N
N

N

HAL

open science

Foundations of a Simple and Unified
Component-Oriented Language

Luc Fabresse, Christophe Dony, Marianne Huchard

» To cite this version:

Luc Fabresse, Christophe Dony, Marianne Huchard. Foundations of a Simple and Unified Component-
Oriented Language. Computer Languages, Systems and Structures, 2008, 34 (2-3), pp.130-149.

10.1016/j.c1.2007.05.002 . lirmm-00175781

HAL Id: lirmm-00175781
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00175781
Submitted on 1 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00175781
https://hal.archives-ouvertes.fr

Author’s Accepted Manuscript

Foundations of a simple and unified component-
oriented language

Luc Fabresse, Christophe Dony, Marianne Huchard

PII:
DOI:
Reference:

To appear in:

Received date:
Accepted date:

COMPUTER
LANGUAGES

eeeee

S1477-8424(07)00016-4
doi:10.1016/;.c1.2007.05.002
COMLAN 67

SNLONYLS 2 5131 545

www.elsevier.com/locate/cl

Computer Languages Systems &
Structures

15 December 2006
1 May 2007

Cite this article as: Luc Fabresse, Christophe Dony and Marianne Huchard, Foundations
of a simple and unified component-oriented language, Computer Languages Systems &

Structures (2007), doi:10.1016/j.c1.2007.05.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2007.05.002

Foundations of a Simple and Unified
Component-Oriented Language

Luc Fabresse, Christophe Dony, Marianne Huchard

Lirmm, UMR 5506 CNRS et Université Montpellier 11
161, rue Ada
34892 Montpellier Cedex 5
http://www. Lirmm. fr
{fabresse,dony,huchard} @lirmm. fr

Abstract

Component-oriented programming is actually a key research track in software engi-
neering. A variety of component-oriented languages have been proposed with new or
adapted abstractions and mechanisms to support this new paradigm. However, the
proposed features vary quite widely from one proposal to another. There is a need for
a closer analysis and synthesis of these features to really discover the new possibili-
ties of component-oriented programming. In this article we present SCL, our propo-
sition of simple language dedicated to component-oriented programming. Through
the presentation of ScL, we discuss and compare the main features of component-
oriented languages such as component class, component, interface, port, service or
connector. But, these features are not enough to build a component-oriented lan-
guage. Indeed, unanticipated connection of independently developed components
is one of the key issues of component-oriented programming. Most approaches use
language primitives or connectors and shared interfaces to connect components.
But shared interfaces are in contradiction with the philosophy of independently
developed components. The approach of SCL is to provide a wuniform component
connection mechanism based on special components called connectors. SCL also in-
tegrates component properties which enable connections based on component state
changes with no requirements of specific code in components.

Key words: component-oriented language, component connection, connector,
component property

Preprint submitted to Elsevier Science 5 December 2006

1 Introduction

Component-based software engineering is widely investigated by research and
industry. This interest is driven by the promise of improving current soft-
ware development practices, such as reusability and extensibility, in significant
ways [26,51]. Although many models, languages and tools have been proposed,
it is still difficult to apply component-oriented programming (COP) in prac-
tice. Most of proposed languages, such as UML 2.0 [24] or WRIGHT [5,4],
are not executable and dedicated to software specification. COP is currently
carried out using object-oriented languages which do not offer specific abstrac-
tions to ease COP and have to be used in a disciplined way to guarantee a
COP style.

Component-based software engineering needs component-oriented languages
(COLs) as well as to transform models [43,15] into executables or to write
programs by hand. A component-oriented language must offer specific ab-
stractions or mechanisms to write component-based programs [18]. Among
the approaches on components, some programming languages have been pro-
posed such as ComponentJ [48], ArchJava [2], Julia/Fractal [9], Lagoona [18],
Piccola [1], Picolo [33], Boxscript [32], Keris [55] or Koala [53], in order to sup-
port COP. These languages have brought many new or adapted abstractions
and mechanisms such as connection, composition, port, interface, connector,
service, module, message but their interpretation vary quite widely from one
proposal to another. This is quite normal with such an emerging domain, but
there is a need for a closer analysis: which mechanisms are essential (basic)
and cannot be removed, which ones are (eventually) redundant? Which are
the key ones to achieve component composition? To a larger extent, all these
questions raise the issue of knowing which constructs and mechanisms are
the main identified features of component orientation (by analogy with object
orientation).

In this paper, we present SCL that stands for Simple Component Language
which is the result of our study and research about component-oriented pro-
gramming. On the one hand, SCL is built on a minimal set of concepts ap-
plied uniformly in order to ease the understanding of the key concepts of
component-oriented programming. The main features of SCL come from exist-
ing languages but we argue that we chose the fundamental ones. On the other
hand, SCL integrates a new powerful, extensible and uniform component con-
nection mechanism that addresses one of the key issues of component-oriented
programming which is the unanticipated connection of independently devel-
oped components. In existing languages, the connection mechanism is either
a fixed language primitive such as in Fractal [9] or relies on first-class entities
named connectors [49,36] which represent connections such as in ArchJava [2]
or Sofa [7]. In SCL, a connector is a kind of component dedicated to the adap-

tation of the communications between components. The SCL connectors offer
better decoupling between the reusable business code inside components and
the gluing connection code inside connectors. The SCL connection mechanism
is based on connectors and enables independently developed components to
communicate following different protocols without requiring any special code
in components. For example, we propose connectors that offers some possi-
bilities available in aspect-oriented programming [30]. SCL also provide con-
nectors to establish communications based on the publish-subscribe protocol
between components without requiring any special code in the publisher or
the subscriber component. This is possible because SCL components are de-
fined using the concept of property to externalize component state without
breaking component encapsulation. Properties are the support of a new kind
of component communication based on changes of property state. We choose
Squeak, a Smalltalk implementation, to implement SCL because it is a dy-
namic language that offers a suitable meta-object protocol that can be easily
extended and because we want to provide an easily extensible language.

The paper is organized as follows. Section 2 presents the general context of
component-oriented programming. Section 3 discusses if a class-based or a
prototype-based approach is suitable for a COL. Section 4 motivates the choice
of the core features of SCL. Section 5 explains the service invocation mecha-
nism. Section 6 describes how components can be connected. Section 7 shows
that separation of concerns is possible in SCL. Section 8 explains why pub-
lish/subscribe communications are an issue in COP and proposes a solution
based on properties. Section 9 describes the current implementation of the SCL
prototype in Squeak. Section 10 compares SCL features to those existing ones
in various COLs and presents some related work. Finally, section 11 concludes
and presents future work.

2 Component-Oriented Programming: What, Why and How?

COP is based on the idea stating that a software can be built by plugging
pieces of software called components. The term “component” has different
meanings to many different people depending on the perspective taken. For
example, design patterns [19], functions or procedures [34], modules [18], ap-
plication frameworks [51], object classes [25], and whole applications [37] can
be considered as components. Similarly, there are many different definitions
for the term component given in the literature [8,23,51]. The component defi-
nition reached by consensus is: “A software component is a unit of composition
with contractually specified interfaces and explicit context dependencies only.
A software component can be deployed independently and is subject to compo-
sition by third parties” [51].

