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Abstract— Side channel attacks such as Simple Power Analy-
sis(SPA) attacks provide a new challenge for securing algorithms
from an attacker. Algorithms for elliptic curve point scalar
multiplication such as the double and add method are prone to
these attacks. The protected double and add algorithm provides
a simple solution to this problem but is costly in terms of
performance. Another class of algorithm for point scalar multi-
plication that makes use of special addition chains can be used to
protect against SPA attacks. A reconfigurable architecture for a
cryptographic processor is presented and a number of algorithms
for point multiplication are implemented and compared. These
algorithms have a degree of parallism within their operations
where a number of multiplications can be executed in parallel.
Sophisticated scheduling techniques can exploit this parallelism
in order to optimize the performance of the calculation. Post
place and route results for the processor are given.

Index Terms— Cryptography, ellitipic curves, side channel
attacks, scheduling techniques

I. INTRODUCTION

Elliptic curve cryptography was proposed by Miller[1] and
Koblitz[2] in 1985. It provides a means for two hosts to
generate a secret key for communication across an insecure
channel. The strength of cryptography lies in the difficulty
of an encryption schemes inverse operation. Elliptic curve
cryptography provides relatively better security per bit than
other cryptographic standards such as RSA[3].

Therefore elliptic curve cryptosystems (ECC) consume less
memory and hardware resources to implement. The main
operation of ECC is point scalar multiplication given an elliptic
curve E and a point P on E the point [k]P = P+P+. . . P for
some given integer k. The basis for the strength of the ECC is
the elliptic curve discrete logarithm problem (ECDLP). Given
two points Q and P on an elliptic curve E, find the integer k
such that Q = kP . For a large enough key size, a brute force
attack would require too much computing power and time to
be feasible[4].

Recently, more effort has been carried out to secure EC
point multiplication against side channel attacks[5]. By mon-
itoring side-channel information such as the power consump-
tion of a device it is possible to recover the secret information.

Simple power analysis (SPA) attacks function on a single
execution of the cryptographic algorithm under attack. By
looking at the power trace of the execution it is possible to
identify the different functions of the algorithm. Algorithms
such as the double-and-add method are prone to these types
of attacks.

One simple solution is the protected double and add
method[6] but is costly in terms of calculation time. Euclid’s
addition chains can provide both a secure and efficient scheme
of exponentiation when combined with elliptic curves[7].
However, as will be seen in Section II-C, finding such chains
is a complex task. Therefore we examine another class of
addition chains using Zeckendorfs representation that are
easier to find.

To implement these algorithms effectively scheduling tools
were developed to improve the efficiency of the processor and
therefore improve the execution time of a specific algorithm.
Bertoni et al. [8] applied similar techniques to the Duursma-
Lee algorithm in order to find the optimal configuration for the
proposed architecture. In this paper we propose a List-Based
Scheduling (LBS)[8] approach to optimise the processor. By
monitoring several bits of the secret key at a time, point
operations can be grouped together to further improve the
performance of the processor.

One of the basic arithmetic operations used for ECC is
modular multiplication. Several algorithms for modular arith-
metic have been proposed and implemented. Montgomery
[9] proposed an efficient algorithm for fast multiplication
using a series of additions and right shifts. Daly et al. [10]
implemented a number of designs for multipliers based on
the Montgomery multiplication. The architecture used in this
paper uses two carry propagate adders to perform the multi-
plication. Fast carry chain logic in the FPGA allows for a fast
implementation but for larger field sizes the carry propagation
can lead to very long critical path.

The remainder of the paper is structured as follows: Section
II provides an overview of the algorithms considered for
point scalar multiplication and effectiveness of SPA attacks on
them. Section III introduces the various point operations for
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elliptic curves used by the algorithms described in Section II.
Section IV describes the versatile processor and the scheduling
techniques used to generate it. Implementation results are
given.

II. POINT SCALAR MULTIPLICATION

Given an elliptic curve E and a point P on the curve, the
point Q is calculated by point scalar multiplication where the
point P is added to itself k times to get the point [k]P .

Algorithms such as the double and add algorithm, given
in Algorithm 1 are used to calculate point multiplication
efficiently. The double and add algorithm requires nk point
doubling operations (nk is the bit length of the key) and w(k)
point additions (w(k) is the binary weight of the key).

Algorithm 1: Double and Add Point Scalar Multiplication

input : P ∈ E(GF (q)), k =
∑nk−1

i=0 ki2i

output: Q = kP ∈ E(GF (q))
Initialise: Q=P;
for i← nk − 2 to 0 do

Q = 2Q //Point Doubling (PD);
if ki = 1 then

Q = Q + P //Point Addition (PA);
end

end

A. Side Channel Attacks

In recent years, cryptosystems have come under attack
from various forms of side channel attack. Kocher et al.[5]
discovered that cryptosystem implementations leak informa-
tion which can help an attackers recover secret data. Two
techniques for retrieving secret information in this manner are
SPA and differential power analysis (DPA). DPA executes the
cryptographic algorithm under attack a number of times and
uses statistical analysis to determine the secret information[6].
Countermeasures for ECC such as randomisation of the inputs
[11] and blinding techniques[12] can be implemented to
protect against such attacks.

SPA involves monitoring the power consumption of a single
execution of a cryptographic algorithm. Every instruction has
a different power consumption, therefore it is possible to
retrieve the sequence of instructions during the algorithm
execution. For example, the double and add algorithm has
two primary operations, point addition and point doubling.
Each of these operations produce a different power trace when
executed because of the different number of multiplications
and additions in each algorithm. Since, the execution of a
point addition in the double and add is directly related to
the secret key, it is possible to retrieve the secret key by
monitoring the power consumption of a single execution of a
scalar multiplication. The first successful power analysis attack
against an FPGA was done by Ors et al.[13] in which they
attacked an elliptic curve processor and retrieved the secret
key.

