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1 Introduction

Elliptic curve cryptography was proposed by Miller (1986)

and Koblitz (1987). It provides a means for two hosts to

generate a secret key for communication across an insecure

channel. The strength of cryptography lies in the difficulty

of an encryption schemes inverse operation. Elliptic curve

cryptography provides relatively better security per bit than

other cryptographic standards such as RSA (Vanstone, 2004).

Therefore, Elliptic Curve Cryptosystems (ECC) consume

less memory and hardware resources to implement. The

main operation of ECC is point scalar multiplication,

given an elliptic curve E and a point P on E, the point

[k]P = P +P +· · ·+P for some given integer k. The basis

for the strength of the ECC is the Elliptic Curve Discrete

Logarithm Problem (ECDLP). Given two points Q and P on

an elliptic curve E, find the integer k such that Q = kP .

For a large enough key size, a brute force attack would

require too much computing power and time to be feasible

(Koblitz et al., 2000).

Recently, more effort has been carried out to secure EC

point multiplication against side channel attacks (Kocher

et al., 1999). By monitoring side channel information such as

the power consumption of a device, it is possible to recover

the secret information. Simple Power Analysis (SPA) attacks

function on a single execution of the cryptographic algorithm

under attack. By looking at the power trace of the execution, it

is possible to identify the different functions of the algorithm.

Algorithms such as the double-and-add method are prone to

these types of attacks. Euclid’s addition chains can provide

both a secure and efficient scheme of exponentiation when

combined with elliptic curves (Meloni, 2006).

Modular multiplication is one of the basic arithmetic

operations used for cryptographic applications such as

RSA and ECC. Several algorithms for modular arithmetic

have been proposed and implemented. Montgomery (1985)

proposed an efficient algorithm for fast multiplication using a

series of additions and right shifts. Daly and Marnane (2002)

implements a number of designs for multipliers based on the

Montgomery multiplication.

The rest of this paper is structured as follows:

Section 2 provides some background information on elliptic

curves. Section 3 briefly introduces side channel attacks.

In Sections 4.1 and 4.2, new algorithms for Point Addition

(PA) and point scalar multiplication using addition chains are

discussed. Section 5 describes the versatile processor and all

its components. Implementation results are given.

2 Elliptic curves

An elliptic curve E(GF(p)) over GF(p) is the set of points

P = (x, y), x, y ∈ GF(p) such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ GF(p) (1)

along with a special point at infinity ∂ .

Elliptic curves over large prime fields are described using

the Weierstrass equation

y2 = x3 + a4x + a6 (2)

where x, y, a4 and a6 ∈ GF(p) and 4a3
4 + 27a2

6 �= 0.

Points on the elliptic curve can be represented in Jacobian

coordinates which avoids the need for an expensive inversion

operation (Daly et al., 2003). Converting from affine to

projective coordinates is a simple operation, (x, y, 1) →
(X, Y, Z). Conversion back, however, requires a number

of modular multiplications and inversions, (x, y) ←
(X/Z2, Y/Z3). In Jacobian coordinates, the curve in

Equation (2) is given by

Y 2 = X3 + a4XZ4 + a6Z
6 (3)

2.1 EC multiplication

Given an elliptic curve E and a point P on the curve, the

point Q is calculated by point scalar multiplication where the

point P is added to itself k times to get the point [k]P .

Algorithms such as the double-and-add algorithm,

given inAlgorithm 1 are used to calculate point multiplication

efficiently. The double-and-add algorithm requires nk Point

Doubling (PD) operations (nk is the bit length of the key)

and w(k) PAs (w(k) is the binary weight of the key).

Algorithm 1 Double and add point scalar multiplication

input : P ∈ E(GF(q)), k =
∑nk−1

i=0 ki2
i

output: Q = [k]P ∈ E(GF(q))

Initialise: Q = P ;

for i ← nk − 2 to 0 do
Q = 2Q //Point Doubling (PD);

if ki = 1 then
Q = Q + P //Point Addition (PA);

end

end

2.2 EC point addition and doubling

Consider two separate points on an elliptic curve,

P = (xp, yp) and Q = (qt , qt ). A line l is drawn through

the points P and Q. The line l intersects the curve at a third

point. Q′ = (xq ′ , yq ′) is the inverse of that point, where

Q′ = P + Q. The PA formulae for the curve defined

in Equation (2) using Jacobian coordinates are given

in Algorithm 2. The computational cost of a PA is

15 multiplications and 7 add/subs.

