
HAL Id: lirmm-00173127
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00173127

Submitted on 25 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Approximate Sequential Patterns for Incomplete
Sequence Database Mining

Céline Fiot, Anne Laurent, Maguelonne Teisseire

To cite this version:
Céline Fiot, Anne Laurent, Maguelonne Teisseire. Approximate Sequential Patterns for Incom-
plete Sequence Database Mining. FUZZ-IEEE, Jul 2007, London, United Kingdom. pp.664-669,
�10.1109/FUZZY.2007.4295445�. �lirmm-00173127�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00173127
https://hal.archives-ouvertes.fr

Approximate Sequential Pattern for
Incomplete Sequence Database Mining

Céline Fiot, Anne Laurent and Maguelonne Teisseire

Abstract— Industrial databases often contains a large amount
of unfilled information. When these data are mined for frequent
sequences, incomplete data are, most of the time, deleted,
which leads to an important loss of information. Extracted
knowledge then becomes less representative of the database.
Two techniques can then be investigated: either using only the
available information or estimating the missing values. In this
paper we propose an estimation-based approach that represents
inclusion of an item within a record by a fuzzy set. Then
the membership degree giving the item inclusion is used to
compute the frequency of a sequence. Experiments run on
various synthetic datasets show the feasibility and validity of
our proposal as well in terms of quality as in terms of the
robustness to the rate of missing values.

I. I NTRODUCTION

For the last decade, data mining application fields have
widened. Especially it is the case of sequential pattern
mining approaches [1]. This data mining technique aims
at discovering knowlegde from temporal databases. First
designed to analyse customer behavior, they are now used in
various industrial, medical, or biological fields. The searched
datasets are sets of time-stamped records. Each of them is
constituted of a set of values.

However these kind of data often contain imperfection-
ssuch as noise or incomplete data due to breakdowns or
errors, for instance.
Moreover, existing sequential patterns methods only allow
the analysis of complete data, without considering incom-
plete records, which may represent an important loss of
information. Besides, replacement of missing values or their
estimation are often either too simplistic to perform unbiased
results, or too time-consuming to be applied on large datasets.
Thus, it seems necessary to implement a method for mining
sequential patterns within incomplete databases.
To solve this problem two tracks can be investigated. The
concepts linked to sequential patterns can be adapted either
to ignoremissing informationonly using the available one or
to consider likely value of incomplete data.

In this paper we propose an estimation-based approach
to discover frequent sequences within databases containing
random missing values. This approach is instigated by an
association rule mining method within incomplete databases
[2], [3] and by a technique often used in machine learning or
statistics: assessing missing value with respect to the values
in the database. This principle consists in using available
information, with a certain likelihood. Thus the whole dataset

Céline Fiot , Anne Laurent and Maguelonne Teisseire are with the
LIRMM, University of Montpellier II - CNRS, 34392 Montpellier, France
(email: {fiot, laurent, teisseire}@lirmm.fr).

is used to discover the patterns, while taking into account
uncertainty due to incomplete data instead of ignoring it,
deleting it or simply replacing it by a single value.
We here redefine this principle for sequential pattern mining,
thus proposing to discover approximate maximal frequent
sequences within incomplete time-stamped databases. For
this reason, we adapted the concepts linked to sequential
pattern discovery. Then we implemented the ApSPoID algo-
rithm using a sequential pattern mining algorithm, PSP [4].
This algorithm was tested on synthetic datasets to show the
validity of our approach.

The remainder of the paper is organized as follows. Section
II introduces the methods for association rule mining in the
presence of missing values, and the concepts linked to se-
quential pattern discovery. Section III details our approach to
mine for approximate sequential patterns within incomplete
data, and we describe our algorithm in Section IV. Section
V is then dedicated to experiments that show the validity
of our approach. Finally, we conclude in section VI with a
discussion on further work opened by this proposal.