SPA attacks work well on algorithms where the the power
consumption can be directly related to the instruction being ex-
ecuted. In order to resist SPA attacks, the power consumption

of the instructions executed in a cryptographic algorithm must
not be directly related to the secret data. In the double and add
method, the branch instruction based on ki leaks information
about the secret key.

B. Protected double and add

In order to protect the double and add algorithm from a SPA
attack, the algorithm needs to be modified. In Algorithm 2
the conditional branch has been removed, thus eliminating the
relation between the secret key and the power consumption.
This modification is at the expense of a point addition for
every bit of the key regardless of the binary weight of the
key. This method is therefore inefficient given the number of
point operations required.

Algorithm 2: SPA resistant Double and Add Point Scalar
Multiplication

input : P ∈ E(GF (q)), k =
∑nk−1

i=0 ki2i

output: Q[0] = kP ∈ E(GF (q))
Initialise: Q[0]=P;
for i← nk − 2 to 0 do

Q[0] = 2Q[0] //Point Doubling (PD);
Q[1] = Q[0] + P //Point Addition (PA);
Q[0] = Q[ki];

end

C. Euclidean Addition Chains

In this section we present the Euclidean addition chains and
show how they can be adapted for elliptic curve point scalar
multiplication.

Definition 1: An addition chain computing an integer k is
given by a sequence v = (v1, . . . , vs) where v1 = 1, vs = k
and ∀1 ≤ i ≤ s, vi = vi1 + vi2 for some i1 and i2 lower than
i.

Definition 2: An Euclidean addition chain (EAC) comput-
ing an integer k is an addition chain which satisfies v1 =
1, v2 = 2, v3 = v2 +v1 and ∀3 ≤ i ≤ s−1, if vi = vi−1 +vj

for some j < i − 1, then vi+1 = vi + vi−1(case 1) or
vi+1 = vi + vj(case 2).

Case 1 will be called big step (we add the biggest of the
two possible numbers to vi) and case 2 small step (we add
the smallest one).

As an example, (1, 2, 3, 4, 7, 11, 15, 19, 34) is an Euclidean
addition chain computing 34. For instance, in step 4 we
have computed 4=3+1, thus in step 5 we must add 3 or
1 to 4, in other words from step 4 we can only compute
5=4+1 or 7=4+3. In this example we have chosen to compute
7=4+3 so, at step 6, we can compute 10=7+3 or 11=7+4 etc.
Another classical example of EAC is the Fibonacci sequence
(1, 2, 3, 5, 8, 13, 21, 34) (which is only made of big steps).

Finding such chains is quite simple, it suffices to choose an
integer g coprime with k and apply the subtractive form of
Euclid’s algorithm.

Example 1: Let k = 34 and g = 19 and apply them to the
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subtractive form of Euclid’s algorithm:

34− 19 = 15 (big step)

19− 15 = 4 (small step)

15− 4 = 11 (small step)

11− 4 = 7 (big step)

7− 4 = 3 (big step)

4− 3 = 1 (small step)

3− 1 = 2
2− 1 = 1
1− 1 = 0

Reading the first number of each line gives the EAC
(1, 2, 3, 4, 7, 11, 15, 19, 34).

Finally, in order to simplify the writing of the algorithm,
we will use the following notation : if c = (1, 2, 3, c4, . . . , cs)
is an EAC then we only consider the chain from c4 and we
replace all the ci’s by 0 if it has been computed using a big
step and by 1 for a small step. For instance

the sequence: (1, 2, 3, 4, 7, 11, 15, 19, 34)
will be written: (1, 0, 0, 1, 1, 0)

1) Point Scalar Multiplication: We can now propose an
algorithm performing a point scalar multiplication using a
new function, NewADD. The NewADD function works in the
following way: let P1 and P2 be two points on the curve then
NewADD(P1, P2) returns two points P1 + P2 and P1, where
P1 + P2 is calculated by a Point Addition.

Algorithm 3: Euclid-Exp(c, P )
input : P , [2]P , EAC c = (c4, . . . , cs) computing k
output: [k]P ∈ E
(U1, U2)← ([2]P,P )
for i = 4 . . . s do

if ci = 0 then
(U1, U2)← NewADD(U1, U2) ;

else
(U1, U2)← NewADD(U2, U1) ;

end
end
(U1, U2)← NewADD(U1, U2) ;
return U1

Example 2: Let us see what happens with the chain c =
(1, 0, 0, 1, 1, 0) computing 34:

begin ([2]P,P )
c4 = 1 NewADD(P, [2]P ) = ([3]P,P )
c5 = 0 NewADD([3]P,P ) = ([4]P, [3]P )
c6 = 0 NewADD([4]P, [3]P ) = ([7]P, [4]P )
c7 = 1 NewADD([4]P, [7]P ) = ([11]P, [4]P )
c8 = 1 NewADD([4]P, [11]P ) = ([15]P, [4]P )
c9 = 0 NewADD([15]P, [4]P ) = ([19]P, [15]P )

NewADD([19]P, [15]P ) = [34]P

From the algorithm it can be seen that for a point scalar
multiplication using addition chains we need only one initial
point doubling followed by s − 3 point additions. Therefore,
the secret key cannot be retrived by monitoring the power
consumption of the instructions executed.