Originally, researches on component-based software development (CBSD) have
been driven by the will of reducing software development costs by increasing
software reuse. Indeed, instead of developing new components from scratch,
CBSD recommends the reuse of existing components that have already been
developed and tested. This idea is expected to reduce development costs be-
cause it reduces the development time. A second motivation for component-
based software development has emerged, the will of reducing the evolution
cost of a software. This motivation is now more important than the originally
one, because software are not developed one time, but continuously developed
in order to correct bugs (maintenance) or to add new features (extension).
Software evolution is a challenge because of new factors such as the grow-
ing software size or the software distribution. Component-based applications,
built out of interconnected components, are expected to be easier to evolve.
This is because the software evolution of component-based software relies on
decoupled components that can evolve independently. This property is named
the independent extensibility [51] of component-based software.

New software development methods dedicated to CBSD, such as Kobra [6]
or Catalysis [14], focus on the reuse in the earlier steps of the development
process. Reuse at the design phase can be considered from two different com-
plementary perspectives: design for reuse or design by reuse. Design for reuse
deals with identifying, specifying reusable elements, and integrating them in
a reuse system. Design by reuse aims to define new systems engineering pro-
cesses, and develop tools supporting systematic reuse of components to build
new systems. Figure 1 shows that these two complementary concerns are gener-
ally targeted by two different actors of the development process: the program-
mer and the architect. A component-oriented language must offer mechanisms
for both of them, without forgetting their respective role: the programmer
builds reusable components (for reuse) and the architect builds applications
by reusing components (by reuse).

Programmer Architect

O O

¢ / S creates
creates , 4 Component Library h SAL
/; Application
Component 1A €T D —L
I L- ~st~0r~ed B used] A
- Dl =--- [

Fig. 1. A high-level view of component-based software development.

3 Component-Oriented Languages: Prototype-based or Class-
based Languages 7

In object-oriented languages, the terms “class” and “instance” allow program-
mers to refer without ambiguity respectively to object descriptions in code and
to objects themselves as runtime entities. Although many component-based
languages are generally built on a class/instance conceptual model, few of them
specify the terms to denote respectively component descriptors (classes) and
component themselves (objects). For example, the two keywords component
class in ArchJava and component in ComponentJ both denote a component
class which can be instantiated. In ArchJava, a component class is an exten-
sion of the Java class concept used to define a type of component. A few COLs
have been proposed with a prototype-based model (i.e without descriptors).
For example, a prototype-based language has been proposed [54] on the top of
Java in order to provide primitives to dynamically build, extend and compose
software components from Java objects. We think that the arguments for (or
against) the use of classes are similar in the component and object worlds and
that both approaches are worth to be considered [13].

In ScrL, we have chosen a class/instance approach but we clearly distinguish
these two concepts. A component is a runtime entity and it is an instance of a
component descriptor. Component descriptors are written by the component
programmer in order to create off-the-shelf reusable pieces of software while
the software architect creates an application by choosing and instantiating
some component descriptors and then connecting components (i.e. instances).

4 Basic Component Structure

It is largely admitted that a “component can only be accessed through well
defined interfaces” [51]. Component interfaces shield the component from its
environment and increase its context independence needed by the design for
reuse. Component-based languages propose different concepts to describe com-
ponent interfaces such as services, ports, interfaces, protocols, etc. In different
component languages, these words may have different meanings. For example,
in Fractal [9] or Enterprise JavaBeans [39], the port and interface concept are
mixed that is why they only speak about interfaces. In UML components [12],
both port and interface concepts exist such as in ArchJava [2] where interfaces
are called port interfaces. That is why we choose to clearly explain the choices
that we made for ScL. In ScCL, a component provides or requires services
through ports described by interfaces.

4.1 Services

A component provides functionalities which are named services. Basically, a
service is a subprogram defined in a component, such as a method in the
object-oriented model. The main difference between a component and an ob-
ject is that a component also expresses the services that it requires from other
components in order to provide its own ones. Thus, a component has two
sets of services: its provided services and its required services. For example,
a password manager component may provide services such as generatePwd:,
generateALowerCasePwd:, isValid: and require a getRandomNumber service.

4.2 Ports

“A component is a static abstraction with plugs” [41]. Ports represent these
plugs and are the interaction points [51] of components. This means that all
that is possible on a component, such as service invocation, have to be done
through its ports. The port construct is present in almost all component mod-
els but with different semantics. In component models that support ports,
they are either unidirectional such as in or bi-directional. Through unidirec-
tional ports such as in ComponentJ [48] or Fractal [9], a component provides
or requires a set of services through its ports. In ArchJava [2] or UML 2.0 [12],
ports are bi-directional and a component both requires and provides services
through each of its ports.

Unidirectional ports allow the programmer to group some services in a set and
require or provide this set. Two kind of unidirectional ports are distinguished:
required ports through which the component requires a set of services, and
provided ports through which the component provides a set of services. Ports
help the programmer to group related services and then defines view points or
security policies. Required ports define view points for the component on its
environment while provided ports define view points on the component for its
environment. A port-also defines a security policy because a component that
communicates with another component through one of its ports can only access
the services aceessible through this port. Grouping some required services on
required port is also used by programmer to express that these services should
be provided by the same component. For example, a component that requires
the services: pop and push: through one of its required ports expects that
these two services will be executed by the same component.

Bi-directional ports offer the same capabilities than unidirectional ones but
they allow the programmer to define more complex point of views than uni-
directional ports. Indeed, a bi-directional port describe the role that the com-

ponent could accomplish in a collaboration. For example, a component may
requires a getPwd service and provides open and close services through the
same port. This port express that the two services open and close will be pro-
vided to a component that itself provides the getPwd service. It is possible to
express more accurately the dependencies between services using bi-directional
ports.

We choose to integrate unidirectional ports in SCL. On the one hand, this is
because they are simpler to understand and to use. The programmer defines
services in the component implementation and choose to provide some of them
through the provided ports of the component. In SCL, a service may be pro-
vided by more than port. On the other hand, this is because it is possible to
construct bidirectional ports using unidirectional ones as we will see with the
property concept of SCL in section 8. In ScL, a port has a name (a compo-
nent can not have two ports with the same name). Figure 2 shows the ScL
code needed to create a component descriptor, declare ports and instantiate
a component.

”A PasswordManager component which generates passwords and
verifies that a password is mnot too simple”
ComponentDescriptorBuilder new: #PasswordManager
requiredPortNames: ’Randomizer’
providedPortNames: ’Generator Checker’.

(PasswordManager port: #Randomizer)

requires: {#getRandomNumberl}.
(PasswordManager port: #Generator)

provides: {#generatePwd:. #generateALowerCasePwd:}.
(PasswordManager port: #Checker)

provides: {#isValid:}.

c := PasswordManager new.

Fig. 2. Definition and instantiation of a component descriptor in SCL.

It is important to note that SCL uses the Smalltalk syntax but the constructs
have not always the same meaning than in Smalltalk (it will be shown in sec-
tion 5). In the above example, a PASSWORDMANAGER is defined with three
ports: the required Randomizer port through which the component requires a
getRandomNumber service, the Generator and Checker ports that respectively
provide services for generating passwords and services for checking passwords.
The implementations of the component services are not shown in this exam-
ple. COMPONENTDESCRIPTORBUILDER is the bootstrap component of SCL.
This component is used to create empty component descriptors by using, for
example, its new:requiredPortNames:providedPortNames: service. A com-
ponent descriptor can be completed in order to describe its instances. Finally,
the instantiation of a component descriptor is achieved using its new service.