II. FROM SEQUENTIAL PATTERNS TO INCOMPLETENESS

Sequential patterns are often introduced as an extension
of association rules, initially proposed in [5]. They highlight
correlations between database records as well as their tempo-
ral relationship. Even so these algorithms do not mine incom-
plete records contained in the database. These missing values
must then be removed either by deletion or replacement.
Quality of results then depends on this preprocess. Moreover
this step is often time-consuming. In order to reduce the
preprocessing due to missing values and to improve the se-
quential pattern quality, we propose a method for sequential
pattern mining within incomplete databases. This method is
based on association rules approaches. In this section we first
define the concepts linked to sequential pattern mining, then
we detail our motivations before introducing techniques that
allow association rule mining handling missing values.

A. Sequential Patterns

Sequential patterns are based on the idea ofmaximal
frequent sequences.
Let R be a set of objects records where each record R
consists of three information elements: an object-id, a record
timestamp and a set of attributes/items in the record. Let
I = {i1, i2, ..., im} be a set of items or attributes. Anitemset
is a non-empty set of attributesik, denoted by(i1i2 . . . ik).
It is a non-ordered representation. Asequences is a non-

empty ordered list of itemsetssp, denoted by< s1s2...sp >.
A n-sequenceis a sequence ofn items (or of sizen).

Example 1:Let us consider an example of market basket
analysis. The object is a customer, and records are the
transactions made by this customer. Timestamps are the date
of transactions. If a customer purchases productse, a, k, u,
andf according to the sequences =< (e) (a k) (u) (f) >,
then all items of the sequence were bought separately, except
productsa andk which were purchased at the same time. In
this example,s is a 5-sequence.

One sequenceS =< s1 s2...sp > is a subsequenceof
another oneS′ =< s′1 s′2 ...s′m > if there are integersl1 <
l2 < ... < lp such thats1 ⊆ s′l1 , s2 ⊆ s′l2 , ..., sp ⊆ s′lp .

Example 2:The sequences′ = <(a) (f)> is a subsequence
of s because (a)⊆ (a k) and (f)⊆ (f). However,<(a) (k)>
is not a subsequence ofs.

All records from the same objecto are grouped together
and sorted in increasing order of their timestamp. They are
called a data sequence. An objectsupportsa sequences if
it is included within the data sequence of this object (s is
a subsequence of the data sequence). Thefrequencyof a
sequence (freq(s)) is defined as the percentage of objects
supportings in the whole set of objectsO. In order to
decide whether a sequence is frequent or not, a minimum
frequency value (minFreq) is specified by the user and the
sequence is said to be frequent if the conditionfreq(s) ≥
minFreq holds. A sequence that may be frequent is a
candidate sequence. Given a database of object records, the
problem of sequential pattern mining is to find all maximal
sequences of which the frequency is greater than a specified
threshold (minFreq) [1]. Each of these sequences represents
a sequential pattern, also called a maximal frequent sequence.

Several extensions were proposed to consider incremental
mining for sequential patterns [6], to handle numerical and
quantitative values [7], [8], [9] or to generalize sequential
patterns with respect to various temporal parameters (time-
interval between events of a sequence, grouping several
records into a single itemset...) [10], [11], [12]. However, no
technique was proposed to deal with missing values while
sequential pattern mining. For this reason, in the following
sections, we propose an approach that can mine maximal
frequent sequences from an incomplete sequence database.

B. Motivations

Let us consider the database given by Table I. The goal is
to extract the sequential patterns with a minimum frequency
equal to 50%.

TABLE I

COMPLETE DATABASE.

Obj. Sequence
O1 (a b) (b c d) (b c e)
O2 (a) (b c) (b d)
O3 (a b) (b c) (b c d)

The sequential patterns obtained are:<(a b)(b c d)>,
<(a b)(b c)(b c)> and<(a)(b c)(b d)>.

Now, let us consider the incomplete database given by
Table II. Some information in the data sequences has not
been filled in and these values are missing. Let us consider
that these values are identified as missing and unfilled. In
order to mine for patterns, previous approaches require the
suppression of missing values.

