefore we
define a representativity criteria and a minimum repre-
sentativity threshold minRep, that must be satisfied:
a valid database must be a significative sample of the
whole dataset for a sequence S to be frequent, even if
the condition freq(S) ≥ minFreq holds.

Definition 4. The representativity Rep(S) of a se-
quence S is defined as the ratio of the number of data
sequences including S or that cannot include it by the
total number of data sequences in the whole dataset. It
is given by:

Rep(S) =
|O| − |Dis(S)|

|O|

Definition 5. A sequence is said to be representative
if its representativity is greater than a minimum rep-
resentativity value minRep.

In other words, to be kept as frequent, a candidate se-
quence must have a representativity greater than the
minimum representativity threshold minRep and its
frequency must be no less than the user-defined mini-
mum threshold minFreq.

3.3 Representativity Threshold and Margin
of Error

Statistics use sampling techniques that allow to only
consider a population subset to assess a proportion,
satisfying an error interval with a sufficient confidence.
These tools help to determine the optimal sampling
size depending on the data distribution. Thus consid-
ering a random data distribution, [16] uses the Cher-
noff bound to set the minimal size of a random sample
for association rule mining. This result was also proved
theoretically and experimentally by [17].

We thus propose to use two kinds of representativ-
ity depending on the user needs: the minimum rep-
resentativity threshold can be defined either by the

332 Fuzzy Methods in Learning and Data Mining

user as a percentage of the dataset size, or it can be
an absolute number of data sequences computed from
statistics formula related to the data distribution and
user-defined parameters for error and confidence level.
However our experiments show that the optimal rep-
resentativity threshold is not an absolute value but
rather depends on the missing value rate of datasets.

4 Implementation

4.1 An Example

The incomplete database used in this example is given
by Table 2. Let minFreq be 50%. First support
and representativity are computed for each item to
determine which one are frequent. Item a is certainly
supported by the three objects, then its frequency is
freq(a) = 3/3 = 100% and its represetativity is equal
to 1. It is the same for items b and c.
For item d, O<d> = {O2} and Dis(< d >) =
{O1, O3}, then freq(d) = 1/(3-2) = 1 and rep(d) = (3-
2)/3 = 0.33. If minRep is 0.3, then rep(d) > minRep
and d is a frequent item. On the other hand, if minRep
= 0.4, then rep(d) < minRep and d is not a frequent
item because the valid database regarded to compute
its frequency is not significant enough.

Let us consider minRep=0.3. Now we consider the
candidate sequence S =< (a b)(a b c d) >. This se-
quence cannot be supported by one of the data se-
quence, because none of them contains an itemset
composed of 4 items, either complete or not. Then
OS = {}, Dis(S) = {} and OS = {O1, O2, O3} and
freq(S)=0. S is not frequent. Now we consider
S′ =< (a b)(b c) >. It is supported by O1, it can-
not be supported by O2 but maybe by O3. Then,
OS′ = {O1}, Dis(S′) = {O3} and OS′ = {O2}. That
leads to freq(S′)=1/(3-1)=50% and rep(S′)=(3-1)/3
= 0.67. S′ is then both representative and frequent.

Applying this method, discovered patterns
for minFreq=50% and minRep = 0.3 are:
<(a b)(c)(b c)> and <(a)(c)(b d)>. Even if
these patterns are not exactly the one obtained on
the complete database, they are closer to the one
we should get than the one discovered using the
preprocessed dataset. Experiments detailed in section
5 show that there exists a value of the minimum rep-
resentativity for which the algorithm SPoID extracts
the whole set of sequential patterns of the complete
database from an incomplete one.

4.2 Algorithm

The algorithm SPoID runs similarly to the generate-
prune sequential pattern mining algorithms. It con-
sists in generating all the candidate k-sequences from

the frequent (k-1)-sequences. Then the database is
scanned to count the number of data sequences that
support each candidate sequence. The main differ-
ence stands in the counting of incomplete data se-
quences. This counting step is described by the algo-
rithm Alg. 1: for each candidate sequence, for each
object,

• if the candidate sequence is found, the absolute
value of the frequency is incremented,

• if the candidate sequence is not found nor a se-
quence with missing values that could be replaced
to complete the candidate sequence, then the ob-
ject does not support the candidate sequence.
The absolute frequency is not incremented.

