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Frederic.Koriche@lirmm.fr

Abstract. A recurrent question in the design of intelligent agents is how
to assign degrees of beliefs, or subjective probabilities, to various events
in a relational environment. In the standard knowledge representation
approach, these probabilities are evaluated according to a knowledge
base, such as a logical program or a Bayesian network. However, even
for very restricted representation languages, the problem of evaluating
probabilities from a knowledge base is computationally prohibitive. By
contrast, this study embarks on the learning to reason (L2R) framework
that aims at eliciting degrees of belief in an inductive manner. The agent
is viewed as an anytime reasoner that iteratively improves its perfor-
mance in light of the knowledge induced from its mistakes. By coupling
exponentiated gradient strategies in online learning and weighted model
counting techniques in reasoning, the L2R framework is shown to provide
efficient solutions to relational probabilistic reasoning problems that are
provably intractable in the classical framework.

1 Introduction

As uncertainty pervades the real world, it seems obvious that the decisions we
make, the conclusions we reach, and the explanations we offer are usually based
on our judgements of the probability of uncertain events such as success in a
new medical treatment or the state of the market. For example, if an agent
wishes to employ the expected-utility paradigm of decision theory in order to
guide its actions, it must assign subjective probabilities to various assertions.
Less obvious, however, is the question of how to elicit such degrees of beliefs.
The standard knowledge representation approach claims that the agent starts
its life-cycle by acquiring a pool of knowledge expressing several constraints
about its environment, such as properties of objects and relationships among
them. This information is stored in some knowledge base using a logical repre-
sentation language [1,15,16,19] or a graphical representation language [8, 18].
After this period of knowledge preparation, the agent is expected to achieve
optimal performance by evaluating any query with perfect accuracy. Indeed,
according to the well-defined semantics of the representation language, a knowl-
edge base provides a compact representation of a probability measure that can
be used to evaluate queries. For example, if we select first-order logic as our
representation language, the probability measure is induced by assigning equal



likelihood to all models of the knowledge base; the degree of belief of any given
query is thus the fraction of those models which are consistent with the query.

From a pragmatic perspective, the usefulness of a computational framework
for assigning subjective probabilities depends both on the accuracy of the belief
estimates and the efficiency of belief estimation. Unfortunately, in the standard
knowledge representation approach, the task of assigning subjective probabilities
can very much demanding from a computational point of view. In propositional
logic, the problem of inferring the probability of any query from a knowledge base
is complete for the class #P, and even the apparently easier question of approxi-
mating this probability in a very weak sense is NP-hard [20]. The problem is still
more acute in the relational setting. Indeed, even if any function-free first-order
theory defined over a finite domain can be transformed into a logically equivalent
ground formula, the size of the resulting formula can grow exponentially with
respect to the initial theory. As a consequence, relational probabilistic reasoning
turns out to be #EXP-hard to evaluate and NEXP-hard to approximate. Similar
results have been obtained for relational Bayesian networks [9].

In contrast, the learning to reason (L2R) framework has recently emerged
as an active research field of ILP for dealing with the intractability of reason-
ing problems [10,11,23]. By incorporating a role of inductive learning within
reasoning, this approach stresses the importance of combining the processes of
knowledge acquisition and query evaluation together. The main departure from
the classical approach is that knowledge is not ascribed a priori, in the purpose
of describing an environment, but instead acquired a posteriori, by experience,
in order to improve the agent’s ability to reason efficiently in its environment.

Following the L2R paradigm, this study aims at eliciting degrees of beliefs
in an inductive manner, using a computational model of learning. Namely, the
world, or the domain in question, is modeled as a probability distribution W on a
space of relational interpretations. The reasoning agent starts its life-cycle with
a simple set of ground atoms over some relational vocabulary, referred to the
background knowledge [7]. To acquire additional knowledge from the world, the
agent is given a “grace period” in which it can interact with its learning interface.
The purpose of the learning interface is to help the agent in concentrating its
effort toward finding a representation KB of W that is useful for evaluating
queries in some target query language Q. The reasoning performance is measured
only after this period, when the agent is presented with new queries from Q
and has to estimate their probability according to its representation KB. Thus,
by contrast with the standard knowledge representation approach, the agent is
not required to achieve optimal performance by evaluating any possible query
with perfect precision. Instead, the performance is measured with regard to a
restricted though expressive query language Q.

Technically, our framework is based on the online mistake-driven learning
model introduced by Littlestone [14]. In this setting, the L2R protocol is modeled
as a repeated game between the reasoning agent and its learning interface. During
each trial of the game, the agent receives a query @ from Q and assigns a degree
of belief Prxp(Q) to it. The agent is charged a mistake only if its prediction
loss is not judged satisfactory for the task at hand. In this case, the agent is



supplied the correct probability Pry (Q) and updates its knowledge base in light
of this feedback information. In essence, the agent is an anytime reasoner which
gradually improves its performance by interacting with its learning interface.