TABLE II

INCOMPLETE DATABASE.

Obj. Sequence
O1 (a b) (? ? c) (? b c)
O2 (a) (? c) (b d)
O3 (a b) (? c) (? ? c)

After preprocessing, the database within which sequential
patterns are mined is given Table III.

TABLE III

AFTER MISSING VALUE DELETION.

Obj. Sequence
O1 (a b) (c) (b c)
O2 (a) (c) (b d)
O3 (a b) (c) (c)

Resulting patterns forminFreq = 50% are:<(a b)(c)(c)>
and<(a)(c)(b)>.

Note that only a short part of the database is used to
discover information and only part of frequent patterns
and frequent items of the complete dataset are found. In
particular, itemd is not frequent in the incomplete database.
Therefore using the whole dataset without deleting part of it
appears essential.

C. Association Rules and Missing Values

Some works were proposed to discover association rules
within incomplete databases. The algorithm RAR proposed
by [13] allow the user to consider incomplete data while as-
sociation rule mining within incomplete relational databases,
thanks to partial and temporary omission of such incomplete
records. The whole database is not used to discover each rule
but to generate the whole set of rules. This technique adapted
to sequence mining in [14] gives interesting results. However,
this approach requires the specification of a minimum signif-
icancy threshold and experiments show that if this threshold
is not the optimal value, the method does not discover all
the frequent patterns or too many parasitic patterns.

Therefore we develop a new approach, instigated by the
proposals of [2], [3]. These methods implement an assess-
ment systems based on a probabilistic distribution. With this
approach one missing value can represent various values
while mining for association rules. In order to consider those
assessments, the notion of support (percentage of records
in database that include the rule items) and thus confidence
(probability for a record to contain the right part of the rule
knowing it contains the left part) were reformulated.

From this principle we redefine in the next section the
definitions linked to sequential pattern mining previously
detailed.

III. A PSPOID: DEALING WITH INCOMPLETENESS

In this section, we present the definitions we used for
our algorithm to mine incomplete sequence databases for
sequential patterns.

A. Approximate Sequential Patterns for Incomplete
Databases

As deleting incomplete records leads to an important loss
of information, we adapted an association rule mining ap-
proach, robust to missing values. In this section, we describe
our method ApSPoID, based on the principles of the∼AR
algorithm [2].

The main idea of our approach, as the one of the∼AR
method lies on the estimation of the value for unfilled items.
While∼AR computes the frequency of an incomplete itemset
taking into account the probability of each likely value of a
missing value, we propose here to use this estimation for the
frequency computation of sequences.

Thus, while computing the item frequency of a sequence,
for each missing value, several likely value may be checked.
Each one of these possibilities is associated to a degree giving
the likely appearance level. The support definition given in
Section II is adapted in order to include this inclusion degree
of the item.

Then inclusion of an item in an itemset is weighted by the
certainty degree of its presence:

• If the item is in the itemset, the appearance level is equal
to 1;

• If the item is not in the itemset and this itemset does
not contain missing value, the appearance level is nul;

• Else, the appearance level of itemi in the recordr is
in]0, 1[. It will be denoted byµr(i).

Definition 1: The frequencyof an itemsetI is the average
appearance level of the itemset for all the objects in the
dataset. For each of them, the best occurrence is kept (i.e. the
one being the most certain). The frequency is then computed
by the formula (1) :

Freq(I) =

∑

o∈O

⊥r∈Ro
⊤i∈Iµr(i)

|O|
(1)

Definition 2: Le frequencyof a sequenceS is the average
appearance rate of the sequence for all the objects in the
database. It is defined as the ratio of the sum of the best
appearance level of the sequence for all the data sequences
over the total number of data sequences. It is given by the
formula (2):

Freq(S) =

∑

o∈O

F(o, S)

|O|
(2)

where L(S, o) is the appearance level ofS in the data
sequence of the objecto.

