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Abstract. We give a quadratic O(|X|2) space representation based on
a canonical tree for any subset family F ⊆ 2X holding the closure un-
der union and difference of overlapping members. The cardinal of F is
potentially in O(2|X|), and its size higher. As far as we know this is
the first representation theorem for such families. As an application of
this framework we obtain a uniqueness decomposition theorem on a di-
graph decomposition that captures and is strictly more powerful than
the well-studied modular decomposition. Moreover a polynomial time
decomposition algorithm for this case is described.

1 Introduction

Many combinatorial decompositions lead to interesting subset families, such as
crossing families for minimum cuts in network flows theory (see e.g. [19]), and
partitive families for modular decomposition in graph theory [2, 8, 17]. Cross-free
families as defined in [19] using the famous Edmonds-Giles’s theorem [7] admit a
tree structure and arise in many combinatorial decompositions such as the split
decomposition [4–6, 16] and also in phylogeny [20].

For a given set family F ⊆ 2X , it is worth to study its distance from a tree
structure, namely to examine if it can be represented via a tree. Such a represen-
tation must allow the enumeration of all members of the family in O(|F|) time.
Let us define the complexity of a family as the size of its minimal tree. At first
level one can find simple hierarchies (c.f. laminar in [19]) and cross-free families.
Then, (weakly) partitive families which admit a unique tree decomposition with
3 types of nodes (prime, complete and linear) also have complexity O(|X |). For
crossing families only a representation tree in O(|X |2) space is known [11].

This paper deals with union-difference families – families closed under union
and difference of overlapping elements – which is a natural generalisation of
partitive families. We show the existence of a canonical tree representation in
O(|X |2) space. Furthermore, from this we obtain a uniqueness decomposition
theorem on a new polynomial decomposition of directed graphs, generalising
modular decomposition. A polynomial time decomposition algorithm for this
case is then depicted in the last section.

⋆ Supported by the GRAAL project from the French National Research Agency.
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2 Representation Theorem

Let X be a finite set. Those that belong to X are called elements, sets included
in X are subsets, and sets of subsets of X are families. For more clarity, elements
of a family are called members. Two subsets A and B overlap, denoted by A©©B,
if none among A ∩ B, A \ B, and B \ A is empty. They cross, if we have both
A©©B and A©©B, where A = X \ A.

F ⊆ 2X is a union-difference family if: F contains the trivial members X and
{x} (for all x ∈ X), and F is closed under union and difference of overlapping
members. If a union-difference family is also closed under symmetric difference
of overlapping members, then it is closed under intersection of overlapping mem-
bers. Union-difference-intersection families are well-studied under the name of
partitive families [2], and fundamental for modular graph decomposition [8, 17].

Henceforth F is a union-difference family. Notice that if |X | ≤ 2 then F = 2X

and representing F is trivial. We assume throughout the paper that |X | ≥ 3.
A ∈ F is a strong member of F if A does not overlap any B ∈ F . Likewise,
A ∈ F is a semi-strong member of F if it does not cross any B ∈ F . Let S ⊆ F
be the family of semi-strong members of F . For sake of simplicity, X is excluded
from S although it is vacuously semi-strong. By definition, no two members of
S cross, and S is called cross-free.

Let us now recall a cross-free family representation [7] which is widely used
in combinatorial optimisation research areas (refer to e.g. [19]). Let x ∈ X , we
consider S′ = {A | A ∈ S ∧x /∈ A}∪{A | A ∈ S ∧x ∈ A}. No two members of S ′

overlap, and their inclusionwise ordering results in a tree rooted at X \ {x}. We
then add x to the children of the root and unroot the tree. The set of leaves is

1

b

a

c

1

2

3

{a, b}, {a, b, c},

{2, 3, a, b, c}, {3, a, b, c},

{1, 2}, {2, 3} {1, 2, 3},

i.

ii. iii.

a

b c

2

3

double arcs

P P

L
b

a

c

1

2

3

X = {a, b, c, 1, 2, 3}

F = {
{a}, {b}, {c}, {1}, {2}, {3},

{a, b, c, 1, 2, 3},

}

{1, 2, 3, a, b},

Fig. 1. i. A union-difference family, circles represent their complement. ii. The semi-
strong subfamily excluding X. iii. Decomposition tree.
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now in bijection with X : by abusiveness we confound the two sets. In this tree,
deleting any edge gives rise to two connected components. If each component is
regarded as the set of its leaves, then at least one of them is a member of S.
Then, edge orientation can denote which ones belong to S (see Fig. 1). On the
other hand, each member of S corresponds to one edge of the tree.