Algorithm 2 PA in jacobian coordinates

input : P(X1, Y1, Z1), Q(X2, Y2, Z2) ∈ GF(q)

output: P + Q(X3, Y3, Z3) ∈ E(GF(q))

A = X1Z
2
2, B = X2Z

2
1, C = Y1Z

3
2, D = Y2Z

3
1 ;

E = B − A, F = D − C;

X3 = −E3 − 2AE2 + F ;

Y3 = −CE3 + F(AE2 − X3), Z3 = Z1Z2E

If T = P , then this is PD and a tangent to the point

is used. The tangent intersects with the curve at a second

point, T ′ = 2(T ) is the inverse of this point. Algorithm

3 gives the formulae for PD for the curve in Equation (2).

The computational cost for PD is 10 multiplications and 8

add/subs.
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Algorithm 3 Point doubling in jacobian coordinates

input : P(X1, Y1, Z1) ∈ GF(q)

output: [2]P(X3, Y3, Z3) ∈ E(GF(q))

A = 4X1Y
2
1 , B = 3X2

1 + a4Z
4
1 ;

X3 = −2A + B2;

Y3 = −8Y 4
1 + B(A − X3), Z3 = 2Y1Z1

3 Side channel attacks

In recent years, cryptosystems have come under attack

from various forms of side channel attack. Kocher et al.

(1999) discovered that cryptosystem implementations leak

information which can help an attacker recover secret

data. Two techniques for retrieving secret information

in this manner are SPA and Differential Power Analysis

(DPA). DPA executes the cryptographic algorithm under

attack a number of times and uses statistical analysis

to determine the secret information (Coron, 1999).

Countermeasures for ECC such as randomisation of the

inputs (Joye and Tymen, 2001) and blinding techniques

(Messerges et al., 1999) can be implemented to protect

against such attacks.

SPA involves monitoring the power consumption of

a single execution of a cryptographic algorithm. Every

instruction has a different power consumption, therefore it

is possible to retrieve the sequence of instructions during

the algorithm execution. For example, the double-and-add

algorithm has two primary operations, PA and PD. Each

of these operations produce a different power trace when

executed because of the different number of multiplications

and additions in each algorithm. Since, the execution of a

PA in the double-and-add is directly related to the secret

key, it is possible to retrieve the secret key by monitoring

the power consumption of a single execution of a scalar

multiplication. The first successful power analysis attack

against an FPGA was done by Ors et al. (2003) in which

they attacked an elliptic curve processor and retrieved the

secret key.

SPA attacks work well on algorithms where the the

power consumption can be directly related to the instruction

being executed. In order to resist SPA attacks, the power

consumption of the instructions executed in a cryptographic

algorithm must not be directly related to the secret data. In

the double and add method, the branch instruction based on

ki leaks information about the secret key.

Joye and Yen (2003) describe the Montgomery Power

Ladder for exponentiation. Algorithm 4 illustrates the

standard algorithm for the montgomery ladder. It can be

seen that the operations for each branch of the algorithm

are the same, a multiplication followed by a squaring.

Therefore, the Montgomery ladder is protected against

simple side channel attacks, including SPA. The cost of

implementing this, however, is 2nk point multiplications and

squarings, nk is the bit length of the key.

In this paper, we make use of special Addition

Chains to perform a point multiplication using only point

additions. This technique removes the conditional branching

that allows an SPA attack to identify the bits of the

secret key.