Definition 3: The appearance levelof a sequenceS for
an objecto corresponds to the best inclusion rate of the
sequenceS in the data sequence ofo. This appearance level is
computed by the ordered agregation of the itemset inclusion

rate in the order of appearance in sequenceS. It is given by
the formula (3):

L(S, o) = ⊥r∈Ro
OrdAg<s1...si...sk>(⊤j∈si

µr(j)) (3)

wherek is the number of itemset inS.

B. Choosing Operators

Several operators could be used to agregate the item
inclusion rates of an itemset or the itemset inclusion rate for
a sequence. The method proposed by [2] uses the average
agregation for item inclusion rates. However we consider
that this type of agregation can hide a low appearance
level of several items in a record if the other ones are
certain. Therefore we propose to use a t-norm operator for
this computation. More especially we will implement our
approach with themin operator for its idempotency property
[9].

Regarding the ordered agregation, we propose to use the
average agregation, each itemset having the same “interest”
in the sequence. Uncertainty is indeed already taken into
account by the use of the t-norm. It is then not necessary to
consider it a second time at the sequence level [9].

C. Computing the Appearance Level

First step of our method consits in determining each
possible value for missing values and the certainty degree
of each one.

An aproximation of incomplete record composition should
be determined. To do so, the dataset is scanned to compute
appearance rate of each item. As the database is incomplete,
the appearance rate is computed as the frequency with respect
to the number of records using the disabling technique
of RAR [13]. This computation results in the frequency
distribution that will give the appearance level of an item in a
record. This value distribution is here computed with respect
to the appearance within a record, but it could be computed
with respect to the appearance within data sequences or only
considering complete records.

Thus, parsing the database for a candidate sequence, when
an itemset is found complete in a record, its appearance level
is 1. When it is partially found in an incomplete record, the
frequency distribution is used to determine the appearance
level of the missing part of the itemset.

We present some experiment results that show the conse-
quences of choosing one distribution or another on discov-
ered patterns.

IV. I MPLEMENTATION

In this section, we first apply our defintions and principles
on a brief example. Then, we present how our algorithm runs.

A. Example

Consider the incomplete database given by Table II.
minSup is equal to 50%.

First, the appearance rate distribution is computed. We use
the formula given by [13] :

Freq(i) =
|{r ∈ R/i ∈ r}|

|R| − |{r ∈ R/r.isIncomplete(i)}|

For i = a : 3/(9-5) = 0.75. Table IV gives the frequency
distribution for each value that could replace a missing one.

TABLE IV

FREQUENCY DISTRIBUTION FOR MISSING VALUE.

Item a b c d e
Fréquence 0.75 0.8 0.56 0.25 0

Thus for the second record of the first object, the appear-
ance level ofc is 1, but a, b, d and e, it is given by the
frequency distribution.

Then sequential patterns mining starts with the frequency
computation for each item. Itema certainly appears in each
data sequence then its frequency is 3/3=100%, the same for
items b and c. The itemd, could be supported by objects
1 and 3, iots frequency is then given by the following
calculation:

Freq(< d >) = ⊥(0.25,0.25)+⊥(0.25,1)+⊥(0.25,0.25)
3

= 0.25+1+0.25
3

= 0.5

Now, consider sequenceS = < (ab) (abcd) >. This
candidate sequence cannot be supported by none of the
data sequences because none of them includes an itemset
composed of 4 items. Consider sequenceS′ = < (ab) (bc) >,
it is supported by object 1, cannot be supported by object
2but could be supported by the third object. For the frequency
of S′, we get:

Freq(S′) =
1 + 0 + (1 + ⊤(0.8, 1))/2

3
=

1 + 0.9

3
= 63%

SequenceS′ is then frequent.
Applying our method, discovered sequential patterns for

minSup=50% are :< (ab)(bc)(abc) >, < (ab)(ac)(abc) >,
< (a)(bc)(bd) >, < (a)(ac)(bd) >, < (b)(c)(bd) > and
< (a)(d)(b) >.