4.8 Interfaces

The “interface” word as many different meanings in the object world and the
component world. For example, Fractal [9] distinguishes component interfaces
and language interfaces (i.e Java interfaces) but they only keep the term of
interface which could be misunderstood. The interface concept is almost in
all component models but sometimes mixed with the port concept such as
in Fractal [9] or sometimes completely independent such as in UML [12]. In-
terfaces vary from informal texts descriptions in natural languages to formal
descriptions such as in WRIGHT [5]. We distinguish two kind of descriptions:
syntactic and semantic descriptions. Syntactical descriptions are generally rep-
resented by a named type describing a set of method signatures such Java in-
terfaces [22]. Semantical descriptions are harder to define and are often based
on formal theory, such as CSP in WRIGHT [5] or protocols in Sofa [46]. Pro-
tocols allow component programmers to define the valid sequences of service
invocations through regular expressions. For example, if a port provides three
services related to network communications, protocols can be used to describe
that the open: service must be invoked first and one time, then the send:
service and finally the close service must be invoked to finish the interaction.

Interface compatibility. In ArchJava [3], Component] [48], Fractal [9], a
port that requires an interface I; can only be used by a port that provides an
interface I, where the type defined by I; is a super-type of the one defined by
I,. Validation is achieved through typing rules on interfaces: “/...J types stand
for semantical specification. While the conformance of an implementation to
a behavioral specification cannot be easily checked by current compilers, type
conformance 1s checkable. By simply comparing names, compilers can check
that several parties refer to the same standard specification.” [10]. Using these
kind of interfaces implies that independently developed software components
have to be defined using type-compatible interfaces in order to communicate.
Depending on the type-compatible relation between interfaces, it will break the
independently developed property of components. It is exactly what happen
in most component-oriented languages that are Java extensions because they
rely on the Java type system which is a named type system in which the sub-
typing relation of interfaces is explicitly declared in their definition. Structural
type systems [11] offer better decoupling since the subtype relationship is
computed from the structure of interfaces. But structural type systems are less
expressive than named type systems (such as Java). For example, expressing
that “a component requires an Stack” is more expressive than expressing that
“a component requires two services push: and pop” because it not sure in the
second case that is exactly a stack that is needed. In the first case, there is a
need for a global stack definition and the defined component will only able to
communicate with components that have been defined using the same stack
definition such as “a component that provides the stack capabilities”.

In ScL, an interface describes the possible interactions that can be achieved
through a given port. Interfaces document the component and enable the au-
tomatic validation (static or dynamic) of the component uses. SCL interfaces
can be as complex as we could imagine in order to capture the semantical
aspects of components. The most basic and necessary interfaces are service
signature sets and a programmer defines the interfaces of provided ports in
order to choose the services that he wants to provide through a port. But,
the interfaces of required ports can be automatically set up on a component
during its instantiation by analyzing the implementation of its provided ser-
vices. Nevertheless, it is hidden for the architect that only knows the external
features of component i.e its ports and their associated interface as shown by
Figure 3.

¢ : PasswordManager

Interface Provided Ports Required Ports

"generate a pwd with lower cases and digits" Generator
\ generatePwd: T

Randomizer
"generate a digits only pwd"

. generateADigitsOnlyPwd: Checker

"return a random number in [1,26]"

svai: - 0000

Fig. 3. The architect vision of a component ¢, instance of the component descriptor
PASSWORDMANAGER. Ports represented by squares on the component boundary.
Triangles designate the direction of service invocations.

5 Service invocation

In ScL, components communicate by service invocation through their ports.
The syntax and semantics of service invocation it not clearly defined in existing
COLs as the message sending mechanism is, in the object world. It is certainly
because COLs are object-oriented language extensions such as ArchJava or
ComponentJ and uses the message sending mechanism.

A service invocation is similar to a message, it has a receiver, a selector and
arguments. But the receiver of a service invocation is a port that indicates
through which port the service invocation is done and the selector a service
name. Figure 4 shows examples of service invocations. Since SCL uses the
Smalltalk syntax, the space character is used for service invocation which the
same as message sending but the mechanism is not the same as it has been
explained. If the receiver port is a required port of a component ¢ (e.g on line
20 of Figure 4), the invocation will be treated by another component that
will be known at connection time (cf. section 6). The invocation of a required
service of a component supposes that this component has been connected
to other components that provide this service. If the receiver is a provided
port of a component ¢, a service with a matching selector and defined on the

10

12

14

16

18

20

22

24

component description of ¢, is executed. For example, the service invocation
on the line 7 of Figure 4 will produce the execution of the provided service
isValid:. If there is no corresponding service, the doesNotUnderstand: ser-
vice of ¢ is executed with the invocation as argument. As all Smalltalk objects
respond to the doesNotUnderstand: message, all SCL components own the
doesNotUnderstand: service.

PasswordManager >>generatePwd: size
7Generate a size character long password with lower cases and digits”
| generatedPwd i |

” ”

i := self getRandomCharacterWithNumbers: true
» »
(Checker isValid: generatedPwd)

ifTrue: [~generatedPwd]

ifFalse: [~“Generator generatePwd: size]

PasswordManager >>generateALowerCasePwd: size
”Generate size character long password with lower case”

” ”

i := self getRandomCharacterWithNumbers: false
”» ”»

PasswordManager >>getRandomCharacterWithNumbers: b
7returns a random character that is a lower case or a digit according to b”

” ”

i:= Randomizer getRandomNumber.
” ”

PasswordManager >>isValid: aPwd

"returns true if the password is too easy”
» ”

Fig. 4. Partial implementations of the PASSWORDMANAGER services.

Internal services invocations. How to invoke a service that is de-
fined but not provided by any port of the component such as the
getRandomCharacterWithNumbers: service? We call internal services, these
kind of services. They are useful to organize the internal code of a component
but do not be provided. Since these services are not provided nor required, it is
not possible to invoke them through a port. We are not aware that some COLs
have raised the question: What is self in a COL? In ScL, all components have
an internal provided port named self. An internal port or private port can not
be accessed outside of its component. The self port of a component automati-
cally provides all the services that are defined in its componentDescriptor. The
invocations on lines 5 and 14 of Figure 4 are then a regular service invocations.

Default port. We add that all components have port named default that
provides all the provided services of the component. The services provided by
this port can be restricted. This port is convenient because when a component
is used as the receiver of a service invocation, this is exactly the same as if its
default provided port have been used (e.g Figure 5).

10

c := PasswordManager new.
c isValid: ’aaaa’.
p := c generatePwd: 4.

Fig. 5. Service invocations through the default port of a component.

6 Component Connection

COLs propose one main mechanism for component-oriented programming: the
connection of components. A component ¢ can invoke the services of another
component d, only if ¢ and d are connected. Components communications
are possible by component connections. Unanticipated is the key-adjective at-
tached to connection that makes component-based software worthwhile. Unan-
ticipated means that a programmer defines a component ¢ with a design for
reuse goal, and he must make no other assumptions than what he declares in
the interfaces of c. The programmer does not know the concrete components
that will be connected to ¢, later on by the architect. Another mechanism is
proposed by COLs: the composition of components. Composition is used to
create a new component called a composite out of existing components. In
this section, we present these two mechanisms of connection and composition.
We also explain that composition is just a subtle variation of the connection
mechanism.