• an incomplete data sequence in which missing val-
ues could be replaced by items of the candidate se-
quence is found. In that case, the object is added
to the disabled object set.

Once the whole dataset scanned, the absolute value
of the frequency is divided by the substraction of the
number of disabled objects to the number of objects in
the database. The representativity is also computed.
Then the pruning step is run to delete candidate se-
quences that are neither frequent nor representative.

SPoID - Input: |O|, sequence database,
minSup, minimum support
minRep, minimum representativity
(user-defined or computed)

Ouput: SPList, frequent sequence list

C ← {i ∈ I} ; k = 1 ;

F ← getFrepnRep(C,minFreq,minRep) ;

SPList.add(F) ;

While (C 6= ∅) do
k++ ; C ← generate(F ,k) ;
For each candidate sequence s ∈ C do

For each object o ∈ O do
[Search for s within So]
If (s ∈ So) Then

support(s)++ ;
Dis(s)← Dis(s)\o ;

Else
If (s̃ ∈ So/s̃ may be s) Then

Dis(s)← Dis(s) ∪ o ;
End If

End If
End For
Sup(s)← support(s)/(|O| − |Dis(s)|) ;
Rep(s)← |O| − |Dis(s)|/|O| ;
If ((Sup(s) < minSup)||

(Rep(s) < minRep)) Then
prune(s) ;

End If
End For

End While
return SPList ;

Algorithm 1 – SPoID - main algorithm.

SPoID: Do Not Throw Meaningful Incomplete Sequences Away! 333

The temporal complexity of this algorithm is, in the
worse case, the same as the one of the algorithm To-

tallyFuzzy presented by [6]. We use the same kind of
optimizations to reduce the number of database scans.
On the other hand, the space complexity is much less
than the one of TotallyFuzzy, as it is similar to the
one of PSP.

5 Experiments

These experiments were carried out on a PC - Linux
2.6.7 OS, CPU 2.8 GHz with 512 MB of memory. The
algorithm was implemented in Java on the PSP princi-
ple. In particular, the Prefix-Tree structure was used
to store the candidate and frequent sequences.
We used synthetic datasets randomly generated. Then
some items were randomly replaced by missing values.
Sequential patterns were extracted from the complete
database and from the preprocessed incomplete ones
(i.e. incomplete databases in which incomplete records
have been deleted). Then those patterns are com-
pared to the one discovered by our algorithm SPoID.
Results here detailed were obtained from several syn-
thetic datasets containing around 2000 sequences of
20 transactions in average. Each transaction contains
around 10 items chosen among 100.

Our analysis is based on the several counting:

• the total number of sequential patterns discovered
by SPoID,

• the number of sequential patterns discovered
by SPoID, that are discovered in the complete
database,

• the number of wrong sequential patterns discov-
ered by SPoID (that groups together the patterns
that are not discovered in the complete database
and the one not found by SPoID but should be).

Table 5 sums up these notations.

Table 5: Notations for the different kinds of patterns.
β # sequential patterns discovered by SPoID, also

contained in the complete dataset
δ # different sequential patterns
θ # sequential patterns discovered by SPoID in the

incomplete database
τ # sequential patterns discovered in the complete

dataset

First, Figure 2 shows the evolution of the ratio β/θ,
with respect to the minimum representativity thresh-
old. It can be noted that this rate increases according
to minRep. It means that among sequential patterns
discovered by SPoID, the proportion of sequential pat-
terns obtained on the complete dataset increases with
the minRep threshold.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#r
ig

ht
fo

un
d/

#t
ot

al
di

sc
ov

er
ed

minRep

#rightfound/#totaldiscovered according to minRep

incompletness rate 20%
incompletness rate 30%
incompletness rate 40%
incompletness rate 50%

Figure 2: β/θ rate according to minRep.

This observation can be completed by analysing Fig-
ure 3, which represents evolution of the ratio β/τ
(number of discovered sequential patterns with respect
to sequential patterns that should be discovered) ac-
cording to the minimum representativity threshold.
This ratio decreases while minRep increases. It means
that the minimum representativity threshold should be
low enough to allow the discovery of all the sequential
patterns obtained in the complete database.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#r
ig

ht
/#

co
m

pl
et

eS
P

minRep

#right/#completeSP according to minRep

incompletness rate 20%
incompletness rate 30%
incompletness rate 40%
incompletness rate 50%

Figure 3: β/τ rate according to minRep.