2) About Euclid’s Addition Chains Length: At this point
we know that Euclidean addition chains are easy to compute,
however finding small chains is a lot more complicated.

We begin with a theorem proved by D. Knuth and A. Yao
in 1975 [14].

Theorem 1: Let S(k) denote the average number of steps
to compute gcd(k, g) using the subtractive Euclid’s algorithm
when g is uniformly distributed in the range 1 ≤ g ≤ k. Then

S(k) = 6π−2(ln k)2 + O(log k(log log k)2)

This theorem shows that if, in order to find an EAC for
an integer k, we choose an integer g at random, it will
return a chain of length about (ln k)2, which is too long
to be used with ECC. Indeed, for a 160-bit exponent to be
efficient, Algorithm 3 requires chains of length at most 320.
The previous theorem tells us that, theoretically, random chains
for a 160-bit exponent have a length of 7,000 on average (it
is rather 2,500 in practice). Therefore we need to find ways
to reduce the length of these chains.

A classic way to limit the length of EAC is to choose g close
to k

φ , where φ = 1+
√

5
2 is the golden section. This guarantees

that the last steps of the EAC will be big steps. In practice
this method allows EAC of an average length of 1,100 to be
found.

Considering 160-bit integers, finding EAC of length 320
can be done by checking (on average) about 30 g′s. Finding
shorter chains is a lot more difficult, as an example finding
chains of length 270 requires testing more than 45,000 g′s.
Such a computation can not be integrated into any exponen-
tiation algorithm so, if some offline computations cannot be
performed, one should not expect to use EAC whose length
is shorter than 320.

D. Zeckendorf Representation

As we have seen in the previous section, short Eu-
clidean addition chains are difficult to find. However, if
the integer k is a Fibonacci number, an optimal chain
is easy to compute. It is simply the Fibonacci sequence
(F0, F1, F2, F3, F4, F5, F6, F7...) = (0,1,1,2,3,5,8,13...)

Zeckendorf proposed that any positive integer can be
computed as the sum of distinct non-consecutive Fibonacci
numbers. This sequence of numbers is called the Zeckendorf
representation and is written in the form

k =
l∑

i=2

diFi (1)

with di ∈ {0, 1} and didi+1 = 0
To construct the Zeckendorf representation for an integer

k the largest Fibonacci number not greater than k, Fn1, is
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subtracted from k to give a new value for k. This process is
continued until k is equal to zero. If, after l steps, k is reduced
to zero we obtain the Zeckendorf representation

k = Fn1 + ... + Fnl (2)

Example 3: Taking the integer k = 17:

13 ≤ k : 13 (F7)
17− 13 = 4 : k = 4

3 ≤ k : 3 (F4)
4− 3 = 1 : k = 1

1 ≤ k : 1 (F2)
1− 1 = 0

Result : (1, 0, 0, 1, 0, 1)
= F7 + F4 + F2

The Zeckendorf representation needs 44% more digits in
comparison with the binary method. For instance a 160-bit
integer will require around 230 Fibonacci digits. However, the
density of 1’s in this representation is lower, about 0.2764.
This means that representing a 160-bits integer requires, on
average, 80 powers of 2 but only 64 Fibonacci numbers ( �
230×0.2764).

1) Point Scalar Multiplication: Using the NewADD function
described in Section II-C.1 we can perform a point scalar
multiplication of two points on an elliptic curve. Algorithm
4 described this operation. The intermediate points U and V
are initialised to the point P . For every bit of the Zeckendorf
representation of the key, a Fibonacci step is computed using
the NewADD function for the point U and V . This is simply
a point addition as with the double and add and Addition
Chains methods. However, if the bit of the key is non-zero an
addition step is computed. This involves a Fibonacci step and
some extra multiplications to update the intermediate points
P and V . These operations are described in the next section.

Algorithm 4: Fibonacci And Add(k, P )

input : P ∈ E(K), k =
∑l

i=2 diFi;
output: [k]P ∈ E;
(U, V )← (P,P )
for i = l − 1 . . . 2 do

if di = 1 then
update P ;
(U, .)← NewADD(U,P ) (add step);
update V ;

end
(U, V )←NewADD (U, V ) (Fibonacci step) ;
return U

end

For a n-bit integer, the classical double and add algorithm
requires on average 1.5 × n operations (n doublings and
n
2 additions) and the Fibonacci and add requires 1.83 × n
operations (1.44 × n Fibonacci steps and 0.398 × n add
steps). The Addition chains algorithm requires one initial
point doubling and 1.98 × n point additions. In other words
the Fibonacci and add algorithm requires about 23% more
operations while the Addition Chains algorithm requires about

29% more operations. However, Section III will show that
the point operations for these two algorithms require fewer
multiplications than point doubling and point addition for the
double and add algorithm.