6.1 Connection

The connection mechanism connects components through their ports. It is
often said that two components ¢; and ¢y are connected if at least on port of
c1 is connected to one port of ¢y. Connecting components require to able to
connect ports. This could be achieved using language primitives or using first-
class entities named connectors. Connectors are architectural building blocks
used to model interactions among components and rules that govern those
interactions [49]. The connection mechanism is provided through various forms
and semantics in actual COLs. Let us examine the two solutions of ArchJava
and Fractal that we inspired our SCL solution:

ArchJava [3] provides a connect primitive that takes a set of bi-directional

ports of components.
connect c_1.p_1, c_2.p_2, ..., c_n.p_n;

Semantics of this connect primitive is that when a required service of

a component ¢; is invoked through its port p;, the service to be executed

is searched in the set of services provided by ports py, ..., p,. If the connect

instruction has not failed, there is exactly one compatible service. The Arch-

Java mechanism is useful to easily express n-ary connections. ArchJava also

11

allow the architect to defines its own connector classes that can be used to
fix the connection semantics.
connect c_1.p_1, c_2.p_2 with TCPConnector;
Fractal [9] provides a binding primitive named bindFc that binds one re-
quired port (named a client interface in Fractal) with one provided port
(named a server interface in Fractal).

cl new C1();
c2 new C2Q);
cl.bindFc("p1", c2.lookupFc("p2"));

More complex connections can be achieved in Fractal with using binding
components. “A binding component is a normal Fractal component whose
role is dedicated to communication between components. Binding compo-
nents are also called connectors: hence Fractal does support connectors,
although this concept is not a core concept here, as component or inter-
face.” [9]. In Fractal, n-ary connections requires that the architect defines a
binding component with exactly the right number of ports. It seems difficult
with this connection mechanism to support dynamic n-ary connections.

Before presenting the SCL connection mechanism, it is important to note that a
connection mechanism must address mismatches. Connection mismatches are
an identified consequence of unanticipated connections [47]. These mismatches
occur when we want to connect components that semantically fit well but their
connection is not possible because they are not plug-compatible. Mismatches
can be solved in whole generality by defining dedicated components as specified
by the Adapter design pattern [19]. Another solution is to put glue code in
connections (e.g in connectors) in order to adapt components communications.
A connection mechanism must tackle this issue and makes the definition of
adapters easy or useless thanks to glue code.

In ScL, the connection mechanism relies on connectors. Since we want SCL to
be a simple language, we choose that a connector is a component whose role is
dedicated to communication between components such as binding components
in Fractal. SCL connectors help to solve mismatches problems easily and enable
the definition of n-ary connections. All connectors have the same form as
CoNNECTOR that is shown on Figure 6. A connector is composed of two sets
of ports named sources and targets, and glue code that uses these ports to
establish the connection. All the service invocations sent through source port
will be treated by the glue code of the connector.

Figure 7 shows an example of binary connection between a PASSWORDM AN-
AGER component and a RANDOMNUMBERGENERATOR component. This con-
nection satisfies the required service of the PASSWORDMANAGER through its
Randomizer port, using the service rand provided by the RANDOMNUMBER-
GENERATOR through its Generator port. Since connectors are regular com-

12

Required Ports Provided Ports

¢ : Connector , E]

Sources Targets E]

a connection

Fig. 6. The general form of a SCL connector

ponents, the architect has to define a component descriptor for the connector
that is used to establish the connection. However, SCL proposes simpler syn-
taxes. For example by instantiating an existing SCL connector descriptor, such
as BINARYCONNECTOR, and adapting it by setting its sources, its targets and
the glue code, as shown in Figure 8.

pm : PasswordManager rng : RandomNumberGenerator

Generator

¢ : BinaryConnector
Randomizer Generator

7777777 >| gluecode | ------>

Checker Sources Targets

getRandomNumber rand

Fig. 7. A binary connection between two components in SCL

pm := PasswordManager new.
rng := RandomNumberGenerator new.
c := BinaryConnector new

source: (pm port: #Randomizer)

target: (rng port: #Generator)

glue: [:source :target :servicelnvocation
“(target rand * 26) aslInteger
1.

c connect.

Fig. 8. Connection of two components using a customized BINARY CONNECTOR

Glue code is represented here by a Smalltalk block [21]. The parameters of this
block are always the sources, the targets and the current service invocation
that has been received by a source port and must be transmitted through
a target port. Of course, a BINARYCONNECTOR has only one source and
one target. In the glue code of this example, the result of the rand service
is adapted since the getRandomNumber is expected to return a number in
the interval [0,26] while the rand service returns a number in the interval

13

[0, 1]. Despite of the fact that this is a simple example, it is important to note
that connecting independently developed software components must deal with
these kinds of problems. SCL connectors tackle these adaptation issues thanks
to glue code that can not be written in components. The last line of code
activates the connection by invoking the connect service of the connector ¢
which makes him to execute glue code for each invocation received through
one of its source ports. Figure 9 shows some convenient syntax for simple
connections. In the two first connections, a BINARYCONNECTOR is instantiated
with the default behavior that forwards all service invocations coming from
the source port to the target port and to return the result back. In the third
connection, a TCPCONNECTOR is used to connect these two ports.

cl := C1 new.

c2 := C2 new.

(cl port: #r1l) connectTo: (c2 port: #p2).

(cl port: #r1l) connectTo: (c2 port: #p2) glue: [:s :t :m | t fool.
(cl port: #r1l) connectTo: (c2 port: #p2) with: #TCPConnector.

Fig. 9. User friendly definitions of simple connections in SCL

We propose in SCL a small library of connectors based on the taxonomy of
software connectors [36] that has eight kinds of connectors have been identi-
fied. For example, the BINARYCONNECTOR is a connector of the call connector
family that is dedicated to service invocation connections. In this family, there
is for example, the BROADCASTERCONNECTOR that broadcasts each service in-
vocation to all targets, or the FIRSTRESULTCONNECTOR that returns the first
non-nil result by sending invocation successively to each target. Of course,
new connectors can be defined.

6.2 Composition

The composition mechanism is used in COLs to build composite components
out of components and connections. Composite components are useful to ab-
stract over complex systems, provide bigger reusable software entities that
hide implementation details. All recent component models [9,2,48] provide a
composition mechanism generaly based on the connection mechanism to create
composite. This mechanism is provided through various forms in existing lan-
guages, e.g the compose primitive in ComponentJ [48], composite components
in Fractal or aggregation and containment in (D)COM [37].

Composition is related to encapsulation in the component world. For example,
Figure 10 shows an example of three connected components ¢y, ¢ and cs.

If these components were objects, we could say that c3 is a composite object
that contains c,. In the component world, this is not true because c; may be
accessible to other components than c3. The components used in a composite

14

cl:Cl c2:C2 c3:C3

pl r2 p2 r3 p3
(=13 -

Fig. 10. Three connected components in SCL

(also called its sub-components) are internal and exclusive to their composite.
In our example, c3 can be considered as a composite if ¢; and ¢y are internal
and exclusively used by c3 and if r3 is an internal port of ¢3. According to these
changes, a simple drawing shift shown by Figure 12 reveals the well known
face of composite components.

c3:C3

cl:Cl c2:C2
pl r2 p2 3
<§—%::::j<5——]<&——<<

Fig. 11. A composite component

Figure 12 shows the SCL code needed to build the composite component c.
The two sub-components ¢; and ¢y are instantiated and connected in the
init service of c¢3. The init service of a component is always invoked after its
instantiation to initialize it. c¢3 has an internal port r3 connected to the port

po of c.

ComponentDescriptorBuilder new: #C3
requiredPortNames: ’r3’
providedPortNames: ’p3’.

C3>>init
lcl c2|
cl := Cl new.
c2 := C2 new.
(c2 port: #r2) connectTo: (cl port: #pl).
r3 setPrivate: true.
r3 connectTo: (c2 port: #p2).