Definition 1 (Decomposition tree). We define the decomposition tree of a
union-difference family F ⊆ 2X as the Edmonds-Giles’s tree representation [7]
of its semi-strong members, X is excluded. Such a tree has no degree 2 node.

We shall label this tree to obtain an enumerating object of all members
of F . In the tree, the deletion of an internal node n gives rise to k = d(n)
connected components, which can also be seen as a k−partition of X . Let
{X1, . . . , Xk} denote this partition. For instance, the node labelled “L” in Fig. 1
yields {{1}, {2}, {3}, {a, b, c}}. For later use, notice that we always have k ≥ 3.
(This can also be seen as a quick proof that the unlabelled decomposition tree
is of linear O(|X |) size.) Let us consider Y = {X1, . . . , Xk} as a set, and define
the quotient of F w.r.t. node n as the family Q(n) ⊆ 2Y such that

{

{Xi} belongs to Q(n) for all 1 ≤ i ≤ k,
Q = {Xi | i ∈ I} with |Q| 6= 1 belongs to Q(n) ⇔ ∪i∈I Xi belongs to F .

The membership of Xi in F (resp. exclusion of Xi from F) is already stored
by the edge orientation of the decomposition tree. Roughly, each member Q of
the quotient Q(n) corresponds to one and only one member of F , except for the
singletons {Xi}. Moreover, it is not obvious but folklore that the converse holds:

Proposition 1. For all member A ∈ F of a subset family F ⊆ 2X , there exists
a node n in the semi-strong tree of F such that A corresponds to a member of
the quotient Q(n) of F w.r.t. n. This node is unique.

Consequently, if there is a way to describe Q(n) for every node n of the
decomposition tree, then one can rebuild the initial family F in an exact manner.
As a step towards this aim, we say that a member A of F is quasi-trivial if
|A| = |X | − 1, and notice a second non obvious but folklore fact:

Proposition 2. Trivial and quasi-trivial members are vacuously semi-strong.
On the other hand, any semi-strong members of a quotient Q(n) ⊆ 2Y is either
trivial or quasi-trivial.

Remark 1. Both Propositions 1 and 2 hold for arbitrary subset families.

Definition 2 (Quotient property). We say that a subset family satisfies the
quotient property if all its semi-strong members are either trivial or quasi-trivial.

Obviously the quotient of a union-difference family is also a union-difference
family. We thus focus on families satisfying both union-difference and quotient
properties, which form a super-class of the quotient nodes of a union-difference
decomposition tree. We shall prove that there are at most 5 types of them.
Moreover, each type will be proved to be of “small enough” size, that is
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Main Representation Theorem. There is a node-labelling of the decompo-
sition tree of a union-difference family F ⊆ 2X such that every member of F
can be retrieved from the tree and its labels. Moreover, the size of the tree and
its labels is in O(|X |2).

Proof. We shall consider two main categories. Simply-linked quotients (see fur-
ther in Definition 3) will be characterised by Theorem 1 into 4 types. Section 2.2
addresses the remaining ones. Theorem 2 proves the quadratic global size. ⊓⊔

Before continuing, let us highlight a useful tool from previous works on par-
titive families. A subset family F ⊆ 2X can also be seen as an undirected hy-
pergraph with vertex set X . Let us define the 2−graph of F as its restriction to
size 2 hyperedges: GF = (X, E) with E = {A ∈ F and |A| = 2}. Though the
following property was discovered for partitive families, its proof only requires
the union and difference closures. The proof given in [8] is recalled in Appendix.

Lemma 1. (c.f. [2, 8] with partitive families) Let F be a union-difference family.
If its 2−graph GF is connected then GF is either a clique, a path, or a cycle.

2.1 Simply-linked quotients

We first focus on a case of “easy” decomposition, fully exploiting Lemma 1.
Though vacuously semi-strong, a quasi-trivial member is not necessarily strong.
Moreover, we say that

Definition 3 (Simply-linked Property). A subset family is simply-linked if
none of its quasi-trivial members is strong.

For simply-linked quotients, the following nice theorem holds. A family is
prime if it has only trivial and quasi-trivial members.