III. POINT OPERATIONS

An elliptic curve E(GF (p)) over GF(p) is the set of points
P = (x, y), x, y ∈ GF (p) such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ GF (p) (3)

along with a special point at infinity ∂.
Elliptic curves over large prime fields are described using

the Weierstrass equation

y2 = x3 + a4x + a6 (4)

where x, y, a4 and a6 ∈ GF (p) and 4a3
4 + 27a2

6 �= 0.
Points on the elliptic curve can be represented in Jacobian

coordinates which avoids the need for an expensive inversion
operation[15]. Converting from affine to projective coordinates
is a simple operation, (x, y, 1) → (X,Y,Z). Conversion back
however requires a number of modular multiplications and
inversions, (x, y) ← ( X

Z2 , Y
Z3 ). In Jacobian coordinates, the

curve in Equation 4 is given by

Y 2 = X3 + a4XZ4 + a6Z
6 (5)

A. EC Point Addition(PA) and Doubling(PD)

Consider two separate points on an elliptic curve, P =
(xp, yp) and Q = (qt, qt). A line l is drawn through the
points P and Q. The line l intersects the curve at a third point.
Q′ = (xq′ , yq′) is the inverse of that point, where Q′ = P +Q.
The point addition formula for the curve defined in Equation
4 using Jacobian coordinates are given in Algorithm 5. The
computational cost of a point addition is 15 multiplications
and 7 add/subs.
Algorithm 5: Point Addition in Jacobian Coordinates

input : P (X1, Y1, Z1), Q(X2, Y2, Z2) ∈ GF (q)
output: P + Q(X3, Y3, Z3) ∈ E(GF (q))
A = X1Z

2
2 , B = X2Z

2
1 , C = Y1Z

3
2 , D = Y2Z

3
1 ;

E = B − A, F = D − C;
X3 = −E3 − 2AE2 + F ;
Y3 = −CE3 + F (AE2 − X3), Z3 = Z1Z2E

If T = P then this is point doubling and a tangent to the
point is used. The tangent intersects with the curve at a second
point, T ′ = 2(T ) is the inverse of this point. Algorithm 6 gives
the formulae for point doubling for the curve in Equation 4.
The computational cost for point doubling is 10 multiplications
and 8 add/subs.
Algorithm 6: Point Doubling in Jacobian Coordinates

input : P (X1, Y1, Z1) ∈ GF (q)
output: [2]P (X3, Y3, Z3) ∈ E(GF (q))
A = 4X1Y

2
1 , B = 3X2

1 + a4Z
4
1 ;

X3 = −2A + B2;
Y3 = −8Y 4

1 + B(A − X3), Z3 = 2Y1Z1
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B. Reduced Point Addition

Given the formulae in Algorithm 5 and the points P1 =
(X1, Y1, Z) and P2 = (X2, Y2, Z) on the curve E over
GF (p), p > 3. Then for P1 + P2 = P3 = (X3, Y3, Z3)

X3 = (Y2Z
3 − Y1Z

3)2 − (X2Z
2 −X1Z

2)3

−2X1Z
2(X2Z

2 −X1Z
2)2

= ((Y2 − Y1)2 − (X2 −X1)3 − 2X1(X2 −X1)2)Z6

= ((Y2 − Y1)2 − (X1 + X2)(X2 −X1)2)Z6

= X ′
3Z

6

Y3 = −Y1Z
3(X2Z

2 −X1Z
2)3

+(Y2Z
3 − Y1Z

3)(X1Z
2(X2Z

2 −X1Z
2)2 −X3)

= (−Y1(X2 −X1)3

+(Y2 − Y1)(X1(X2 −X1)2 −X ′
3))Z

9

= Y ′
3Z9

Z3 = Z2(X2Z
2 −X1Z

2)
= Z(X2 −X1)Z3

= Z ′
3Z

3

Thus we have (X3, Y3, Z3) = (X ′
3Z

6, Y ′
3Z9, Z ′

3Z
3) ∼

(X ′
3, Y

′
3 , Z ′

3).
So when P1 and P2 have the same z-coordinate, P1 + P2

can be obtained using the following formulae:

Algorithm 7: Point Addition, P and Q sharing same Z
coordinate

input : P (X1, Y1, Z), Q(X2, Y2, Z) ∈ GF (q)
output: P + Q(X ′

3, Y
′
3 , Z ′

3) ∈ E(GF (q))
A = (X2−X1)2, B = X1A, C = X2A, D = (Y2−Y1)2,;
X ′

3 = D − B − C,;
Y ′

3 = (Y2 − Y1)(B − X3) − Y1(C − B),;
Z ′

3 = Z(X2 − X1)

This addition involves 5 multiplications, 2 squarings and 7
additions/subtractions. This formula is quite efficient in terms
of computational cost (more than a doubling) but cannot be
used with the classic double and add algorithms and require
specific exponentiation schemes. They are well suited for use
with addition chains and with the Zeckendorf representation
scheme (Fibonacci step).

As they require special conditions, these formulae are
logically more efficient than any general or mixed addition
formulae. Compared to the 15 multiplications and 7 addi-
tions/subtractions for point addition in Algorithm 5 this is a
great saving.

Some cryptographic protocols only require the x-coordinate
of the point [k]P . In this case it is possible to save one
multiplication by step of Algorithm 3 by noticing that Z does
not appear during the computation of X ′

3 and Y ′
3 , thus it is not

necessary to compute Z ′
3 during the process. The x-coordinate

can be recovered at the end.

C. Add Step

Implementing a point scalar multiplication using Zeck-
endorf’s representation requires a new point operation, the Add
step. The new point addition formula sharing the z-coordinate
described in III-B can be used for the Fibonacci step. For the
Add step however we first need to compute U + P so the
Add step returns U + P and V with the same z-coordinate.
Let us suppose that U = (XU , YU , Z), V = (XV , YV , Z) and
P = (x, y, 1). First we compute the point P ′ = (xZ2, yZ3, Z)
so that we can compute U+P = (XU+P , YU+P , ZU+P ) using
NewADD. Computing the point P ′ requires an extra 3 multipli-
cations and a squaring. From our point addition in Algorithm
7 we have the z-coordinate, ZU+P = (XU −xZ2)Z. We also
have the values (XU−xZ2)2 and (XU−xZ2)3 (A and C−B
in Algorithm 7). Using these values, updating the point V to
(XV (XU − xZ2)2, YV (XU − xZ2)3, Z(XU − xZ2)) requires
only 2 multiplications. The total computational cost of an add
step is 10 multiplications and 3 squarings.