Algorithm 4 Montgomery ladder

input : g ; k =
∑nk−1

i=0 ki2
i

output: y = gk

Initialise: R0 ← 1; R1 ← g;

for j ← nk − 1 to 0 do

if kj = 0 then

R1 ← R0R1; R0 ← (R0)
2;

else

R0 ← R0R1; R1 ← (R1)
2;

end

end

RETURN : R0

4 Euclidean addition chains

In this section, we present the Euclidean addition chains

and how they can be adapted for elliptic curve point scalar

multiplication. Using a new algorithm for the point addition

of two points on an elliptic curve that share the same

z-coordinate, we can improve the calculation time of the new

point scalar multiplication algorithm.

Definition 1: An addition chain computing an integer k is

given by a sequence v = (v1, . . . , vs) where v1 = 1, vs = k

and ∀1 ≤ i ≤ s, vi = vi1 + vi2 for some i1 and i2 lower

than i.

Definition 2: An Euclidean Addition Chain (EAC) computing

an integer k is an addition chain which satisfies v1 = 1,

v2 = 2, v3 = v2 + v1 and ∀3 ≤ i ≤ s − 1, if vi = vi−1 + vj

for some j < i − 1, then vi+1 = vi + vi−1(case 1) or

vi+1 = vi + vj (case 2).

Case 1 will be called big step (we add the biggest of the

two possible numbers to vi), and case 2, small step (we add

the smallest one).

As an example (1, 2, 3, 4, 7, 11, 15, 19, 34) is an Euclidean

addition chain computing 34. For instance, in step 4, we have

computed 4 = 3 + 1, thus in step 5, we must add 3 or 1 to 4,

in other words, from step 4 we can only compute 5 = 4 + 1

or 7 = 4 + 3. In this example, we have chosen to compute

7 = 4 + 3 so, at step 6, we can compute 10 = 7 + 3 or

11 = 7 + 4, etc. Another classical example of EAC is the

Fibonacci sequence (1, 2, 3, 5, 8, 13, 21, 34) (which is only

made of big steps).

Finding such chains is quite simple, it suffices to choose

an integer g coprime with k and apply the subtractive form

of Euclid’s algorithm.

Example 1: Let k = 34 and g = 19 and apply them to the

subtractive form of Euclid’s algorithm:

34 − 19 = 15 (big step)

19 − 15 = 4 (small step)

15 − 4 = 11 (small step)

11 − 4 = 7 (big step)

7 − 4 = 3 (big step)
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4 − 3 = 1 (small step)

3 − 1 = 2

2 − 1 = 1

1 − 1 = 0

Reading the first number of each line gives the EAC

(1, 2, 3, 4, 7, 11, 15, 19, 34).

Finally, in order to simplify the writing of the

algorithm, we will use the following notation : if v =
(1, 2, 3, v4, . . . , vs) is an EAC, then we only consider the

chain from v4 and we replace all the vi’s by 0 if it has been

computed using a big step and by 1 for a small step.

For instance, (1, 2, 3, 4, 7, 11, 15, 19, 34)

the sequence:

will be written: (1, 0, 0, 1, 1, 0)

4.1 New point addition formulae

Given the formulae in Algorithm 2 and the points

P1 = (X1, Y1, Z) and P2 = (X2, Y2, Z) on the curve E

over GF(p), p > 3. Then for P1 + P2 = P3 = (X3, Y3, Z3)

X3 = (Y2Z
3 − Y1Z

3)2 − (X2Z
2 − X1Z

2)3

− 2X1Z
2(X2Z

2 − X1Z
2)2

= ((Y2 − Y1)
2 − (X2 − X1)

3 − 2X1(X2 − X1)
2)Z6

= ((Y2 − Y1)
2 − (X1 + X2)(X2 − X1)

2)Z6

= X′
3Z

6

Y3 = − Y1Z
3(X2Z

2 − X1Z
2)3

+ (Y2Z
3 − Y1Z

3)(X1Z
2(X2Z

2 − X1Z
2)2 − X3)

= (−Y1(X2 − X1)
3

+ (Y2 − Y1)(X1(X2 − X1)
2 − X′

3))Z
9

= Y ′
3Z

9

Z3 = Z2(X2Z
2 − X1Z

2)

= Z(X2 − X1)Z
3

= Z′
3Z

3

Thus, we have (X3, Y3, Z3) = (X′
3Z

6, Y ′
3Z

9, Z′
3Z

3) ∼
(X′

3, Y
′
3, Z

′
3).