Theorem 1. If a union-difference family F satisfies both quotient and simply-
linked properties, then one and only one of the following holds:

– GF is a clique (we say that F is complete),
– GF is a path (we say that F is linear),
– GF is a cycle (we say that F is circular),
– F is prime.

Proof. First we have to prove the two lemmas 2 and 3 (below). Then, notice by
Lemma 1 that if GF is connected, it is either a clique, a path, or a cycle. ⊓⊔

By union closure, GF is a clique if and only if F = 2X , and we say that F
is complete. Likewise, GF is a path (resp. cycle), if and only if there is a linear
(resp. circular) ordering of X such that F is exactly the family of all intervals
(resp. circular intervals) of this ordering. F is then linear (resp. circular).

Corollary (Representing simply-linked quotients). Let X1, . . . , Xk denote
the resulting connected components of a decomposition tree when deleting a
quotient node. Representing a complete quotient node is easily done with O(1)
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label, stating the quotient is the family of all union of some Xi’s. For a linear or
circular node, we also need to code an ordering on the incident edges. Then, an
O(1) label can state the quotient is the family of all union of some consecutive
Xi’s (Fig. 1 gives an illustration on the node labelled “L”). Except for the
special case of X , members of a prime quotient node are already stored in the
edge orientation of the decomposition tree (they are semi-strong, and belong to
S). Accordingly, we only need an O(1) label for all prime nodes, stating there are
no members bound to the node other than those given by the edge orientation.

Let us head back to the proof of Theorem 1. A chain of length k of F is
a sequence (A1, . . . , Ak) of members of F such that Ai

©©Ai+1 for all i, and
Ai ∩ Aj = ∅ for all |i − j| > 1. The chain is covering if A1 ∪ · · · ∪ Ak = X , and
irreducible if |Ai| = 2 for all 1 ≤ i ≤ k. An irreducible and covering chain of F
can also be seen as a Hamiltonian path in the 2−graph GF , which would imply
its connectivity, and enable the use of Lemma 1.

Lemma 2. If a union-difference family F satisfies both quotient and simply-
linked properties, then F is either prime, or has a length 3 covering chain.

Proof. Suppose that F is not prime, and let A ∈ F be neither trivial nor quasi-
trivial. We take A maximal by inclusion. The quotient property provides us with
B ∈ F such that A and B cross. The closure under union implies A ∪ B ∈ F .
Moreover, A is maximal. Hence A∪B is either trivial or quasi-trivial. However,
A ∪ B cannot be trivial since A and B cross. Then, the simply-linked property
implies that A ∪ B is not strong. Hence it overlaps some member C ∈ F . Here,
all cases lead to either D = C ∪B \A or E = C ∪A\B is a member of F . Then,
either (A, B, D) or (B, A, E) is a covering chain of length 3. �

Lemma 3. If a union-difference family F satisfies both quotient and simply-
linked properties, and has a covering chain of length at least 3, then F has an
irreducible covering chain (then GF is connected).

Proof. By hypothesis F has a covering chain A = (A1, . . . , Ak) with k ≥ 3. We
take k maximum. Assume for some 1 < i < k that Ai \ (Ai−1 ∪ Ai+1) 6= ∅. In
this case B = Ai \ Ai+1 and C = Ai \ Ai−1 are overlapping members of F (see
Figure 2(a)). Then, replacing A with (A1, . . . , Ai−1, B, C, Ai+1, . . . , Ak) would
improve k. Hence, Ai \ (Ai−1 ∪ Ai+1) = ∅ for all 1 < i < k.

We now assume that |Ai| > 2 for some 1 < i < k. Then at least one among
B = Ai \ Ai+1 and C = Ai \ Ai−1 is neither trivial nor quasi-trivial (hence not
semi-strong by quotient property). By symmetry we suppose it was B. Let D ∈ F
cross B. We show in all cases a contradiction as follows (see also Figure 2(b)).

– Case 1: D ⊆ Ai. Among other, D and Ai−1 overlap. Let E = Ai−1 \ D, we
can improve k by replacing A with (A1, . . . , Ai−2, E, B, D, Ai+1, . . . , Ak).

– Case 2: D \ Ai 6= ∅ and C \ D 6= ∅. Then, we are conducted to Case 1 by
replacing D with D′ = Ai \ D.