When compared to the 5 multiplications, 2 squarings re-
quired for a Fibonacci step in Algorithm 4 we see that a
SPA attack would be possible. By monitoring the power
consumption of Algorithm 4 it would be possible to distinguish
between a Fibonacci step and an Add step and hence it would
be possible to determine the secret key. A solution for this
is to introduce ”dummy” multiplication stages to the shorter
Fibonacci step so that the power consumption of the two steps
will match. This is very costly but in Section IV-C we will
see that by applying some scheduling techniques this cost can
be reduced.

IV. ELLIPTIC CURVE PROCESSOR

A generic architecture (Figure 1) was designed for cryp-
tographic operations which incorporates RAM, a ROM con-
troller and a number of arithmetic units for a given field.
Software was developed using C++ to generate the VHDL for
a customized processor for any characteristic p and extension
field m. Everything from the size of the RAM block to config-
uring the arithmetic units and generating the ROM instruction
set for a given algorithm is controlled by the program.

For prime characteristic fields there is a choice of arithmetic
units to chose from for the architecture. Through manipulation
of the ROM instructions alone, the processor can be configured
for various algorithms including the double and add algorithm
or exponentiation using addition chains. In this way, we can
quickly compare these and other cryptographic algorithms.
The structure of the ROM instructions is explained in Section
IV-B while the scheduling required to efficiently implement
different algorithms is described in Section IV-C.

A. Arithmetic Units

The point addition and doubling algorithms described in
Sections III-A and III-B require modular additions, subtrac-
tions and multiplications. While addition and subtraction are
relatively easy to implement, modular multiplication is much
more complex. An in depth review of modular arithmetic and
architectures can be found in [16]
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Addresssel3

Fig. 1. General Elliptic Curve Processor

The processor architecture in Figure 1 is capable of con-
trolling a number of arithmetic units. There are two archi-
tecture types available for the GF(p) processor. Dedicated
units for each of addition, subtraction and multiplication can
be implemented. The number of multipliers implemented in
the processor can be configured based on the speed/area
constraints of the target technology and the application of
the design. Since addition and subtraction only take 4 clock
cycles to complete, two of which are RAM read/writes, these
operations are best performed in series and do not gain from
an increased number of arithmetic units. Alternatively, we can
use configurable arithmetic logic units (ALU) that can be set
to perform modular addition, subtraction or multiplication.
The increased functionality of the units reduces the area
consumption compared to the three dedicated units combined.
As with the dedicated multipliers, the number of ALUs can
be changed to give optimum results based on the target device
constraints.

1) Multiplication: In 1985 Montgomery[9] proposed an
efficient method for performing modular multiplication using
a series of additions and right shifts. This method avoids the
need for costly trial division of the modulus. The Montgomery
modular product is defined in Equation 6.

Res = Mont(A,B, p) = AB2−pb+2 (mod p) (6)

The output of a Montgomery multiplication is a factor
2−pb+2 times smaller than the desired result, pb is the field
size in bits. In order to correct the result, the output must
be Montgomery multiplied by (22pb+2 mod p). When a large
number of multiplications are required it becomes inefficient to
correct every result. A better solution is to initially convert the
numbers to the Montgomery domain. To do this, the number
is Montgomery multiplied by (22pb+2 mod p). To convert a
number back, it is Montgomery multiplied by 1.

The algorithm for the Montgomery multiplication is given
in Algorithm 8. The number of iterations performed is pb + 2

in order to the bound the output in the range [0, 2p − 1] for
multiplicands up to twice the modulus. This allows it to be
used as an input to further multiplications without the need
for conditional subtraction.

Algorithm 8: Montgomery Multiplication

input : A =
∑pb

i=0 ai2i, B =
∑pb

i=0 bi2i,;
M =

∑pb

i=0 pi2i

output: R = AB2−pb+2 (modp)
Initialise: R← 0; bpb+1 ← 0;
for i← 0 to pb + 1 do

qi = Ri−1 + biA (mod2);
Ri = (Ri−1 + qiM + biA)/2;

end

A hardware implementation of the Montgomery multiplier
can be seen in Fig. 2. Multiplication is performed according
to Algorithm 8. The inputs to the first adder are biA and the
previous result Ri−1. qip is added to the sum of the first adder
if the LSB of the sum (qi) is equal to 1. A shift register scans
each bit of B for biA and the final result is right shift divided
by 2.

2) Modular Addition and Subtraction: The modular addi-
tion operation adds A and B in the first adder and subtracts
the modulus p from the sum. To subtract the modulus from
the intermediate result, the modulus is bitwise inverted and
added to (A + B) with the carry-in set to 1, thus performing
a two’s complement subtraction. The carry-out of the second
adder controls which intermediate result is the correct result. If
(A + B) is in the correct range, the result of the first adder is
the correct result. Otherwise, the result from the second adder
is correct. The architecture for the adder/subtractor in Fig. 3
is configured for modular addition.

Modular subtraction is performed similarly. In this case
however, B is bitwise inverted and added to A with the carry
in set to 1. If the carry-out of this adder is low, the modulus
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must be added to give an output in the correct range.

B. ROM Instruction Set

The processor is controlled by a set of instructions in Xilinx
BlockROM and a simple state machine. A similar approach
was taken by Leong et al.[17] which helped reduce the
development time of the processor and increased the flexibility
of the design. A major advantage of this is that the instruction
set can be updated to perform any number of operations
without the need to recompile the entire processor.