So, when P1 and P2 have the same z-coordinate, P1 + P2

can be obtained using the following formulae:

Algorithm 5 Point addition, P and Q sharing same

Z-coordinate

input : P(X1, Y1, Z), Q(X2, Y2, Z) ∈ GF(q)

output: P + Q(X′
3, Y

′
3, Z

′
3) ∈ E(GF(q))

A = (X2 − X1)
2, B = X1A,

C = X2A, D = (Y2 − Y1)
2,;

X′
3 = D − B − C,;

Y ′
3 = (Y2 − Y1)(B − X3) − Y1(C − B),;

Z′
3 = Z(X2 − X1)

This addition involves 5 multiplications, 2 squarings and 7

additions/subtractions.

As they require special conditions, these formulae are

logically more efficient than any general or mixed addition

formulae. Compared to the 15 multiplications and 7

additions/subtractions for point addition in Algorithm 2, this

is a great saving.

4.2 Point scalar multiplication

From the previous section, we have seen that our formulae

are quite efficient in terms of computational cost (more

than a doubling) but cannot be used with classical

double-and-add algorithms and require specific

exponentiation schemes.

We note the chain c = (c4, . . . , cs) instead of v in order

to prevent confusion between both representations.

We can now propose an algorithm performing a point

scalar multiplication using a new function, NewADD. The

NewADD function works in the following way: let P1

and P2 be two points sharing the same z-coordinate then

NewADD(P1, P2) returns two points, P1 + P2 and P1,

sharing the same z-coordinate. P1 + P2 is calculated as in

Algorithm 5.

Algorithm 6 Euclid-Exp(c, P )

Data: P , [2]P with ZP = Z[2]P and an EAC

c = (c4, . . . , cs) computing k

Result: [k]P ∈ E

begin
(U1, U2) ← ([2]P, P )

for i = 4 . . . s do

if ci = 0 then
(U1, U2) ← NewADD(U1, U2) ;

else
(U1, U2) ← NewADD(U2, U1) ;

end

end

(U1, U2) ← NewADD(U1, U2) ;

return U1

end

Example 2: Let us see what happens with the chain c =
(1, 0, 0, 1, 1, 0) computing 34:

begin ([2]P, P )

c4 = 1 NewADD(P, [2]P) = ([3]P, P )

c5 = 0 NewADD([3]P, P ) = ([4]P, [3]P)

c6 = 0 NewADD([4]P, [3]P) = ([7]P, [4]P)

c7 = 1 NewADD([4]P, [7]P) = ([11]P, [4]P)

c8 = 1 NewADD([4]P, [11]P) = ([15]P, [4]P)

c9 = 0 NewADD([15]P, [4]P) = ([19]P, [15]P)

NewADD([19]P, [15]P) = [34]P
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If we consider that the point P is given in affine coordinate

(i.e. Z = 1), then the doubling step can be performed using

3M and 3S, and so, the total computational cost of our

algorithm is (5s − 7)M and (2s − 1)S.

Some cryptographic protocols only require the

x-coordinate of the point [k]P . In this case, it is possible

to save one multiplication by step of Algorithm 6 by noticing

that Z does not appear during the computation of X′
3 and Y ′

3,

thus it is not necessary to compute Z′
3 during the process. The

x-coordinate can be recovered at the end.

4.3 About Euclid’s addition chains length

At this point, we know that Euclidean addition chains are

easy to compute, however, finding small chains is a lot more

complicated.

We begin by a theorem proved by Knuth and Yao (1975).