– Case 3: D \ Ai 6= ∅ and C ⊆ D. We define the left and right as L =
A1 ∪ · · · ∪ Ai−2 and R = Ai+1 ∪ · · · ∪ Ak. Notice that L ∪ R = B. Since D
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Fig. 2. Illustration for the proof of Lemma 3.

and B cross, there is some element in either L or R that does not belong to
D. If it was L, replacing D with Ai \ (Ai−1 \ (D \ L)) leads back to Case 1.
If it was R, the same can be done with Ai \ (D \ R).

Hence, |Ai| = 2 for all 1 < i < k. Now, assume that |A1| > 2, and let
D ∈ F cross B = A1 \ A2. Let Z = Ak \ Ak−1. We shall examine whether
Z \D 6= ∅ or Z ⊆ D (see Figure 2(c)). In the first case, let E = A3∪· · ·∪Ak and
F = D ∪A2 ∪ · · · ∪Ak−1: they overlap. Then, G = F \E is a member of F , and
replacing A with (B, G, A2, . . . , Ak) would improve k. In the second case, since
D and B cross, there is some element in A2 ∪ · · · ∪Ak−1 that does not belong to
D. In other words, A2∪· · ·∪Ak−1 and D overlap. Then, E = D\(A2∪· · ·∪Ak−1)
is a member of F which contains Z. That E ∈ F implies (E, A1, . . . , Ak−1) is a
chain of F . That E contains Z implies the chain is covering. Moreover, it is of
length k, i.e. of maximum length. However, from the last paragraph, this chain
cannot have A1 with more than two elements. Therefore, |A1| = 2. Then, by
symmetry we obtain |Ak| = 2, and A is an irreducible covering chain. �

2.2 Other quotients

We now address a family F ⊆ 2X that is not simply-linked. By definition it
has a quasi-trivial member that is strong. We note Y = X \ {x} with x ∈ X
that member. Since Y is strong, except for X and {x}, F has no other member
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containing x. Let us consider the sub-family G = F \ {X, {x}}, which holds
G ⊆ 2Y . Obviously, if F is a union-difference family, so is G. Fainthearted, we
represent F with the member {x} and the union-difference decomposition tree
of G. We process the same way with all quotient nodes of a union-difference
decomposition tree that are not simply-linked. Therefore, such a tree may have
recursive levels. Fortunately enough, its total size still is polynomial:

Theorem 2. The global size of the labelled decomposition tree of a given union-
difference family F ⊆ 2X is in O(|X |2).

Proof. By induction on n = |X |. Let f(n) be the maximum size of all decom-
position trees of n leaves. Obviously, f(1) and f(2) are non null constants. Let
f(k) ≤ α×k2 hold for all k < n. We suppose without loss of generality that α is
greater than any other constant in this proof. Let us consider a decomposition
tree of n leaves and let N be the set of its internal nodes. For each i ∈ N , let ni

be its degree. The label of i is either of constant size (c.f. prime and complete
nodes), of linear size on ni (c.f. linear and circular nodes), or of size bounded by
f(ni − 1) + β (c.f. nodes that are not simply-linked). In all cases, it is bounded
by α× (ni − 1)2 + α since ni ≥ 3 and α ≥ β. The total size of leaves, edges, and
orientations is linear on n, hence bounded by α × n. We deduce that

f(n) ≤ α ×

(

∑

i∈N

((ni − 1)2 + 1) + n

)

≤ α ×

(

∑

i∈N

(ni − 1)2 + n′ + n

)

,

where n′ = |N |. Notice that
∑

i∈N ni = n + 2 × (n′ − 1) (the n pendant edges
are counted once while other edges are counted twice). In other words, S =
∑

i∈N (ni − 1) = n + n′ − 2. Then, the greatest value that
∑

i∈N (ni − 1)2 can
reach happens when one among the ni gets the greatest value possible. Since
ni − 1 ≥ 2, we have

∑

i∈N (ni − 1)2 ≤ (n′ − 1)× 22 + (S − (n′ − 1)× 2)2. Then,
f(n) ≤ α × (n2 + n′2 + 5n′ + n(1 − 2n′) − 4). Besides, that there are no degree
2 nodes in the tree provides us with n ≥ n′ + 2. Finally, combining the previous
facts and 1 − 2n′ ≤ 0 allows to conclude. ⊓⊔

3 Application to Graphs: Sesquimodular Decomposition

In graph theory modular decomposition is now a well-studied notion [2, 8, 13, 17],
as well as some of its generalisations [4–6, 15, 16, 18]. As having been rediscov-
ered in other fields, the notion also appears under various names, including in-
tervals, externally related sets, autonomous sets, partitive sets, and clans. Direct
applications of modular decomposition include tractable constraint satisfaction
problems [3], computational biology [12], graph clustering for network analysis,
and graph drawing. This rich research field lays heavily on the nice combinato-
rial properties of modules. Among most important ones, that modules form a
partitive family allows representing them compactly with a tree [2, 8, 17].