Even if these patterns are not exactly the one obtained
on the complete database, they are closer to the one we
should get than the one discovered using the preprocessed
dataset. Experiments detailed in section V show that there
exists a value of the minimum representativity for which the
algorithm SPoID extracts the whole set of sequential patterns
of the complete database from an incomplete one.

B. Algorithm

The algorithm SPoID runs similarly to the generate-prune
sequential pattern mining algorithms. It consists in gener-
ating all the candidatek-sequences from the frequent (k-1)-
sequences. Then the database is scanned to count the number
of data sequences that support each candidate sequence.
The main difference stands in the counting of incomplete
data sequences. This counting step uses the same counting

principles used by the algorithm TotallyFuzzy for fuzzy
sequential pattern mining [9]. It is described by Alg. 1.

ApSPoID - Input: O, a sequence database ;
minFreq, user-specified minimum frequency

Ouput: SPList, list of frequent sequences

[Computation of the frequency distribution]
float[] freqDist← calcDist() ;

[Search for frequent items]
C ← {i ∈ I} ; k = 1 ;
F ← getFrepnRep(C,minFreq) ;
SPList.add(F) ;

[Search for frequent sequences, size≥ 2]

While (C 6= ∅) do
k++ ; C ← generate(F ,k) ;
For each candidate sequences ∈ C do

For each objet o ∈ O do
float[] degTab;ag ← 0; id← 1;
For (j=1 to |Ro| do

Trans← {rj , ...r|Ro|};
findSequence(s,Trans,degTab) ;

ag ← max(ag,
i=id
X

i=1

degTab[i]/id) ;

End For
tmpFreq ← tmpFreq + ag ;

End For
Freq(s)← tmpFreq(s)/|(O)| ;
If ((Freq(s) < minFreq)) Then

prune(s) ;
End If

End For
SPList.add(F) ;

End While
return SPList ;

Alg. 1: ApSPoID- Main algorithm.

For each candidate sequence, data sequences are parsed
for finding the itemsets of the candidate sequence. The
subfunctionfindSequence(Alg. 2) is a recursive function that
parses a data sequencet for finding a candidate sequence
s. When the searched itemset is found thenfindSequence
searches for the next itemset ofs in the data sequencet. Else
it keeps on looking for the same itemset in the remainder part
of s.

findSequence - Input: s, a candidate sequence ;t, a data sequence
d, table of appearance level for the itemsets ofs ;
n, number of the currently searched itemset

Ouput: d

sTail← s\s.first() ; tTail← t\t.first() ;

If ((sTail 6= ∅)&(tTail 6= ∅)) Then
If (min

i∈s.first
µs.first(i)) Then

d[n] ← min
i∈s.first

µs.first(i) ;

findSequence(sTail, tTail, d, n + 1);
Else

findSequence(s, tTail, d, n);
End If

Else
return d ;

End If

Alg. 2: findSequence- data sequence parsing algorithm.

If the first itemset is found complete, the appearance
level for the first itemset is 1, then the following itemset
is searched. If the first itemset is partially found in an
incomplete record, then appearance level for this itemset
I is min

i∈I
µr(i), then the following part of the sequence is

searched. On the other hand, if the record only partially
supports the itemset and if the number of missing value des
not allow to complete it, the first itemset is not found. Then
it is searched in the remainder of the data sequence.
If the sequence is found, its appearance level is computed by
an average agregation. If it is found several times, the best
appearance level is kept. Once the whole database is parsed,
the sum of appearance level is divided by the number of
objects in database.
Then all the candidate sequences having a frequency lower
thanminFreq are pruned.

The temporal complexity of this algorithm is the same as
the one of the algorithm TotallyFuzzy presented by [9]. We
use the same kind of optimizations to reduce the number of
database scans. Thepathstructure described for TotallyFuzzy
keeps in memory the most certain occurrence of a sequence
and each possible start while scanning the database.