Then we show that there exists an optimal value of the
representativity threshold for which the ratio β/θ and
β/τ are the closest to 1. This value is the threshold at
which the right patterns discovered in the incomplete
database are the most numerous compared to the num-
ber of wrong patterns. Figure 4 focuses on this optimal
value minRep. This graph describes the evolution of
the ratio β/δ according to the minimum representa-
tivity. It can be noted that there is not an absolute
value for the minimum representativity, that would be
common to every database independently from the in-
completeness rate and only depending on an error mar-
gin. From these results, the minimum representativity
threshold only depends on the incompleteness rate of
the database.
Whatever the proportion of missing values in the in-
complete database, the overall behavior of the ratio

334 Fuzzy Methods in Learning and Data Mining

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#r
ig

ht
/#

w
ro

ng

minRep

#right/#wrong according to minRep

incompletness rate 20%
nb vm = incompletness rate 30%

incompletness rate 40%
incompletness rate 50%
incompletness rate 60%

Figure 4: β/δ rate according to minRep.

β/δ is similar: it increases until it reaches a maximum
before decreasing. This maximal point corresponds
to the average optimal representativity, for which the
number of right patterns discoverd by SPoID is the
highest and the number of wrong patterns is the low-
est. Table 6 gives the value of optimal representativ-
ity empirically found, for each incompleteness rate in
datasets.

Table 6: Average optimal representativity according
to the missing value proportion in the database.

% of missing values optimal minRep

10% 0.97
20% 0.9
30% 0.81
40% 0.74
50% 0.6
60% 0.48
70% 0.39
80% 0.22

Figure 4 also shows the SPoID algorithm performances
depending on the missing value proportion in the
database. A difference can be noted between the over-
all evolution of the ratio β/δ for databases containing
less than 40% of missing values and the one containing
50% of incomplete records or more.
Thus Figure 5 gives the comparison of SPoID success
rate with results obtained on a preprocessed incom-
plete database. This figure shows that some right pat-
terns, discovered by SPoID are not found using a dele-
tion preprocessing step. It can be noted that the ratio
of right patterns strongly decreases between 40 and
50% of missing values: the number of wrong patterns
becomes proportionnaly slightly higher compared to
the number of right patterns.
It can also be noted that this ratio becomes less than
1 when the missing value percentage exceeds 50%.
SPoID can then discover sequential patterns within
incomplete database if at least half of the records in
the dataset are complete, while the former methods

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80

#r
ig

ht
/#

w
ro

ng

% of missing values

#right/#wrong according to incompletness

SPoID (representativite optimale)
PSP after preprocess

Figure 5: β/δ rate according to the missing value pro-
portion.

requiring a preprocessing step do not find all the fre-
quent patterns since 10% of missing values.

Lastly, the analysis of runtime performances shows
that at constant incompleteness rate, runtime of
SPoID is slightly constant while the minRep thresh-
old decreases.The qualitative analysis of corresponding
candidate and frequent sequences has shown that the
number of candidate sequences increases but, as the
minimum representativity is lower, the time spent for
scanning the database decreases. We also noted that
runtime increases with the incompleteness rate.

6 Further Work

Results detailed in these experiments show that the
method SPoID is robust until around 40% of incom-
pleteness. But these interesting results could be im-
proved using another approach. Indeed, as we intro-
duced it in section 2.3, some work were done for min-
ing association rules using probabilities to assess miss-
ing values. These proposals [12, 13] cannot easily be
adapted for mining sequences. However we are cur-
rently working on using a frequency distribution for
modelizing incomplete data.
This frequency distribution is not a probability distri-
bution and does not have the properties of a possibility
distribution. We rather designed it as a fuzzy set, of
which the membership function represents the level of
certainty of a missing value to be for each possible
value present in the database. Some experiments are
currently carried out. First results are available in [4].
Next step will then consist in detecting the differ-
ent kinds of incomplete information including the at-
tributes that should not be considered as incomplete
even if unfilled. Lastly we think about regarding noise
in a further version of our algorithm, as it is a common
imperfection in real-life databases.