Besides, in the area of social networks, several vertex partitioning have been
introduced in order to catch the idea of putting in the same part all vertices
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acknowledging similar behaviour, in other words finding regularities [21]. Mod-
ular decomposition provides such a partitioning, yet seemingly too restrictive
for real life applications. The concept of a role [9] on the other hand seems
promising, however its computation unfortunately is NP−hard [10]. As a natu-
ral consequence, there is need for the search of relaxed, but tractable, variations
of the modular decomposition scheme. We here investigate the case of directed
graphs, and propose a weakened definition of module in order to further decom-
pose. Fortunately enough, we still obtain a well-structured variation, thanks to
union-difference families.

Digraphs here refer to loopless simple directed graphs where 2−cycles are
allowed. Let G = (V, A) be a digraph, M ⊆ V is a sesquimodule if:

– ∀x, y ∈ M , N−(x) \ M = N−(y) \ M .
– ∀x, y ∈ M , either N+(x) \ M = N+(y) \ M or N+(x) \ M = N+(y) \ M .

In an undirected graph, there is only one requirement to be a module, which is
∀x, y ∈ M , N(x)\M = N(y)\M . The classical generalisation to directed graphs
requires two full conditions, one on in-neighbours and one on out-neighbours:
∀x, y ∈ M , N−(x) \M = N−(y) \M and N+(x) \M = N+(y) \M . In the new
definition, there is a full condition on in-neighbours, and a relaxed one on out-
neighbours: the exterior still has to be partitioned into out-/non-out-neighbour
vertices, however, their order is irrelevant. This is the reason for the terminology.
Fig. 3(a) exemplifies an instance where the sesquimodules form the family given
in Fig. 1, while Fig. 3(b) shows that the generalisation of modules to sesquimod-
ules is proper. A more complex example of sesquimodular decomposition tree is
given in Appendix. We have the following theorem.

Theorem 3 (Uniqueness Decomposition Theorem). There is a unique un-
rooted tree associated to a digraph G = (V, A) such that: the leaves of the tree
are in one-to-one correspondence with the vertices of G; the edges of the tree are
oriented; the internal nodes of the tree are marked with at most 4 types of labels;
and all sesquimodules of G can be generated from this tree without the knowledge
of the graph. The size of this tree and its labels is in O(|V |2).

This theorem lays on the simple fact that

Proposition 3. The sesquimodules of a digraph form a union-difference family.
Furthermore there are no circular nodes in its decomposition tree.
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Proof. Let G = (V, A) be a digraph. Vacuously, the trivial vertex subsets are
sesquimodules of G. Let X and Y be two overlapping sesquimodules of G. It
follows straight from definition that X ∪ Y is a sesquimodule. We only need to
prove that Z = X \ Y is also a sesquimodule.

First suppose that there exist an exterior vertex s /∈ Z and two vertices
x, y ∈ Z s.t. (s, x) ∈ A and (s, y) /∈ A. We shall denote arc (x, y) ∈ A by xy, and
non-arc (x, y) /∈ A by xy. Since X is a sesquimodule s belongs to X∩Y . Moreover,
that X and Y overlap implies there is a vertex t belonging to Y \X . Notice that
s, t ∈ Y and x, y /∈ Y . Additionally, we have sx and sy. Since Y is a sesquimodule,
we have either tx∧ ty or tx∧ ty. But then X no more is a sesquimodule as t /∈ X
and x, y ∈ X . Hence, for all x, y ∈ Z, N−(x) \ Z = N−(y) \ Z.