Theorem 1: Let S(k) denote the average number of steps to

compute gcd(k, g) using the subtractive Euclid’s algorithm

when g is uniformly distributed in the range 1 ≤ g ≤ k. Then

S(k) = 6π−2(ln k)2 + O(log k(log k)2)

This theorem shows that if, in order to find an EAC for an

integer k, we choose an integer g at random, it will return a

chain of length about (ln k)2, which is too long to be used

with ECC. Indeed, for a 160-bit exponent to be efficient,

Algorithm 6 requires chains of length, at the most, 320. The

previous theorem tells us that, theoretically, random chains

for a 160-bit exponent have a length of 7000 on average (it

is rather 2500 in practice). Therefore, we need to find ways

to reduce the length of these chains.

A classic way to limit the length of EAC is to choose g

close to k/φ, where φ = (1 +
√

5/2) is the golden section.

This guarantees that the last steps of the EAC will be big steps.

In practice, this method allows EAC of an average length of

1100 to be found.

Considering 160-bit integers, finding EAC of length

320 can be done by checking (on average) about 30 g′s.

Finding shorter chains is a lot more difficult, as an example,

finding chains of length 270 requires testing more than

45,000 g′s. Such a computation cannot be integrated into any

exponentiation algorithm, so, if some offline computations

cannot be performed, one should not expect to use EAC

whose length is shorter than 320.

5 Elliptic curve processor

A generic architecture (Figure 1) was designed for

cryptographic operations which incorporates RAM, a ROM

controller and a number of arithmetic units for a given field.

Software was developed using C++ to generate theVHDL for

a customised processor for any characteristic p and extension

field m. Everything from the size of the RAM block to

configuring the arithmetic units and generating the ROM

instruction set for a given algorithm is controlled by the

program.

For prime characteristic fields, there is a choice of

arithmetic units to choose from for the architecture. Through

manipulation of the ROM instructions alone, the processor

can be configured for various algorithms including the

double-and-add algorithm or exponentiation using addition

chains. In this way, we can quickly compare these and other

cryptographic algorithms. In the next section, we will look

at the arithmetic units used in the processor.

5.1 Arithmetic units

The point addition and doubling algorithms described in

Sections 2.2 and 4.1 require modular additions, subtractions

and multiplications. While addition and subtraction are

relatively easy to implement, modular multiplication is much

more complex. An in depth review of modular arithmetic and

architectures can be found in Daly et al. (2005).

The processor architecture in Figure 1 is capable

of controlling a number of arithmetic units. There are

two architecture types available for the GF(p) processor.

Dedicated units for each of addition, subtraction and

multiplication can be implemented. The number of

multipliers implemented in the processor can be configured

based on the speed/area constraints of the target technology

and the application of the design. Since addition and

subtraction only take 4 clock cycles to complete, two of which

are RAM read/writes, these operations are best performed in

series and do not gain from an increased number of arithmetic

units. Alternatively, we can use configurable Arithmetic

Logic Units (ALU) that can be set to perform modular

addition, subtraction or multiplication. The increased

functionality of the units reduces the area consumption

compared to the three dedicated units combined. As with

the dedicated multipliers, the number of ALUs can be

changed to give optimum results based on the target device

constraints.

5.1.1 Multiplication

In 1985, Montgomery (1985) proposed an efficient method

for performing modular multiplication using a series of

additions and right shifts. This method avoids the need

for costly trial division of the modulus. The Montgomery

modular product is defined in Equation (4).

Res = Mont(A, B, p) = AB2−pb+2(mod p) (4)

The output of a Montgomery multiplication is a factor 2−pb+2

times smaller than the desired result, pb is the field size

in bits. In order to correct the result, the output must

be Montgomery multiplied by (22pb+2 mod p). When a

large number of multiplications are required, it becomes

inefficient to correct every result. A better solution is to

initially convert the numbers to the Montgomery domain.

To do this, the number is Montgomery multiplied by

(22pb+2 mod p). To convert a number back, it is Montgomery

multiplied by 1.