V. EXPERIMENTS

These experiments were carried out on a PC - Linux 2.6.7
OS, CPU 2.8 GHz with 512 MB of memory. The algorithm
was implemented in Java on the PSP principle. In particular,
the Prefix-Tree structure was used to store the candidate and
frequent sequences.
We used synthetic datasets randomly generated by a normal
distribution. Then some items were randomly replaced by
missing values. Sequential patterns were extracted from the
complete database and from the preprocessed incomplete
ones (i.e. incomplete databases in which incomplete records
have been deleted). Then those patterns are compared to the
one discovered by our algorithm SPoID. Results here detailed
were obtained from several synthetic datasets containing
around 2000 sequences of 20 transactions in average. Each
transaction contains around 10 items chosen among 100.

Our analysis is based on the several counting:

• the total number of sequential patterns discovered by
SPoID,

• the number of sequential patterns discovered by SPoID,
that are discovered in the complete database,

• the number of wrong sequential patterns discovered by
SPoID (that groups together the patterns that are not
discovered in the complete database and the one not
found by SPoID but should be).

Table V sums up these notations.

A. ApSPoID vs. SPoID

Following figures give a comparison between patterns
discovered by ApSPoID and those discovered by PSP after
pre-processing (deletion of incomplete data) and also those
discovered by SPoID ([14], an existing approach for mining
incomplete datasets.

TABLE V

NOTATIONS FOR THE DIFFERENT KINDS OF PATTERNS.

β # sequential patterns discovered by SPoID, also con-
tained in the complete dataset

δ # different sequential patterns
θ # sequential patterns discovered by SPoID in the

incomplete database
τ # sequential patterns discovered in the complete dataset

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

#t
ro

uv
es

/#
da

ns
 b

as
e

co
m

pl
et

e

% valeurs manquantes

Ratio #trouves/#dans base complete en fonction de % incompletude

SPoID - optimal
PSP + pretraitement

ApSPoID

Fig. 1. β/τ rate according to rate of database incompleteness.

First, Figure 1 shows the evolution of the ratioβ/τ . Ap-
SPoID and SPoID have similar behaviors regarding the num-
ber of right discovered patterns. More especially, ApSPoID
gives better results fronm 40% to 70% of incompleteness.
On this interval, the results of SPoID are less interesting
than those obtained on the range 10 to 20%, where SPoID
discovers all the patterns of te complete database. It can also
be noted that wathever the percentage of incompleteness, the
pre-processing method is not powerful.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

#t
ro

uv
es

/#
ex

tr
ai

ts

% valeurs manquantes

Ratio #trouves/#extraits en fonction de % incompletude

SPoID - optimal
PSP + pretraitement

ApSPoID

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70

#t
ro

uv
es

/#
di

ffe
re

nt
s

% valeurs manquantes

Ratio #trouves/#differents en fonction de % incompletude

SPoID - optimal
PSP + pretraitement

ApSPoID

(b)

Fig. 2. (b):β/θ rate according to rate of database incompleteness;(b):β/δ
rate according to rate of database incompleteness.

Then figures 2(a) and 2(b) show a comparison of parasitic
and missing patterns. Figure 2(a) presents the proportion of
right patterns with respect to discovered patterns , according
to the incompleteness percentage. This ratio is considered
as good when it is close to 1 (each discovered patterns is
also discovered in the complete database). However, these
results should be compared to Figure 1. All the extacted
patterns may indeed correspond to the complete database
but an important amout of them may be missing. In our
experiments, it is the case of PSP with pre-processing.

Note that ApSPoID results are better than those of SPoID
from 40% of incompleteness. At this rate ApSPoID indeed
discovers 90% of the patterns found in the complete database

and those patterns represent around 60% of discovered
patterns.
Furthermore, when the database contains 50% of missing
values, ApSPoID discovers 80% of the squential patterns of
the complete database and those patterns represent 70% of
discovered patterns while SPoID only find 70% of the com-
plete database patetrns, only representing 40% of discovered
patterns.