Fig. 12. Definition of a composite component descriptor in SCL

Figure 13 and Figure 14 shows how a composite exports the services provided
by its subcomponents. A FORWARDCONNECTOR is used to forward service in-
vocations received through a provided port to another one. All mismatches
problems (e.g name conflicts, adaptation) can be addressed in this regular
connector.

15

Fig. 13. Service invocation forwarding using a FORWARDCONNECTOR

ComponentDescriptorBuilder new: #C
requiredPortNames: ’~
providedPortNames: ’pc’.

C>>init
la bl
a := A mnew.
b := B new.
pc provides: {#bar. #baz}.
ForwardConnector new
sources: {pc}
targets: {(a port: #pa). (b port: #pb)l}
glue: [:sources :targets :servicelnvoc |
(serviceInvoc selector == #bar) ifTrue:[
“targets first perform: #foo
withArguments: serviceInvoc arguments
] ifFalse: [
(servicelnvoc selector == #baz) ifTrue: [
“targets second perform: servicelnvoc
11 1; connect.

Fig. 14. Using a connector to forward services in a composite component

7 Separation of concerns in component architectures

Separation of concerns [44] principle states that a software system should be
modularized in such a way that different concerns can be specified as indepen-
dent as possible in order to maximize understandability and maintainability.
Some concerns are difficult to encapsulate in standard software units (com-
ponents or objects), such as management of transactions, logs, security, etc.
To tackle the problem of the scattered code of these concerns, aspect-oriented
programming [30] introduces aspects. An aspect is the modularization of a
crosscutting concern. Two approaches are distinguished in AOP. Asymmet-
ric approaches, such as AspectJ [29], HyperJ [27] or JAsCo [50], consider
aspects as different entities from those ones that compose the base system

16

(objects or components). Symmetric approaches, such as Fractal-AOP [17] or
FAC [45], try to use the same entities to model the base system and aspects.
This second approach is better for reusability because if aspects are modeled
as components, they can be used as regular components as well as aspects.
A lot of approaches try to merge in a symmetric way aspect-oriented and
component-oriented approaches to benefit from the modularity properties of
both approaches.

In ScrL, we support some aspect-oriented features in a symmetric way. As-
pects are regular components and weaving is entirely determined by connec-
tions established using special connectors and ports characteristics. The join
points — well defined points in the execution of a program where aspects can
be woven — are generally [29,50,17,45] method calls, method call receptions,
method executions or attribute accesses. All the joint points that are available
in aspect-oriented languages built on the top of object-oriented languages, are
not suitable for a component-oriented language. For example, in Aspectd, it
is possible to specify joint points on private features of a class such as at-
tribute accesses. Since encapsulation is key property of component-oriented
languages, we only integrate in SCL the joint points that do not break this
property. We choose to support the following join points: before/after /around
service invocation receptions by a port or before/after/around the connec-
tion/disconnection of a port. Figure 15 shows an example that uses an Ap-
VICECONNECTOR and a regular component 1 to log the service invocations
received by our PasswordManager component.

pm : PasswordManager

Generator

Randomizer

--- 1 : Logger
| FileLogger

cl : AdviceConnector

Fig. 15. A LOGGER component used as a crosscuting component using an ADVICE-
CONNECTOR

In an ADVICECONNECTOR, each source port is coupled with a keyword (befor-
eServicelnvocation, beforeConnection, ...). At execution time, when a service
invocation arrives on a port, this invocation is transmitted to each of its con-
nected ADVICECONNECTOR according to the standard order (around, before,
after). A port is able to order its connected connectors since they declare which
joint point they are interested in with a keyword. Figure 16 shows the ScL
code needed to create the connector c; represented on Figure 15 and also shows
the code of a connector cy. Thanks to c;, the 1log service of the LOGGER is ex-
ecuted before service invocations through Generator and Checker. Thanks to

17

10

12

14

16

18

20

Co, the log service of the LOGGER is executed after service invocations through
Generator and before those ones through Checker. There is a conflict because
multiple glue codes shall be executed before a service invocation on the same
port (e.g on line 8 and 16). To prevent these conflicts, we introduce a priority
rule stating that the glue code of the last connected connector will be executed
first. This priority rule is illustrated on Figure 17 that shows the results given
by two provided service invocations of our connected PASSWORDMANAGER.
These service invocations supposes that the Randomizer port of the PASS-
WORDMANAGER has been connected has previously described on Figure 7.

| pm rng 1 |

”» ”

1 := Logger new.

cl := FlowConnector new

pointcuts:
{(pm port: #Generator) -> #beforeServicelnvocation.
(pm port: #Checker) -> #beforeServicelnvocation}
targets: {(1 port: #Logger)}
glue: [:sources :targets :si |
targets first log: ’cl : ’, si receiver, ’ ’, si selector
]l; connect.

c2 := FlowConnector new
pointcuts: {(pm port: #Generator) -> #afterServicelnvocation.
(pm port: #Checker) -> #beforeServiceInvocation}
targets: {(1 port: #Logger)}
glue: [:sources :targets :si |
targets first log: ’c2 : ’, si receiver, ’ ’, si selector
]; connect.

Fig. 16. ScL code of connections that uses the ADVICECONNECTOR

(pm port: #Generator) generatePwd: 10.
(pm port: #Checker) isValid: ’aabbcc’.

?The resulting log file contents
cl : #Generator #generatePwd:

c2 : #Generator #generatePwd :

c2 : #Checker #isValid:

cl : #Checker #isValid:”

Fig. 17. Two service invocations and their result that illustrate the execution path

8 Publish/Subscribe communication between components

Triggering operations as a consequence of state changes in a component is re-
lated to Observer design pattern [19] or procedural attachments [38]. In frame
languages, it is possible to attach procedures to an attribute access which is
then executed each time this attribute is accessed. These kinds of interactions
are particularly used between “views” (in the MVC sense [31]) and “models”.

18

More generally, the publish/subscribe [16] communication protocol is a very
useful communication pattern to decouple software entities as said in [20]:
“The main invariant in this style is that announcers of events do not know
which components will be affected by those events”. In component-based lan-
guages, this must be done in an unanticipated way and with strict separation
between the component code and the connection code to enable components
reuse. However, existing proposals fail to solve these two main constraints.
Connecting components based on event notifications always require that com-
ponent programmers add special code in components. We identify the two
following problems.

Publishers have to publish events. The component programmer has to
add special code such as event signaling in components. For example, in the
Java Bean model, the programmer has to manage explicitly the subscribers
list (add and remove subscriber methods). In the CCM (Corba Component
Model) [42], the component programmer has to manage the event sending by
adding a special port to his component that is called an event source, and sends
events in the component code through this port. In ArchJava, the component
programmer declares broadcast methods (required methods that return void)
and invokes them in the component code to signal events. This method is
then connected by the architect to multiple provided methods of subscriber
components that receive the events. In all cases, the architect can not reuse a
component if its programmer has not added special code in the component to
signal the event that he needs.

Emitters have to receive events. In the CCM; the component programmer
has to provide its components with event sinks that are special ports to receive
events. An event sink can be connected by the architect with one or more event
sources if they share a compatible event type. This mechanism is more limiting
than the ArchJava or the Java Beans one where the subscribers components
have only regular methods that are invoked using connections.

In Scr, there are already two ways to enable publish/subscribe connections:

(1) The component programmer integrates the event signaling in the compo-
nent code. Event signaling in SCL can be done, similarly as in ArchJava,
by invoking a required service in the publisher component and regular
connections between publishers and subscribers. This solution supposes
that the programmer has signaled specific events in the component.