The algorithm for the Montgomery multiplication is given

inAlgorithm 7. The number of iterations performed is pb + 2

in order to bound the output in the range [0, 2p − 1] for

multiplicands up to twice the modulus. This allows it to be

used as an input for further multiplications without the need

for conditional subtraction.
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Figure 1 General Elliptic curve processor
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Algorithm 7 Montgomery multiplication

input : A =
∑pb

i=0 ai2
i, B =

∑pb
i=0 bi2

i,;

M =
∑pb

i=0 pi2
i

output: R = AB2−pb+2 (mod p)

Initialise: R ← 0; bpb+1 ← 0;

for i ← 0 to pb + 1 do
qi = Ri−1 + biA (mod2);

Ri = (Ri−1 + qiM + biA)/2;

end

A hardware implementation of the Montgomery multiplier

can be seen in Figure 2. Multiplication is performed

according to Algorithm 7. The inputs to the first adder are

biA and the previous result Ri−1. qip is added to the sum of

the first adder if the LSB of the sum (qi) is equal to 1. A shift

register scans each bit of B for biA and the final result is right

shift divided by 2.

Figure 2 Modular multiplier
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5.1.2 Modular addition and subtraction

The modular addition operation addsA andB in the first adder

and subtracts the modulus p from the sum. To subtract the

modulus from the intermediate result, the modulus is bitwise

inverted and added to (A + B) with the carry-in set to 1,

thus performing a two’s complement subtraction. The carry-

out of the second adder controls which intermediate result

is the correct result. If (A + B) is in the correct range, the

result of the first adder is the correct result. Otherwise, the

result from the second adder is correct. The architecture for

the adder/subtractor in Figure 3 is configured for modular

addition.

Figure 3 Modular adder

0 1

0

1

A B

R

p

p  + 1
b

p  + 1
b

p  + 1
b

p  + 1
b

p
b

p
b

Modular subtraction is performed similarly. In this case,

however, B is bitwise inverted and added to A with the

carry-in set to 1. If the carry-out of this adder is low, the

modulus must be added to give an output in the correct range.
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5.1.3 Configurable ALU

Figure 4 presents the architecture for the configurable ALU.

By combining the different arithmetic functions in one

unit, the same hardware can be configured to perform each

function. Therefore, we reduce the time during the execution

of some cryptographic algorithm where the arithmetic units

are idle. The modular addition, subtraction and multiplication

operations are controlled with a 2-bit mode signal set to 00.01

and 10 for these operations respectively. A 2-bit load signal

is used also to load the operands.

Figure 4 Configurable ALU
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Table 1 gives the speed and area performance of the arithmetic

units used for the processor. All results are based on 192-bit

prime modulus and are implemented on the xc2v6000-4.

Table 1 Post place and route results for Xilinx xc2v6000-4

ALU Multiplier Adder/subtractor

Slices 966 397 391

Min. period 25.707 ns 21.333 ns 26.398 ns

Clock Freq. 38.9 MHz 46.876 MHz 37.882 MHz

The dedicated multiplier, adder and subtractor give better

area results than the configurable ALU. This is due to the

extra control logic surrounding the ALU for selecting the

mode thus increasing the minimum area. The dedicated

multiplier also performs faster than the configurable ALU

and the adder/subtractor. This is due to the large multiplexers

needed for the adder and subtractor to select the correct result

from the carry adders.

5.2 ROM instruction set

When deciding the control for the processor, there are

two options. The first is a finite state machine which can

be set up to perform specific operations such as elliptic

curve point scalar multiplication. This does not allow for

much flexibility in the design, however. Instead, the use of

microcode stored in Xilinx BlockROM was implemented.

A similar approach was taken by Leong and Leung (2002)

which helped reduce the development time of the processor

and increased the flexibility of the design. A major advantage

of this is that the instruction set can be updated to perform

any number of operations without the need to recompile the

entire processor.

When generating the ROM instruction set, several

considerations need to be taken into account such as, are the

points on the elliptic curve being represented by projective

or affine coordinates; what algorithm is being implemented;

how many arithmetic units are available and what are their

timing constraints.

For the field p, p large prime, configurable and dedicated

ALUs for modular addition, subtraction and multiplication

based on Crowe et al. (2005) were implemented. In this

section, we will look only at the architecture implementing

configurableALUs. For the architecture to accommodate this

type of unit, mode bits were needed to set the operation

of the ALUs. The instruction set for a reconfigurable ALU

based processor over GF(p) using projective coordinates

is shown in Table 2. After initially loading the elliptic

curve parameters and Montgomery constants into RAM, the

controller performs operations for the selected cryptographic

algorithm.