For the field p, p large prime, dedicated units for modular
addition, subtraction and multiplication based on [18] were im-
plemented. An example instruction set for the processor over
GF(p) using projective coordinates is shown in Table I. After
initially loading the elliptic curve parameters and Montgomery
constants into RAM, the controller performs operations for
the selected cryptographic algorithm. Algorithms such as Point
Doubling and Point Addition for the double and add algorithm
are stored in ROM. Depending on the current bit of the key,
the controller will start at the correct address in ROM.

The 12 LSBs control read and write access to RAM. Bits
12 → 14 control the tri-states connected to the outputs of the
arithmetic units. Only one of these is set high when writing

Instruction Set
ctrl load sel we addr A & B
00 000 000 00 00001 00010
01 011 000 00 00000 00000
00 000 011 01 00000 00011

TABLE I

EXAMPLE INSTRUCTION SET USING DEDICATED ARITHMETIC UNITS

data to RAM. To reduce the impact of a large number of
arithmetic units in the design on the size of ROM, a 3-to-8
address decoder is used to make full use of all combinations of
the three select bits. Bits 15 → 17 are the load bits which are
used to load new vectors to a specific arithmetic unit. The two
MSBs are extra control bits for the state machine controlling
the processor.

Some operations such as addition & subtraction execute in
a few clock cycles and have no extra timing requirements
associated with them. Multiplication however takes pb + 3
clocks. The MSBs of the instructions are used to trigger
delay states in the controller while a multiplication is being
performed.

C. Scheduling Methodology

There is a trade off between speed and area that is affected
by the number of multipliers implemented in the processor.
More multipliers will reduce execution time but will increase
the area consumption of the device. To be truly reconfigurable
an automated scheduling tool must be used to ensure an
efficient implementation. The efficient transfer and processing
of data through the processor can greatly improve speed/area
tradeoffs.

Two simple methodologies, As-Soon-As-Possible (ASAP)
and As-Late-As-Possible (ALAP)[19] assume limitless re-
sources and schedule operations either at the earliest or latest
time step possible. Given the the lack of constraints the
scheduling results are poor and can lead to an inefficient use
of resources. More advanced scheduling algorithms such as
List-Based Scheduling [8] can efficiently schedule a set of
instructions given a set of resource constraints. With LBS we
can limit the resources available to the processor and schedule
operations for a given algorithm efficiently based on these
constraints.

A LBS approach was applied to the various algorithms for
a number of different multipliers. Figures 4 and 5 illustrate
the schedules generated for algorithms 5 and 6 respectively
using three multipliers. The 15 multiplications for a point
addition can be executed in five multiplication stages using
three multipliers. Similarly, the 10 multiplications for a point
doubling can be executed in 5 multiplication stages for the
same configuration. Additions and subtractions are performed
by separate adders and subtractors.

Table II lists the scheduling results for the different al-
gorithms tested. For the Add step of the Fibonacci & Add
algorithm there is a slight improvement in execution time
for four multipliers. For the other algorithms there is no
improvement in the execution time beyond three multipliers.
The reduced point addition algorithm where the two points
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Fig. 4. Schedule for Point Addition using three multipliers

share the same z-coordinate requires the fewest multiplications
and can be calculated much faster than the other algorithms.
The Add Step also has fewer multiplications than the regular
point addition but for three multipliers, the regular point
addition is actually faster due to the structure of the schedule.

Double & Add Add Chains Fibonacci & Add
Mults PA PD PA (share z) Add Step
1 15pb + 103 10pb + 102 7pb + 63 13pb + 93
2 8pb + 82 6pb + 90 4pb + 54 7pb + 75
3 5pb + 73 5pb + 87 3pb + 51 6pb + 72

TABLE II

EXECUTION TIME IN TERMS OF CLOCK CYCLES

1) Grouping Point Operations: As is evident from Fig. 5,
there are cases where not every multiplier is active for a mul-
tiplication stage. For a point doubling using three multipliers,
only 10 out a possible 15 multipliers are active. This means
during a point doubling the efficiency of the processor is 66%.
A solution for this is to combine a number of stages of an
algorithm to maximise the efficiency of the processor.

Take for example the double and add algorithm. Looking
at two bits of the key at a time we can group a point addition

T
im

e

1 x1

z1 z1x1 x1 y1 y1

a4
y1 z1

Z3

X3

Y3

x

Fig. 5. Schedule for Point Doubling using three multipliers

with a point doubling or group two point doublings together,
depending on the bits. Table III lists the actions for each
combination. Processing two bits at time requires some extra
logic for the processor controller.

By combining a point doubling and point addition stages
like this we can improve the efficiency of the processor
and reduce the execution time of point multiplication. Using
three multipliers, the combined schedules for Point Doubling
- Point Addition (PD-PA) reduces the calculation time by a
multiplication stage. Similarly, the PD-PD combined schedule
reduces the calculation time by two multiplication stages. Fig.
6 illustrates the section of the combined PD-PD schedule
where the inactive multipliers from the first point doubling are
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key Action
00 PD-PD, shift 2 bits
01 PD, shift 1 bit
10 PD-PA, shift 1 bit
11 PD-PA, shift 1 bit

TABLE III

COMBINATIONS FOR POINT OPERATIONS GROUPED IN TWOS

now being used for operations from the second point doubling.
The newly active multipliers are highlighted in the figure. The
efficiency of the processor for a PD-PD is increased to 83%
compared to 66% when performing the point doublings sep-
arately. The overall efficiency for the processor implementing
the double and add algorithm using three multipliers is 77%
with no grouping and 85% when point operations are grouped
in twos. It is clear that combining point operations has a
positive effect on the performance of the processor.