SPoID: Do Not Throw Meaningful Incomplete Sequences Away! 335

7 Conclusion

Temporal databases available from many fields such
as biological data or industrial process data most of
the time contain imperfect data. More especially they
may contain a lot of incomplete data. But the most
adapted data mining technique to analyse such time-
stamped datasets, i.e. sequential pattern discovery,
cannot be easily applied to incomplete data. There is
indeed no mining technique for discovering frequent
sequences from incomplete databases. Therefore in
this paper we proposed new definitions for sequential
pattern mining in order to handle random incomplete-
ness in data sequences. These new definitions enable
the user to manage missing values directly during the
mining task, then avoiding a heavy preprocessing step.
Our method and algorithm SPoID has been imple-
mented and tested on synthetic datasets. We have
thus shown the robustness of our approach until an
incompleteness rate around 40% , while the existing
approaches give erroneous results since 10% of miss-
ing values. We now work on extending this approach
in order to take into account other types of missing
values such as data not randomly spread.

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami.
Mining association rules between sets of items in
large databases. In Proceedings of the 1993 ACM
SIGMOD International Conference on Manage-
ment of Data, pages 207–216. Peter Buneman and
Sushil Jajodia, 26–28 1993.

[2] R. Agrawal and R. Srikant. Mining sequential
patterns. In Eleventh International Conference
on Data Engineering, pages 3–14, Taipei, Taiwan,
1995. IEEE Computer Society Press.

[3] R.-S. Chen, G.-H. Tzeng, C.-C. Chen, and Y.-C.
Hu. Discovery of Fuzzy Sequential Patterns for
Fuzzy Partitions in Quantitative Attributes. In
ACS/IEEE Int. Conf. on Computer Systems and
Applications, pages 144–150, 2001.

[4] C. Fiot. Approximate sequential patterns for in-
complete databases. Technical Report RR-07003,
LIRMM, France, 02 2007.

[5] C. Fiot, A. Laurent, and M. Teisseire. Des motifs
séquentiels généralisés aux contraintes de temps
étendues. In 6èmes journées d’Extraction et Ges-
tion des Connaissances, pages 603–614, 2006.

[6] C. Fiot, A. Laurent, and M. Teisseire. From crisp-
ness to fuzziness: Three algorithms for soft se-
quential pattern mining. IEEE Transactions on
Fuzzy Systems, to appear.

[7] T.P. Hong, K.Y. Lin, and S.L. Wang. Mining
Fuzzy Sequential Patterns from Multiple-Items
Transactions. In Joint 9th IFSA World Congress
and 20th NAFIPS Int. Conf., pages 1317–1321,
2001.

[8] W. Z. Liu, A. P. White, S. G. Thompson, and
M. A. Bramer. Techniques for dealing with miss-
ing values in classification. Lecture Notes in Com-
puter Science, 1280, 1997.

[9] F. Masseglia, F. Cathala, and P. Poncelet. The
PSP Approach for Mining Sequential Patterns. In
Principles of Data Mining and Knowledge Discov-
ery, pages 176–184, 1998.

[10] F. Masseglia, P. Poncelet, and M. Teisseire. In-
cremental mining of sequential patterns in large
databases. Technical report, LIRMM, France, 01
2000.

[11] F. Masseglia, P. Poncelet, and M. Teisseire. Pre-
Processing Time Constraints for Efficiently Min-
ing Generalized Sequential Patterns. In 11th Int.
Symp. on Temporal Representation and Reason-
ing (TIME ’04), pages 87–95, 2004.

[12] J. Nayak and D. Cook. Approximate association
rule mining. In Florida Artificial Intelligence Re-
search Symposium, 2001.

[13] V. Ng and J. Lee. Quantitative association rules
over incomplete data. In IEEE International Con-
ference, pages 2821–2826, 1998.

[14] A. Ragel and B. Cremilleux. Treatment of missing
values for association rules. In Pacific-Asia Con-
ference on Knowledge Discovery and Data Min-
ing, pages 258–270, 1998.

[15] R. Srikant and R. Agrawal. Mining sequential pat-
terns: Generalizations and performance improve-
ments. In 5th International Conference on Ex-
tending Database Technology (EDBT ’96), pages
3–17, London, UK, 1996. Springer-Verlag.

[16] H. Toivonen. Sampling large databases for as-
sociation rules. In VLDB ’96: Proceedings of
the 22th International Conference on Very Large
Data Bases, pages 134–145, 1996.

[17] M. J. Zaki, S. Parthasarathy, W. Li, and M. Ogi-
hara. Evaluation of sampling for data mining
of association rules. Technical report, Rochester,
NY, USA, 1996.

336 Fuzzy Methods in Learning and Data Mining