These observations are confirmed by Figure 2(b) that
shows the evolution ofβ/delta. It shows that form 35% of
incompleteness, the proportion of right patterns according to
the different ones is clearly more important for ApSPoID
than for SPoID. Moreover, the number of right pattern is
still higher than the part of different patterns (this ratio
should remain greater than 1), on the contrary to SPoID for
which results are good until 30% of incomlpeteness and then
collapse.

B. Choosing a distribution

We analyse the behavior of ApSPoID according to the
frequency distribution for incomplete records. We show that
it has an impact on obtained results.

We here present a comparison of ApSPoID performances
used with two different distributions:

• One distribution is computed using the RAR algorithm
(as in example, Section IV). It is used by ApSPoID -
Dist 1 on Fig. 4.

• A second distribution is found by considering the whole
set of records to compute the frequency. It is used by
ApSPoID - Dist 2 on Fig. 4.

While the first distribution is rather optimistic (each
missing value is ignored for computing the distribution),
the second one is more pessimistic (each missing value is
considered as different from the item of which the frequency
is computed). Choosing one or the other has an impact on
the final results.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

#t
ro

uv
es

/#
da

ns
 b

as
e

co
m

pl
et

e

% valeurs manquantes

Ratio #trouves/#dans base complete en fonction de % incompletude

ApSPoID - Dist 1
ApSPoID - dist 2

Fig. 3. β/τ rate according to rate of database incompleteness.

Fig. 3 shows that the second distribution does not allow
ApSPoID to find the patterns of the complete database
from 40% of incompleteness, whereas ApSPoID with the
optimistic distribution finds an important amount of patterns
until 60% of incompleteness. On the other hand, Fig. 4(a)
shows that ApSPoID with the second distribution discovers
less parasitic patterns.

From Fig. 4(b) we can conclude that the pessimistic
distribution gives better results than the optimistic one until

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

#t
ro

uv
es

/#
ex

tr
ai

ts

% valeurs manquantes

Ratio #trouves/#extraits en fonction de % incompletude

ApSPoID - Dist 1
ApSPoID - Dist 2

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 20 30 40 50 60 70

#t
ro

uv
es

/#
di

ffe
re

nt
s

% valeurs manquantes

Ratio #trouves/#differents en fonction de % incompletude

ApSPoID - Dist 1
ApSPoID - Dist 2

(b)

Fig. 4. (a):β/θ rate according to rate of database incompleteness;(b):β/δ
rate according to rate of database incompleteness.

40% of incompleteness. On the range 20 to 40% of incom-
plete data, results obtained by ApSPoID with the second
distribution are similar to those of SPoID.

Thus, choosing a distirbution more or less optimistic
determines which quantity of sequential patterns found in
the complete database will be retrieved by ApSPoID, but
also the amount of parasitic patterns. A trade-off should
then be made between the percentage of right patterns found
and the percentage of parasitic patterns.

These experiments show that in general , ApSPoID is more
reliable than SPoID from 30% of missing values and that
these results are interesting until 60% of incomplete data.
On the other hand patterns discovered by ApSPoID - Dist
1 include 80 to 90% of patterns contained in the complete
database for an incompleteness rate between 10 to 40%.
These results are almost as good as those of SPoID. However,
using ApSPoID does not require to specify other parameter
thanminFreq. Its use is then easier than the use of SPoID.
Furthermore, results obtained by ApSPoID could be im-
proved by refining the frequency distribution at each itera-
tion, considering more and more precisely the whole records.
Lastly, regarding the comparison of runtime, ApSPoID be-
haves similarly to SPoID.