T
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z3 z1
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a

Fig. 6. Schedule for combined Point Doubling & Point Doubling using three
ALUs

A step further is to group the operations in threes. This is
done in the same manner as for grouping in twos but instead of
monitoring two bits of the key, the controller needs to monitor

three bits. Table IV lists the possible combinations for three
bits of the key. This process can be applied for however many
bits you want the controller to handle at a time.

key Action
000 PD-PD-PD, shift 3 bits
001 PD, shift 1 bit
01X PD-PD-PA, shift 2 bits
10X PD-PA-PD, shift 2 bits
11X PD-PA, shift 1 bit

TABLE IV

COMBINATIONS FOR POINT OPERATIONS GROUPED IN THREES

D. Scheduling Results

Table V lists the optimum execution times in terms of clock
cycles for each algorithm described in the previous sections.
The number of multipliers and the level of operation grouping
is varied to get an indication of which implementation gives
the best performance. It is clear from the table that increasing
the number of multipliers reduces the number of multiplication
stages required and hence reduces the overall calculation time.

Grouping the point operations together also improves the
execution time but without the need for extra hardware. The
effects of the grouping is marked in the border to the right of
the grouped point operations in terms of multiplication stages.
The biggest improvement found was for the double and add
algorithm using four multipliers. Here, the operations grouped
in threes reduced execution time for a number of combinations
of the key by four multiplication stages. For example, a PD
using four multipliers executes in five multiplication stages.
To perform three PDs in series would take 15 multiplication
stages. By grouping the three PDs together the number of
stages needed is reduced to 11. This improvement is confirmed
in Table VII where the execution time of the double and add
algorithm using four multipliers is reduced by 1.27ms (25.6%)
when operations are grouped in threes.

The architecture presented in Section IV was evaluated on
Xilinx xc2v6000-4. The post place and route results for point
multiplication using each of the algorithms described in this
paper are listed in Tables VI and VII. Each design consumes
approximately 5% of the Block RAMs available. The results
are based on a 160-bit key size with pb = 192. This key is
used for the double and add and the protected double and
add algorithms. For the addition chains, a chain of length
320 was used while the Zeckendorf representation requires a
230-bit key. We recall however that the binary weight of this
representation is about 0.2764. For a 230-bit key this mean
we have 64 non-zero digits.

To determine the average distribution of non-zero ele-
ments and therefore the average frequency of each of the
grouped point operations for each algorithm, random keys
were generated and simulated for each case. The results in
Tables VI and VII are based on these simulations. The first
thing to note is that the different levels of grouping gives
no improvement for any of the algorithms when only one
multiplier is implemented. It is clear from these results that
the protected double and add algorithm’s performance is much
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Multipliers Grouping Double & Add Addition Chains Fib & Add
1’s PA = 15pb + 103 - PA2 = 7pb + 63 - Add = 13pb + 93 -

PD = 10pb + 102 - PD = 10pb + 102 - PA2 = 7pb + 63 -
2’s PD-PD = 20pb + 204 - PA2-PA2 = 14pb + 126 - PA2-PA2 = 14pb + 126 -

1 PD-PA = 25pb + 205 - Add-PA2 = 20pb + 156 -
PD-PD-PD = 30pb + 306 - Add-PA2-PA2 = 27pb + 219 -

3’s PD-PD-PA = 35pb + 307 - PA2-PA2-PA2 = 21pb + 189 - PA2-PA2-PA2 = 21pb + 189 -
PD-PA-PD = 35pb + 307 - PA2-Add-PA2 = 27pb + 219 -

1’s PA = 8pb + 82 - PA2 = 4pb + 54 - Add = 7pb + 75 -
PD = 6pb + 90 - PD = 6pb + 90 - PA2 = 4pb + 54 -

2’s PD-PD = 10pb + 174 ↑2 PA2-PA2 = 7pb + 105 ↑1 PA2-PA2 = 7pb + 105 ↑1
2 PD-PA = 13pb + 189 ↑1 Add-PA2 = 11pb + 129 -

PD-PD-PD = 16pb + 264 ↑2 Add-PA2-PA2 = 14pb + 180 ↑1
3’s PD-PD-PA = 18pb + 256 ↑2 PA2-PA2-PA2 = 11pb + 159 ↑1 PA2-PA2-PA2 = 11pb + 154 ↑1

PD-PA-PD = 18pb + 256 ↑2 PA2-Add-PA2 = 15pb + 183 -

1’s PA = 5pb + 73 - PA2 = 3pb + 51 - Add = 6pb + 72 -
PD = 5pb + 87 - PD = 5pb + 87 - PA2 = 3pb + 51 -

2’s PD-PD = 8pb + 168 ↑2 PA2-PA2 = 5pb + 99 ↑1 PA2-PA2 = 5pb + 87 ↑1
3 PD-PA = 9pb + 157 ↑1 Add-PA2 = 8pb + 120 ↑1

PD-PD-PD = 12pb + 252 ↑3 Add-PA2-PA2 = 10pb + 168 ↑2
3’s PD-PD-PA = 12pb + 238 ↑3 PA2-PA2-PA2 = 9pb + 153 - PA2-PA2-PA2 = 9pb + 153 -