Now let x, y ∈ Z and s, t /∈ Z. For convenience, we refer to the fact that
either xs ∧ xt or xs ∧ xt by “x is not a splitter of {s, t}”, denoted by x|st.
We need to prove that x|st ⇔ y|st. If none of s and t belong to X , that X is
a sesquimodule allows to conclude. If both s and t belong to Y , that Y is a
sesquimodule allows to conclude. By symmetry, the only remaining case is when
s ∈ X ∩Y and t /∈ X ∪Y . In this case, let u ∈ Y \X . Since X is a sesquimodule,
we already have x|tu ⇔ y|tu, but we would like the same property with vertex
u replaced by vertex s. For this, notice that x /∈ Y , but s, u ∈ Y , and Y is a
sesquimodule. Therefore, x|su. Likewise, y|su. Then, combining the two latter
facts and x|tu ⇔ y|tu leads to the desired property.

Finally, a circular sesquimodule quotient node would be a complete one. �

4 Polynomial Time Algorithm for Sesquimodular

Decomposition

This section describes a brute-force algorithm to compute in polynomial time the
sesquimodular decomposition tree of a given digraph G = (V, A). We divide the
computation into two main steps, generalising the two-step scheme introduced
by [1] for modular graph decomposition.

Definition 4 (Factoring Permutation). [1] A factoring permutation of a
decomposition tree is the visit order of the leaves of the underlying decomposition
tree by some depth-first graph search.

For sesquimodular decomposition tree, which is unrooted, we define the fac-
toring permutation as a circular permutation. This notion dues its name to the
fact that every node of the tree is a (circular) interval of the (circular) permu-
tation. In the following, results of Section 4.1 can not be used unless we meet
a certain notion of splitter. However, all the remaining is a scheme that can be
used to compute the semi-strong tree of any arbitrary subset family. Indeed, the
union-difference property will only be used for eventually typing the nodes.

4.1 Computing a Factoring Permutation

Like modular decomposition, we use a partition refinement technique (see e.g. [14])
based on the notion of a splitter. There are two kinds of sesquimodule splitters:
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– If there are s /∈ M and x, y ∈ M with (s, x) ∈ A (denoted by sx) and
(s, y) /∈ A (denoted by sy) then M is not a sesquimodule. We say that
vertex s splits x and y.

– If there are x, y ∈ M such that there are s, t /∈ M with x|st and y|st then
M is not a sesquimodule, where x|st denotes (xs ∧ xt) ∨ (xs ∧ xt) and x|st
denotes its negation. We say that vertex pair (x, y) is a self-splitter.

Let us consider first category slitters. We begin with picking a vertex x ∈ V
and considering the ordered partition P = {N+(x), {x}, N+(x)}, which will be
seen as an ordered circular partition. We then perform a round, which consists
of performing the refinement operation (see right below) for all vertex y 6= x
until this modifies the partition P . The round ends and we restart a new one
whenever P is modified. If, through some whole round, the partition P remains
unchanged for all y 6= x, then the process stops.

The refinement operation w.r.t. a vertex y 6= x consists of splitting each part
P of the partition P into two parts: P+ = P ∩N+(y) and P+ = P \N+(y). The
reorganisation of the split parts is as follows. Though obviously the part Q = {x}
of the partition P is not split, we have to consider whether x ∈ N+(y). Let P
and R be the neighbour parts of Q in P : P = (. . . , P, Q, R, . . . ). If x ∈ N+(y),
replace P with (P+, P+) and replace R with (R+, R+), else, replace P with
(P+, P+) and R with (R+, R+). If there are some emptyset, we act as if they
were present, but skip storing them to the partition list. Thus, the elements that
y “sees” the same way as how y “sees” x are locally stick together. We do the
same processing for the parts before P and those after R in P (elements of same
vision by y are locally stick together). That there is in the initial partition an
odd number of parts – actually 3 – guarantees no conflict when closing the circle.

At this point, we obtain a partition P such that for all vertex v, and for
all part P of the partition P , v is not a first category splitter of P . Since each
refinement can be done in O(|N+(y)|) time (see [14]), a round takes O(n2) time,
where n = |V |. Since each round decreases the partition P to a thinner partition,
there are at most n rounds. The total time is in O(n3).

We now consider second category slitters, with the computed partition P .
While there is in P some part P containing a self-splitter (x, y) ⊆ P , replace P
with (Px, Py), which is defined as follows. First, push x in Px and y in Py. Let

s, t /∈ P such that x|st and y|st. Then, for every other vertex z of P , either z|st
or z|st, and we push z in Px or Py accordingly. Testing for self-splitters can be
done by just testing all vertex quadruplets. This would globally cost O(n5) time.