(2) If no event signaling has been integrated by the programmer in the com-
ponent code, an ADVICCONNECTORS may be used by the architect to
detect the events that he needs. For example, if the architect wants to
detect when a stack becomes empty (an EmptyStackEvent), he can use an
AFTERCONNECTOR on the port that provides the pop service and test in
the glue code if the stack still contains elements to detect such situation.

19

10

12

14

16

18

20

22

If any of the above solution are available, it is not possible for the architect to
establish a publish/subscribe connection without modifying the source code
of the component. To prevent this issue, we integrate properties in SCL that
export the state of a component. This property concept enhances the idea
of property of the Javabeans component model [25] with strict separation be-
tween the component code and the connection code. For example, a COUNTER
component has a property named count. This means that it is possible to get
and set a value to the count property of the COUNTER. An example of com-
ponent with a property is depicted on Figure 18 and the corresponding SCL
code is shown on Figure 19.

Counter

Counting - - -, Count

. nac:value:oldValue: :
- nbc:value:oldvValue: :

Fig. 18. A COUNTER component with a value property

ComponentDescriptorBuilder new: #Counter
requiredPortNames: ’°
providedPortNames: ’Counting’
propertyNames: ’Count’.

Counter>>init
Counting provides: {#dec. #inc}.
self addAttribute: #value.
Count read: [~value] write: [:nv | value := nv].
(self accessPortOf: #Count) setValue: O.

Counter >>count
“(self accessPort0Of: #Count) getValue

Counter>>count: v
~(self accessPort0Of: #Count) setValue: v

Counter>>inc
self count: (self count + 1)

Counter >>dec
self count: (self count - 1)

Fig. 19. A Counter component class with a property

When a programmer declares a property, the component is automatically
equipped with two ports: an access port and a notifying port. The property
access port is a provided port that provides, at least, getter and setter ser-
vices using the two blocks given during the property declaration (e.g on line

20

9 in Figure 19). The notifying port is a required port, which is used to in-
voke services during property accesses. These services are defined in the SCL
component model. For example, the service nac:value:oldValue: (nac is an
acronym for Notify After Change) is invoked after a property is modified with
the new and the old value of the property as parameters. Another service, the
nbc:value:newValue: (nbc is an acronym for Notify Before Change) service,
is invoked before the property is modified with the current value and the next
value of the property as parameters. In fact, all defined services have two main
characteristics: when they are invoked (before or after the property modifica-
tion) and what a connected component is able to do (nothing, prevent the
modification or change the property value). Figure 20 shows the ScL code of
two connections ¢; and ¢y based on properties notifications. The first connec-
tor c; is created using the general syntax form and a BINARYNACCONNECTOR.
This connector filters incoming service invocations on the source port and only
focuses on the nac:value:oldValue service. After each modification of the
value property of the counter, the glue code of the connection is executed and
the GUI component is refreshed with the new value (the second parameter of
the nac:value:oldValue service). cp achieved the same connection as ¢; with
a less verbose syntax.

gui := Label new.
counter := Counter new.
cl := BinaryNACConnector new

source: (counter notifyPort0f: #Count)
target: (gui port: #Displaying)
glue: [:source :gui :si |

gui displayText: (si arguments second).
]; connect.

c2 := (counter property: #Count) on: #notifyAfterChange
targets: {gui port: #Displaying}
glue: [:s :t :si | t first displayText: (si arguments second) 1]

Fig. 20. A connection based on property notifications

ScL provides different kinds of connectors such as BINARYNACCONNEC-
TOR, BINARYNBCCONNECTOR, PROPERTYBINDERCONNECTOR ensuring that
the value of the target property is always synchronized with the value of
the source property. To sum up, component properties are a useful means for
component programmers to directly express the external state of components
instead of using syntactical conventions and for architects that can use them
to connect components.

9 The Scl Implementation

The actual prototype of SCL is implemented in Squeak [28]. Squeak is an
open and highly portable implementation based on the original Smalltalk-80

21

system [21]. We choose Smalltalk because prototyping is easier and faster than
in statically typed languages. It is recognized that dynamic languages offer a
lot of advantages [40]. Smalltalk is also a powerful reflective language that
enables deep language modifications using message interceptions, addition or
modification of meta entities, etc. We also choose Smalltalk because most
existing COLs are Java extensions. Using Smalltalk could reveal that existing
COLs are more constrained by Java than by the component paradigm.

9.1 The ScL bootstrap

The bootstrap of SCL is done with the ComponentDescriptor and Component
classes. In the first version, we would like to implement SCL wihtout extending
the class concept since we do not want to have some class features (super-
class, class organization, ...) in our component descriptors. We created a new
bootstrapping kernel by defining Component and ComponentDescriptor as
Object subclasses. We succeed to set ComponentDescriptor as the metaclass
of Component. It was also necessary to implement our new method (basicNew
is defined in the Behavior class). The problem was that all Squeak tools
(code browsers, test runner, ...) were not usable with our component descrip-
tors since they were not classes. In the actual prototype, we extend classes
to support additional features of component descriptors. We do not use (it is
just for squeak compatibility) the features that should not be in component
descriptors.

9.2 The implementation of the SCL model

Figure 21 shows a simplified scheme reflecting the current implementation
of ScL. A component deseriptor is represented by a class whose subclass is
Component. Component descriptors are instances (indirect instances because
of the Smalltalk parallel hierarchy) of a the class named Component class.
ComponentDescriptorBuilder is a component, an instance of DEFAULT-
COMPONENTDESCRIPTORBUILDER. All component descriptors are created
using the ComponentDescriptorBuilder component which hides that classes
are generated. Other features such as ports, interface, property are regular
Smalltalk classes. It is not a problem since it is hidden to SCL programmers.

9.8 Discussion on issues in the current implementation

The first issue is related to Smalltalk that always enable the programmer to
break object encapsulation by using the meta-level. If the SCL programmer

22

”””””” =| Object class . Squeak
. classes
describes »— I < owns
Interface /D* 1 Component [~~~~~~~~~ >

Scl

RequiredPort ! Implementation

ProvidedPort ‘

<7 X

DefaultPort

Generator

Randomizer Source Generator Default
Scl

-~ Component

. Descriptors

Checker BinaryConnector

RandomNumberGenerator DefaultComponent—

PasswordManager A // DescriptorBuilder

I I

c ; : . Scl
pm c rng ComponentDescriptorBuilder * Components

Fig. 21. Overview of the current implementation of SCL

uses Smalltalk methods, he is able to circumvent the SCL mechanisms. How-
ever, because we do not implement SCL with an interpreter or a compiler
but directly with Smalltalk constructs, it is easier to change and evolve the
implementation. This issue could be solved by creating an interpreter for SCL.

The second issue is close to the former one. Since we use the Squeak interpreter,
service invocation is achieved using the message sending mechanism. This
causes problems when a service invocation is sent through a port. If the service
selector of the invocation corresponds to selector of one of the methods defined
on the Port class, it is the method that will be executed and not the service
of the connected component.

Another potential issue is the efficiency since we have reified all entities of ScL,
and also because we do not focus this property. The execution path of a service
invocation is the following: (1) the service invocation is received by the port
of sending component and transmits it to the connector (it may have more
than one connector), (2) the connector execute its glue code and transmits the
service invocation to the port of the receiver component, (3) this port transmits
the invocation to its component, (4) the component executes the method (6)
the result go back through the same way. It is surely non efficient but it is
necessary if the glue code do some adaptation. A little optimization is possible
if the default glue code (that simply transmit the invocation) is used. In this
case, no connector is instantiated and the port of the sending component
directly transmit the invocation to the port of the receiver component.