Table 2 Instruction set using reconfigurable ALUs

Instruction set

Ctrl Mode Load Sel We Addr A and B

00 00000000 000 000 00 00001 00010

01 00100000 011 000 00 00000 00000

00 00000000 000 011 01 00000 00011

Here, we are using projective coordinates to represent the

points on the elliptic curve to remove the need for inversions

which are time consuming. The 12 LSBs control read and

write access to the dual port RAM. Bits 12 → 14 control the

tri-states connected to the outputs of the ALUs. Only one of

these is set high when writing data to RAM. To reduce the

impact of a large number of arithmetic units in the design on

the size of ROM, a 3-to-8 address decoder is used to make

full use of all combinations of the 3 select bits. Bits 15 →
17 are the load bits which are used to load new vectors to

a specific ALU. Bits 18 → 25 control the mode signal for

each ALU. In this example, there are 4 ALUs in the design,

2 mode bits per ALU. The two MSBs are extra control bits

for the state machine controlling the processor.

Some operations such as addition and subtraction execute

in a single clock and have no extra timing requirements

associated with them. Multiplication, however, takes pb + 3

clocks. The controller for the ROM is a simple counter that

goes through each address sequentially on each rising clock

edge. To account for the operational time between loading

the operands and getting the result, a state machine is needed

to handle these exceptions. By monitoring bit 26 of the

instruction, the state machine can halt normal execution of

the instructions for a set number of clock cycles while a series

of multiplications are performed.
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5.3 Hardware generator

The versatile processor is presented in Figure 1. VHDL for the

processor is generated by software developed in C++. This

allows for the system to be completely reconfigurable for

any characteristic and extension field. The generation of the

ROM is explained in Section 5.2. The architecture presented

makes use of dual-port RAM (though it can be configured for

single-port RAM) so both operands of an arithmetic unit can

be loaded in parallel.

The processor in Figure 1 can be configured for a number

of different algorithms over GF(p) using the arithmetic units

described in Section 5.1. It can also be configured for GF(2m)

and GF(3m) where dedicated units are used for multiplication,

addition, subtraction, inversion and division (Byrne and

Marnane, 2006). For GF(p), the number of configurable

ALUs implemented can be modified using the software

developed and is restricted by the FPGA resources and the

point where additional units no longer give a substantial

improvement in the design. Likewise, using dedicated units,

the number of multipliers, adders and subtractors can be

configured within the constraints of the target device and

performance gain. All changes to the processor are handled

by the software.

5.3.1 ALU configurations and results

There is a tradeoff between speed and area that is affected

by the number of ALUs implemented in the processor. More

ALUs will reduce execution time, but will increase the area

consumption of the device. To be truly reconfigurable, an

automated scheduling tool must be used to ensure an efficient

implementation. The efficient transfer and processing of

data through the processor can greatly improve speed/area

tradeoffs.

Figure 5 Schedule for point addition using three ALUs

3

z
2

z
1

z
1 z

1
z

2

x
1

z
2 x

2

y
1

z
1

y
2

2
z

A

A

T
im

e

X

Y

Z

3

3

ALU 1 ALU 2 ALU 3

Figure 6 Schedule for point addition using two ALUs
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Two simple methodologies, As-Soon-As-Possible (ASAP)

and As-Late-As-Possible (ALAP) (Parhi, 1999) assume

limitless resources and schedule operations either at the

earliest or latest time step possible. Given the lack of

constraints, the scheduling results are poor and can lead to

an inefficient use of resources. More advanced scheduling

algorithms such as List-Based-Scheduling (LBS) (Bertoni

et al., 2006) can efficiently schedule a set of instructions,

given a set of resource constraints. With LBS, we can limit the

resources available to the processor and schedule operations

for a given algorithm efficiently based on these constraints.