At the end, we obtain a circularly ordered partition P = (P1, . . . , Pk) of
unordered parts Pi’s. Then, ordering arbitrary the Pi’s results in a circular per-
mutation of V , which is a factoring permutation.

4.2 Computing the Decomposition Tree

We here constantly need to test if a subset is member of the initial family. Let τ
denotes the time for such a test. For digraphs, given a vertex subset, we can test
in τ = O(n4) time if the subset is member of the sesquimodule family by checking
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every vertex quadruplets. Then, the shape of the sesquimodular decomposition
tree can easily be constructed in a brute-force manner as follows. Compute a
factoring permutation. For each interval of the factoring permutation, test if it
is a member of the initial family. For each pair of the latter members, if they
cross, then remove both. Represent the remaining members in a cross-free tree-
representation as explained at the beginning of Section 2. Since there are at most
n2 intervals in a circular permutation, these operations take O(n5 + n2τ) time.

The only remaining thing is to type the nodes. The main difficulty is how
to test for nodes that are not simply-linked. Actually, we avoid this test by
elimination of cases. For each internal node i of the decomposition tree:

Compute the 2−graph of the quotient w.r.t. node i (quadratic number of tests
for membership). If this is a clique, a path, or a cycle, conclude accordingly, and
stop. Compute all quasi-trivial members of the quotient. If there are more than
one or none of such, report a prime node, and stop. Else either the node is prime
or it is not simply-linked with that unique quasi-trivial member which is strong.
Let C be the complement of the unique quasi-trivial member. Assume node i is
not simply-linked and recursively compute the decomposition tree of the quotient
excluding C (refer to Section 2.2 for details). If the latter tree is anything except
a single prime node then node i effectively was not simply-linked, we conclude
and stop. The latter tree is a single prime node. If there is some quasi-trivial
member therein then node i effectively was not simply-linked, we conclude and
stop. Otherwise node i was simply-linked. We report a prime node.

Without recursive calls the process is in O(n3τ) = O(n7) time. Then, an
inductive argument similar to the proof of Theorem 2 gives an O(n8) time bound.

Theorem 4. The sesquimodular decomposition tree of a given digraph G =
(V, A) can be computed in O(|V |8) time.

5 Conclusion and Perspectives

We have shown that union-difference families can be represented via a unique
tree, and applied this result to a new directed graph decomposition. Of course the
polynomial decomposition algorithm proposed here for this variation of modular
decomposition has to be improved for a practical use. Another interesting inves-
tigation could be on the properties of the family of complements of members of
a union-difference family. Such a family owns a quadratic representation straight
from the result of union-difference families. However, their intrinsic properties
are unclear, as the closure under difference does not behave symmetrically via
complementary. Besides, representing families satisfying a number of closure op-
erations remains an interesting question, and we are convinced that some other
combinatorial decompositions can be expressed in this framework.

Acknowledgements: The first author is grateful to S. Thomassé for helpful
discussions and pointers.
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16. J.-M. Lanlignel. Autour de la décomposition en coupes. PhD thesis, Université
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Appendix:

Proof of Lemma 1: The proof given in [8] is as follows. Suppose that GF has
a vertex x with degree at least 3, and let y, z, t be three distinct neighbours of x.
In other words, {x, y} and {x, z} are members of F , and so is {x, y, z} by union
closure. But {x, t} is also a member of F . By difference closure we deduce that
{y, z} is an edge of GF . Likewise, we can deduce that x, y, z, and t form a clique
in GF . Now, let v be a vertex that is connected to the previous clique at some
point, say t. Then, by a similar argument on the fact that t is of degree at least
3, we can show that v is connected to all other vertices of the clique. Thus the
previous clique plus vertex v form a bigger clique, and so on. The connectivity of
GF then can be used to conclude that the whole graph GF is a clique. Finally,
the only connected graphs of degree at most 2 are paths and cycles. ⊓⊔

Example of sesquimodular decomposition:
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(b) Its sesquimodular decomposition tree.

Fig. 4. Sesquimodular decomposition.

The family of non-trivial sesquimodules of the digraph of Fig. 4 is

{{1, 2}, {1, 2, 3, 4, 5, 6}, {2, 3, 4, 5, 6}, {2, 3, 4, 5, 6, 7, 8, 9}, {3, 4, 5, 6, 7, 8, 9},

{3, 4}, {3, 4, 5}, {3, 4, 5, 6}, {4, 5}, {4, 5, 6}, {5, 6}}