23

10 Synthesis and Related Work

Short summary of Scl features. A SCL component provides and requires
services, receives and sends service invocations through its ports which are
described by interfaces. An interface is attached to a port and specifies which
services are invokable through this port and the constraints that governs their
invocations (service signature compliance, contracts, protocols,...). Compo-
nents must be connected through their ports using connectors in order to sat-
isfy their required services. A connector is a component whose role is dedicated
to communication between components. There is different kind of connectors
such as advice connectors that enable using components as a crosscutting con-
cerns. Components properties represent externalized state of a component and
they are the support of connection based on value changes.

SCL is inspired from many existing features of component-oriented languages
or models such as ArchJava [2,3], Fractal [9], CCM [42], Java Beans [25],
FAC [45], Fractal-AOP [17], ComponentJ [48] and others [33,32,18]. SCL also
integrates older ideas such as procedural attachments [38]. Figure 22 shows a
graphical synthesis (adapted from [52]) of the main ScL features compared to
architectural elements available in some existing models.

composite component (Scl, Archjava, Fractal, ComponentJ)

component (Scl) port (Scl, Archjava, UML 2.0)
primitive component (Fractal) external interface (Fractal)
: part (UML 2.0)
g connection (Scl) :', delegation connector (UML 2.0)
v
','

\
\

e -

| foo :\
. ';7)
cgnn.ection (@) connector (Scl, Archjava) interface (Scl, UML 2.0)
binding (Fractal) binding component (Fractal) port interface (Archjava)

assembly connector (UML 2.0) adapter (Javabeans)

Fig. 22. Graphical comparison between SCL features and existing abstractions in
some component models

The work presented in this paper is related to many different research topics:

Component-oriented programming (COP). Many propositions have
been done to support COP using object-oriented frameworks or object-
oriented language extensions. SCL tries to go a step further with new lan-

24

guage with its own abstractions and control structures. There is few work
with the same goal such but Lagoona [18] can be considered as one of the
first language designed with this objective. Lagoona is based on the idea that
modules that contain classes and message definitions are components. La-
goona proposes a new mechanism called generic message forwarding that
can be put in relation with service invocation in SCL. However, Lagoona
lacks basic component-oriented features (such as port, connector, etc.) and
is therefore more restrictive than SCL.

Understanding or teaching COP. Component-oriented programming is
not very used compared to object-oriented programming which is actually
the dominant paradigm. Although most of COLs are still research proto-
types, there is a need to explain, teach and demonstrate what is component-
oriented programming using simple and uniform languages as Picolo [33],
BoxScript [32] or ScL. Picolo and Boxscript are frameworks respectively
written in Python and Java.

Software architecture. Expressing software architecture in terms of con-
nected components is the main objective of architecture description lan-
guages (ADLs) [35]. Most of actual features such as component, port, in-
terface, connector have been originally proposed by ADLs. However, most
of ADLs are not programming languages. For example, WRIGHT [5] is an
ADL based on the formal language called CSP. Although a WRIGHT de-
scription is formally defined, it is not executable and must be re-written
using a programming language.

Separation of concerns. Separate concerns in different modularity entity
is important on the one hand for reuse (a well modularized concern can be
reused) and on the other hand for software architecture evolution (there is
no scattered code). Separating concerns is difficult either in object-oriented
and component-oriented languages. Aspect-oriented languages, such as As-
pectJ [29] or HyperJ [27] provide a suitable solution to tackle this issue
by integrating some new features (aspect, advice, ...) in existing object-
oriented language such as Java. Component-oriented languages extensions
have also been proposed. Symmetrical approaches, such as FAC [45] or
Fractal-AOP [17] seems to be more interesting than others because aspects
are regular components. The specificity of SCL is that nothing is written
in a component (no special interface has to be implemented). The architect
decides to use a component as an aspect component and uses the special
connector AbDvICECONNECTOR. SCL does not support all AOP features be-
cause we think that some of them break the component encapsulation.

25

11 Conclusion and future work

Component-oriented programming will be only possible if new languages are
proposed with concepts and mechanisms that enable the unanticipated connec-
tion of independently developed software components. In this paper, we have
presented SCL a simple, uniform and concrete component-oriented language.
The ScL core results from a study of existing languages and of a selection
of features that seemed fundamentals. SCL also proposes its own mechanisms
such as a general connection mechanism based on connectors. Connectors are
useful to solve component connection problems. In SCL, it is possible to cre-
ate a wide variety of connections: standard required/provided connections,
“aspect-like” connections and “publish/subcribe” connections without requir-
ing any code in components thanks to component properties. Properties are
declared by the programmer and represent external state of components. A
software architect is then able to express connections based on properties no-
tifications.

Ongoing researches on SCL are focused on three areas. First, extending the
component model of ScL. For example, what is exactly a port composed
of other ports (also known as composite ports or multi-poerts)? The answer
to this question is important because it could simplify the actual property
model and connectors that have sources and targets ports. Second, we plan
to provide a faster and more complete version of the prototype of ScL. For
example, we are wondering if it is necessary to write an interpreter in order
to allow syntax changes between SCL and Smalltalk. In the new version, we
want to integrate tools dedicated to component-oriented programming such
as a visual component editor. And finally, developing large scale applications
using SCL will certainly show us interesting results about the usability of
SCL compared to object-oriented languages and the few existing component-
oriented languages. This comparison would be interesting but it requires to
code the same application in different languages.

References

[1] Franz Achermann and Oscar Nierstrasz. Applications = Components + Scripts
— A Tour of Piccola. In Mehmet Aksit, editor, Software Architectures and
Component Technology, pages 261-292. Kluwer, 2001.

[2] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: Connecting
Software Architecture to Implementation. In ICSE, pages 187-197. ACM, 2002.

[3] Jonathan Aldrich, Vibha Sazawal, Craig Chambers, and David Notkin.
Language support for connector abstractions. In Luca Cardelli, editor, ECOOP,

26

volume 2743 of Lecture Notes in Computer Science, pages 74-102. Springer,
2003.

[4] Robert Allen. A Formal Approach to Software Architecture. PhD thesis,
Carnegie Mellon, School of Computer Science, January 1997. Issued as CMU
Technical Report CMU-CS-97-144.

[5] Robert Allen and David Garlan. The Wright Architectural Specification
Language. Technical report, School of Computer Science, Carnegie Mellon
University, Pittsburgh, 1996.

[6] Colin Atkinson, Barbara Paech, Jens Reinhold, and Torsten Sander. Developing
and applying component-based model-driven architectures in kobra. edoc,
00:0212, 2001.

[7] Dusan Balek and Frantisek Plasil. Software connectors and their role in
component deployment. In Proceedings of DAIS’01, Krakow, Poland, September
2001. Kluwer Academic Publishers.

[8] Manfred Broy, Anton Deimel, Juergen Henn, Kai Koskimies, Frantisek Plasil,
Gustav Pomberger, Wolfgang Pree, Michael Stal, and Clemens A. Szyperski.
What characterizes a (software) component? Software - Concepts and Tools,
19(1):49-56, 1998.

[9] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma, and Jean-
Bernard Stefani. An Open Component Model and Its Support in Java. In
Ivica Crnkovic, Judith A. Stafford, Heinz W. Schmidt, and Kurt C. Wallnau,
editors, CBSFE, volume 3054 of Lecture Notes in Computer Science, pages 7-22.
Springer, 2004.

