Mining Unexpected Multidimensional Rules - LIRMM - Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier Access content directly
Conference Papers Year : 2007

Mining Unexpected Multidimensional Rules

Marc Plantevit
Sabine Goutier
  • Function : Author
  • PersonId : 842960
EDF
Françoise Guisnel
  • Function : Author
  • PersonId : 842961
EDF
Anne Laurent

Abstract

Discovering unexpected rules is essential, particularly for in- dustrial applications with marketing stakes. In this context, many works have been done for association rules. How- ever, non of them address sequences. In this paper, we thus propose to discover unexpected multidimensional sequential rules in data cubes. We define the concept of multidimen- sional sequential rule, and then unexpectedness. We formal- ize these concepts and define an algorithm for mining this kind of rules. Experiments on a real data cube are reported and highlight the interest of our approach.
Fichier principal
Vignette du fichier
lirmm-00175246v1.pdf (195.99 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

lirmm-00175246 , version 1 (03-11-2019)

Identifiers

Cite

Marc Plantevit, Sabine Goutier, Françoise Guisnel, Anne Laurent, Maguelonne Teisseire. Mining Unexpected Multidimensional Rules. DOLAP: Data Warehousing and OLAP, Nov 2007, Lisbonne, Portugal. pp.89-96, ⟨10.1145/1317331.1317347⟩. ⟨lirmm-00175246⟩
148 View
185 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More