Table 3 Execution time in terms of clock cycles

ALUs PA PD New PA

1 15pb + 103 10pb + 102 7pb + 63

2 8pb + 82 6pb + 90 4pb + 54

3 5pb + 73 5pb + 87 3pb + 51

Schedules for each algorithm were generated for a varying

number of ALUs and it was found that for the regular

point addition algorithm (Algorithm 2), the best speed/area

tradeoff was three ALUs. Though it is possible to have

four multiplications in parallel, the algorithm can be

scheduled more efficiently using three ALUs instead of four.

Figures 5 and 6 illustrate the schedules for the point addition

in Algorithm 2 using three and two ALUs, respectively.

Implementing three ALUs, multiplication results in five
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Table 4 Post place and route results for Xilinx xc2v6000-4

Double-and-add Addition chains

ALUs 1 2 3 1 2 3

Slices 1644 (4%) 2412 (7%) 3735 (11%) 1644 (4%) 2412 (7%) 3735 (11%)

min. period (ns) 24.96 25.981 25.732 24.96 25.981 25.732

Clock Freq. 40.064 MHz 38.49 MHz 38.86 MHz 40.064 MHz 38.49 MHz 38.86 MHz

Time (ms) 13.8 8.52 6.43 11.2 6.86 5.14

multiplication stages as seen in Figure 5. Using two ALUs

in Figure 6 increases the number of multiplication stages

to eight.

Table 3 lists the optimum execution times in terms of clock

cycles for the Point Addition (PA) and Point Doubling (PD)

algorithms in Sections 2.2 and 4.1. It is clear from the table

that the reduced point addition algorithm where the two points

share the same z-coordinate can be calculated in far less

time. Even with only one ALU implemented, it outperforms

the regular point addition using two ALUs. The best speed

results are achieved with three ALUs for all the algorithms.

Increasing the number of ALUs further does not improve the

execution time.

As described in Section 5.1.1, multiplication is executed

in pb + 2 clock cycles. Additions and subtractions take

2 clock cycles. For a field size of 192 and performing

all multiplications and add/subs in series, point addition

described by Algorithm 2 is executed in 2983 clock cycles

while a point doubling is executed in 1983 cycles. Using the

improved formulae from Algorithm 5, a point addition can

be executed in 1407 clock cycles, half that of the previous

algorithm for point addition.

The architecture presented in Section 5 was evaluated

on Xilinx xc2v6000-4. The post place and route results for

point multiplication using the double-and-add and addition

chain methods are listed in Table 4. Each design consumes

approximately 5% of the Block RAMs available. The largest

designs using 3 ALUs only need 23 bits for the ROM

instruction set leaving room to extend the instruction for

future applications. The results are based on a 160-bit

key size. For the addition chains, a chain of length 320

was used.

From the results in Table 4, it can be seen that the

new point scalar multiplication algorithm using the modified

point addition algorithm gives a significant improvement in

execution time over the double-and-add method. Since the

addition chain method does not depend on point doubling, the

effect of the new point addition algorithm is much greater.

Implementing three ALUs with the improved point addition

using addition chains gives the best time results with a slight

increase in area consumption.

Using addition chains, the dedicated modular adder,

subtractor and Montgomery multiplier were also implemented

in the processor. With a configuration of 1 adder, 1 subtractor

and 2 Montgomery multipliers, the processor consumes 3001

slices (8% of the target device) and operates at 45.92 MHz.

Although there is a slight increase in area consumption, the

faster clock frequency means the execution time for the new

point scalar multiplication algorithm for a 192-bit field size

executes in 5.75 ms.

6 Conclusions

In this paper, a reconfigurable cryptographic processor has

been used to efficiently compare two algorithms for elliptic

curve point multiplication. Using addition chains, we have

found that not only can the cryptosystem resist SPA attacks,

but can also outperform a double-and-add approach. By

varying the number of arithmetic units implemented in the

architecture, the processor can be configured for devices with

different levels of resources. An improvement in execution

time was also found when implementing dedicated units

instead of the configurable ALU. This is at the expensive

of a slight increase in overall area.
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