[10] Martin Biichi and Wolfgang Weck. Compound types for Java. In OOPSLA98:
Proceedings of the 18th ACM SIGPLAN conference on Object-Oriented

Programming, Systems, Languages, and Applications, pages 362-373, New York,
NY, USA, 1998. ACM Press.

[11] Luca Cardelli. The Handbook of Computer Science and Engineering, chapter
103, Type Systems, pages 2208-2236. CRC Press, Boca Raton, FL, 1997.

[12] John Cheesman and John Daniels. UML components: a simple process for
specifying component-based software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2000.

[13] Christophe Dony, Jacques Malenfant, and Pierre Cointe. Prototype-based
languages: From a new taxonomy to constructive proposals and their validation.
In OOPSLA, pages 201-217, 1992.

[14] Desmond F. D’Souza and Alan Cameron Wills. Objects, components, and
frameworks with UML: the catalysis approach. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1999.

[15] Michael Eichberg. Mda and programming languages. In Workshop on
Generative Techniques in the context of Model Driven Architecture (OOPSLA
’02), 2002.

27

[16] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie
Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv.,
35(2):114-131, 2003.

[17] Houssam Fakih, Noury Bouraqadi, and Laurence Duchien. Aspects and software
components: A case study of the FRACTAL component model. In Minhuan
Huang, Hong Mei, and Jianjun Zhao, editors, International Workshop on
Aspect-Oriented Software Development (WAOSD 2004), September 2004.

[18] Peter H. Frohlich, Andreas Gal, and Michael Franz. Supporting software
composition at the programming-language level. Science of Computer

Programming, Special Issue on New Software Composition Concept, 56(1-2):41—
57, April 2005.

[19] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns : Elements of Reusable Object-Oriented Software. Addison Wesley,
March 1995.

[20] David Garlan and Mary Shaw. An introduction to software architecture.
In V. Ambriola and G. Tortora, editors, Advances in Software Engineering
and Knowledge Engineering, pages 1-39, Singapore, 1993. World Scientific
Publishing Company.

[21] Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989.

[22] James Gosling. The Java Language Specification. Addison-Wesley, Boston,
2000.

[23] Bernhard Gréne, Andreas Knépfel, and Peter Tabeling. Component vs.
component: Why we need more than one definition. In ECBS, pages 550-552.
IEEE Computer Society, 2005.

[24] Object Management Group. Uml 2.0 superstructure specification. Technical
report, Object Management Group, 2004.

[25] Graham Hamilton. JavaBeans. API Specification, Sun Microsystems, July 1997.
Version 1.01.

[26] George T. Heineman and William T. Councill, editors. Component-based
software engineering: putting the pieces together. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[27] IBM. Hyper/J. http://www.research.ibm.com/hyperspaces.

[28] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back
to the future: the story of Squeak, a practical Smalltalk written in itself. In
OOPSLA ’97: Proceedings of the 12th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 318-326,
New York, NY, USA, 1997. ACM Press.

28

[29] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In Jgrgen Lindskov Knudsen,
editor, FCOOP, volume 2072 of Lecture Notes in Computer Science, pages 327—
353. Springer, 2001.

[30] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming.
In Mehmet Aksit and Satoshi Matsuoka, editors, 11th Europeen Conf. Object-
Oriented Programming, volume 1241 of LNCS, pages 220-242. Springer Verlag,
1997.

[31] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. In Journal of Object-Oriented
Programming, volume 1, pages 26-49, Aoiit-Septembre 1988.

[32] Y. Liu and H. C. Cunningham. Boxscript: A component-oriented language for
teaching. In 43rd ACM-Southeast Conference, volume 1, pages 349-354, March
2005.

[33] Raphaél Marvie. Picolo: A simple python framework for introducing component
principles. In Furo Python Conference 2005, Goteborg, Sweden, june 2005.

[34] M. D. Mcllroy. Mass produced software components. In P. Naur and B. Randell,
editors, Proceedings, NATO Conference on Software Engineering, Garmisch,
Germany, October 1968.

[35] Nenad Medvidovic and Richard N. Taylor. A classification and comparison
framework for software architecture description languages. Software
Engineering, 26(1):70-93, 2000.

[36] Nikunj R. Mehta, Nenad Medvidovie, and Sandeep Phadke. Towards a
taxonomy of software connectors. In ICSE ’00: Proceedings of the 22nd
international conference on Software engineering, pages 178-187, New York,
NY, USA, 2000. ACM Press.

[37] Microsoft. DCOM technical overview. Microsoft Windows NT Server white
paper, Microsoft Corporation, 1996.

[38] M. Minsky. A Framework for Representing Knowledge. In P. Winston, editor,
The Psychology of Computer Vision, pages 211-281. mgh, ny, 1975.

[39] Richard Monson-Haefel. Enterprise JavaBeans. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1999.

[40] Oscar Nierstrasz, Alexandre Bergel, Marcus Denker, Stéphane Ducasse, Markus
Gélli, and Roel Wuyts. On the revival of dynamic languages. In Thomas
Gschwind and Uwe Afimann, editors, Proceedings of Software Composition
2005, volume 3628, pages 1-13. LNCS 3628, 2005. Invited paper.

[41] Oscar Nierstrasz and Laurent Dami. Component-oriented software technology.
In Oscar Nierstrasz and Dennis Tsichritzis, editors, Object-Oriented Software
Composition, pages 3—28. Prentice-Hall, 1995.

29

[42] Object Management Group. Manual of Corba Component Model V3.0, 2002.
http: //www.omg.org/technology/documents/formal /components. htm.

[43] Object Management Group. Model Driven Architecture, 2003.
http://www.omg.org/mda.

[44] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053-1058, December 1972.

[45] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye. A model for developing
component-based and aspect-oriented systems. In Proceedings of the 5th
International Symposium on Software Composition (SC’06), volume 4089 of
Lecture Notes in Computer Science. Springer, March 2006.

[46] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software
components. IEEE Trans. Softw. Eng., 28(11):1056-1076, 2002.

[47] Johannes Sametinger. Software engineering with reusable components. Springer-
Verlag New York, Inc., New York, NY, USA, 1997.

[48] Joao Costa Seco and Luis Caires. A basic model of typed components. Lecture
Notes in Computer Science, 1850:108-129, 2000.

[49] Mary Shaw. Procedure calls are the assembly language: of software
interconnection: Connectors deserve first-class status. In ICSE ’93: Selected
papers from the Workshop on Studies of Software Design, pages 17-32, London,
UK, 1996. Springer-Verlag.

[50] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. Jasco: an aspect-
oriented approach tailored for component based software development. In
AOSD ’03: Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 21-29, New York, NY, USA, 2003. ACM Press.

[51] C. Szyperski. Component Software: Beyond Object-Oriented Programming (2nd
Edition). Addison-Wesley, 2002.

[52] Chouki Tibermacine. Contractualisation de l’évolution architecturale de logiciels
a base de composants: une approche pour la préservation de la qualité. PhD
thesis, Université de Bretagne Sud, October 2006.

[53] Rob C. van Ommering. Koala, a component model for consumer electronics
product software. In Frank van der Linden, editor, ESPRIT ARES Workshop,
volume 1429 of Lecture Notes in Computer Science, pages 76-86. Springer, 1998.

[54] Matthias Zenger. Type-safe prototype-based component evolution. In
Proceedings of the FEuropean Conference on Object-Oriented Programming,
Malaga, Spain, June 2002.

[55] Matthias Zenger. Keris: evolving software with extensible modules: Research
articles. J. Softw. Maint. Evol., 17(5):333-362, 2005.

30