PD-PA-PD = 14pb + 244 ↑1 PA2-Add-PA2 = 10pb + 168 ↑2

1’s PA = 5pb + 73 - PA2 = 3pb + 51 - Add = 5pb + 69 -
PD = 5pb + 87 - PD = 5pb + 87 - PA2 = 3pb + 51 -

2’s PD-PD = 8pb + 164 ↑2 PA2-PA2 = 5pb + 99 ↑1 PA2-PA2 = 5pb + 87 ↑1
4 PD-PA = 8pb + 154 ↑2 Add-PA2 = 7pb + 117 ↑1

PD-PD-PD = 11pb + 249 ↑4 Add-PA2-PA2 = 9pb + 165 ↑2
3’s PD-PD-PA = 11pb + 235 ↑4 PA2-PA2-PA2 = 8pb + 150 ↑1 PA2-PA2-PA2 = 8pb + 150 ↑1

PD-PA-PD = 11pb + 235 ↑4 PA2-Add-PA2 = 8pb + 162 ↑2

PA = Point Addition (Algorithm 5); PD = Point Doubling (Algorithm 6); Add = Add Step
PA2 = Point Addition sharing z-coordinate (Algorithm 7)/Fibonacci Step

TABLE V

EXECUTION TIMES IN TERMS OF CLOCK CYCLES

poorer than the classic double and add algorithm. This is due
to the extra point additions require to secure the algorithm
from a simple power analysis attack.

The addition chains provided the same security but also
perform better than the double and add algorithm. Compared
to the double and add algorithm, there is not much gain in
grouping point operations for the addition chains algorithm.
There is only a slight improvement for grouping operations
in pairs and we see a degradation in performance when
group in threes. This is due to the structure of the point
addition algorithm sharing the z-coordinate. We would expect
an improvement in performance for grouping this operation
in fours but the logic for the controller would become more
complex as four bits would need to be monitored at a time.

It is also worth noting that we see a decrease in calculation
time for the protected double and add algorithm when we
group point operations in threes for three multipliers. Based
on this, it is clear that increasing the level of grouping does
not necessarily improve the performance for all algorithms.

In order for the Fibonacci and Add algorithm to be pro-
tected against SPA attacks, the power consumption of an
execution of the different operations and grouped operations
must match. This means that extra multiplications, additions
and subtractions must be added to some of the operations.
For a configuration with one multiplier this is quite costly
as the difference between the add and Fibonacci steps is
seven multiplication stages. Even when four multipliers are
implemented the added expense of two multiplications for
every Fibonacci step to match an Add step inceases the

computation time by over 40%.
However, if we look at the grouped operations in threes for

four multipliers, the difference between the grouped operations
is a single multiplication stage. For all the operations to match
we add extra dummy additions and multiplications to each
of the algorithms. The new operations now all execute in
9pb +187 clock cycles. For a 160-bit key generating a 230-bit
chain with pb = 192, a point scalar multiplication executes
in 4.2ms. This is slower than the Addition Chains method
but still outperforms the protected double and add algorithm
for the same configuration. Also, as explained in Section II-
C finding chains in the Zeckendorf form is much easier than
regular addition chains.

V. CONCLUSIONS

In this paper, a reconfigurable cryptographic processor has
been used to efficiently compare a number of algorithms for
elliptic curve point multiplication. Two algorithms making use
of addition chains have been shown to outperform a double
and add approach and provide a solution to SPA attacks.
By varying the number of arithmetic units implemented in
the architecture, the processor can be configured for devices
with different levels of resources. Also, by grouping point
operations for the algorithms we have shown that a gain in
calculation time can be achieved. In particular, for the double
and add algorithm using four multipliers we have reduced the
calculation time by 25% by grouping operations in threes.
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Protected Double and Add Addition Chains
Multipliers 1 2 3 4 1 2 3 4
Slices 2,306 (6%) 2,803 (8%) 3,493 (10%) 3,989 (11%) 2,306 (6%) 2,803 (8%) 3,493 (10%) 3,989 (11%)
min. period (ns) 19.86 19.861 19.809 19.957 19.86 19.861 19.809 19.957
Clock Freq. 50.352Mhz 50.35Mhz 50.35Mhz 50.11Mhz 50.352Mhz 50.35Mhz 50.35Mhz 50.11Mhz

1’s 15.9 9.08 6.61 6.64 8.95 5.23 3.99 4.01
Time (ms) 2’s 15.9 8.53 5.99 5.39 8.95 4.61 3.37 3.39

3’s 15.9 8.46 6.29 5.39 8.95 4.82 3.99 3.59

TABLE VI

POST PLACE AND ROUTE RESULTS FOR XILINX XC2V6000-4

Double and Add Fibonacci and Add
Multipliers 1 2 3 4 1 2 3 4
Slices 2,306 (6%) 2,803 (8%) 3,493 (10%) 3,989 (11%) 2,306 (6%) 2,803 (8%) 3,493 (10%) 3,989 (11%)
min. period (ns) 19.86 19.861 19.809 19.957 19.86 19.861 19.809 19.957
Clock Freq. 50.352Mhz 50.35Mhz 50.35Mhz 50.11Mhz 50.352Mhz 50.35Mhz 50.35Mhz 50.11Mhz

1’s 11.16 6.51 4.96 4.96 9.72 5.56 4.42 4.13
Time (ms) 2’s 11.16 6.03 4.44 4.15 9.72 5.28 3.88 3.65

3’s 11.16 5.71 4.24 3.69 9.72 5.33 3.96 3.48

TABLE VII

POST PLACE AND ROUTE RESULTS FOR XILINX XC2V6000-4
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