VI. FURTHER WORK

Sequential pattern discovery is an interesting data mining
method while learning knowledge from large time-stamped
databases, such as industrial process databases. But this
kind of databases often contains missing values. However
there is only one mining techniques for discovering frequent
sequences from incomplete databases. Therefore in this paper
we proposed to adapt the original definitions related to
sequential pattern mining in order to handle random incom-
pleteness in data sequences. These new definitions enable
the user to manage missing values directly during the mining
task, then avoiding an heavy preprocessing step. Our method
and algorithm ApSPoID has been implemented and tested on
synthetic datasets. We have thus shown the robustness of our
approach until an incompleteness rate around 50% , while
the existing approaches give erroneous results since 10% of
missing values. We now work on extending this approach in

order to regard other kind of missing values (not randomly
spread, for instance), after having detected the differentkind
of incomplete information. It seems also necessary to detect
the attributes that should not be considered as incomplete but
not existing. Lastly noise is also a common imperfection in
real-life databases. It could then be interesting to consider it
in a further version of our algorithm.

REFERENCES

[1] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Eleventh
International Conference on Data Engineering. Taipei, Taiwan: IEEE
Computer Society Press, 1995, pp. 3–14.

[2] J. Nayak and D. Cook, “Approximate association rule mining,” in
Florida Artificial Intelligence Research Symposium, 2001.

[3] V. Ng and J. Lee, “Quantitative association rules over incomplete data,”
in IEEE International Conference, 1998, pp. 2821–2826.

[4] F. Masseglia, F. Cathala, and P. Poncelet, “The PSP Approach for Min-
ing Sequential Patterns,” inPrinciples of Data Mining and Knowledge
Discovery, 1998, pp. 176–184.

[5] R. Agrawal, T. Imielinski, and A. N. Swami, “Mining association rules
between sets of items in large databases,” inProceedings of the 1993
ACM SIGMOD International Conference on Management of Data.
Peter Buneman and Sushil Jajodia, 26–28 1993, pp. 207–216.

[6] F. Masseglia, P. Poncelet, and M. Teisseire, “Incremental mining of
sequential patterns in large databases,” LIRMM, France, Tech. Rep.,
01 2000.

[7] T. Hong, K. Lin, and S. Wang, “Mining Fuzzy Sequential Patterns
from Multiple-Items Transactions,” inJoint 9th IFSA World Congress
and 20th NAFIPS Int. Conf., 2001, pp. 1317–1321.

[8] R.-S. Chen, G.-H. Tzeng, C.-C. Chen, and Y.-C. Hu, “Discovery
of Fuzzy Sequential Patterns for Fuzzy Partitions in Quantitative
Attributes,” in ACS/IEEE Int. Conf. on Computer Systems and Ap-
plications, 2001, pp. 144–150.

[9] C. Fiot, A. Laurent, and M. Teisseire, “From crispness tofuzziness:
Three algorithms for soft sequential pattern mining,”IEEE Transac-
tions on Fuzzy Systems, à parâıtre.

[10] R. Srikant and R. Agrawal, “Mining sequential patterns: Generaliza-
tions and performance improvements,” in5th International Conference
on Extending Database Technology (EDBT ’96). London, UK:
Springer-Verlag, 1996, pp. 3–17.

[11] F. Masseglia, P. Poncelet, and M. Teisseire, “Pre-Processing Time
Constraints for Efficiently Mining Generalized SequentialPatterns,”
in 11th Int. Symp. on Temporal Representation and Reasoning (TIME
’04), 2004, pp. 87–95.

[12] C. Fiot, A. Laurent, and M. Teisseire, “Des motifs séquentiels
géńeraliśes aux contraintes de tempsétendues,” in6èmes jourńees
d’Extraction et Gestion des Connaissances, 2006, pp. 603–614.

[13] A. Ragel and B. Cremilleux, “Treatment of missing values for associ-
ation rules,” inPacific-Asia Conference on Knowledge Discovery and
Data Mining, 1998, pp. 258–270.

[14] C. Fiot, A. Laurent, and M. Teisseire, “Spoid: Extraction de motifs
séquentiels pour les bases de données incompl̀etes.” in7èmes jourńees
d’Extraction et Gestion des Connaissances, 2007.