In the L2R framework, the requirements for efficient relational probabilistic
reasoning are twofold. First, the length of the grace period needed to achieve
full functionality must be polynomial in the size of the background knowledge.
In other words, the agent’s behavior must converge to yield accurate estima-
tions after a polynomial number of interactions. Second, the computational cost
needed to evaluate the degree of belief of any query from the language Q must
also be polynomial in the cardinality of the background knowledge.

To satisfy these requirements, we develop an online L2R algorithm which
combines techniques in regression learning and weighted model counting. The
algorithm uses an exponentiated gradient strategy [3,12] adapted for assigning
probabilities to relational queries. The worst-case total number of mistakes made
by the reasoner depends only logarithmically in the size of the target probability
distribution, and hence linearly in the size of the background knowledge. Based
on this property, the learning curve of the reasoner is guaranteed to converge to
yield accurate estimations after a polynomial number of interactions.

The key idea behind efficient query evaluation lies in a representation of
the “mistake-driven” knowledge that allows tractable forms of weighted model
counting [21]. Namely, for various fragments of the so-called relational language
R proposed by Cumby and Roth [4], the computational cost of assigning degrees
of belief is polynomial in the number of mistakes made so far, and hence, the
size of the background knowledge. This result highlights the interest of the L2R
framework by providing efficient solutions to relational probabilistic reasoning
problems that are provably intractable in the classical framework.

Outline. After introducing the learning to reason framework in section 2, we
present the exponentiated gradient L2R algorithm in section 3. Tractable query
languages are discussed in section 4. Finally, section 5 compares our framework
with related work, and concludes with some perspectives of further research. For
sake of clarity, proofs of technical results are given in the Appendix.

2 The Framework

We consider problems of reasoning where the “world” is modeled as a probability
distribution W on the space of interpretations defined over some background
knowledge B. To this end, we assume a prefixed relational vocabulary, which
consists in a finite set R = {ry,---,r.} of relation symbols and a finite set
C ={c1, -+ ,c,} of constants. As usual, a term is a variable or a constant, and
an atom is a relation symbol followed by a bracketed k-tuple of terms, where k
is the arity of the relation. A ground atom is an atom with no occurrence of any
variable. Based on these notions, the background knowledge is formalized by a
set B of ground atoms generated from the relational vocabulary. Note that the
cardinality of B is upper bounded by rn®.



Given a first-order formula @) defined over the vocabulary, the size of @), denoted
|@], is the number of occurrences of atoms in its description.

A relational interpretation I over B is a subset of B with the underlying
meaning that any ground atom A € Bistruein [ if A € I, and falsein I if A ¢ I.
The space o(B) of all possible interpretations generated from B is represented
by an indexed set {I1,---, Iy} where N = 2IB Given an interpretation I and a
closed formula @) defined over the relational vocabulary, we say that I is a model
of Q, if Q) is true in I according to the standard semantic rules. The projection
of @ onto the space p(B) is a tuple Z(Q) = (I1(Q),--- , IN(Q)), where [,(Q) =1
if I; is a model of @, and I;(Q) = 0 otherwise.

Ezxample 1. Our running example is a simple variant of the logistic domain
[25]. The world includes two trucks tj,te, four objects o1, -+ ,04 and two cities
c1,¢2. We are given the predicate At(x,y) indicating the location of objects
and vehicles, and the predicate In(z,y) for indicating that some objects are in
some vehicle. The background knowledge thus consists in the 12 ground atoms
{At(t1,c1),- - ,At(og,c2)} and the 8 ground atoms {In(o1,t1),-- ,In(o4,t2)}.

Any probability distribution W over g(B) is specified by a tuple (wy, -+, wn)
such that w; € [0,1] and Zil w; = 1. The value w; is the probability of I;
according to W. The probability of a formula @ under W is given by

N
Pry (Q) = _Z wi ;(Q)

Definition 1. A belief assignment problem with background knowledge B is a
pair (W, Q), where W is a probability distribution on p(B), and Q is a countable
set of formulas over the relational vocabulary of B. The distribution W is called
the world and the set Q is called the target query language.

Ezample 2. Suppose that in the domain W the location of the trucks and the
objects are not known, but all objects are in the trucks. We can thus derive
the following probabilities: Pry (Vo In(z,t1)) = &, Prw(GzAt(ty, z)) = 2,

Pryy (3z At(ty, 2) AVzIn(z,t1)) = 55 and Pry (3 At(ty, ) V Jy At(te,y)) = 5.

In the L2R framework, the goal of the reasoning agent is to acquire a represen-
tation KB of the world W for the target language Q. In doing so, the agent
is given access to a learning interface that governs the occurrences of queries
drawn from Q. The interface most appropriate in our setting is a variant of the
reasoning query oracle [11] adapted for belief estimation. To assess regression
discrepancies, we use the typical quadratic loss function L(z,y) = (z — y)2.

Definition 2. A reasoning query oracle for the problem (W, Q), with respect
to a tolerance parameter € € (0,1], denoted RQ.(W, Q), is an oracle that when
accessed performs the following protocol with the agent A. (1) The oracle picks
an arbitrary query Q € Q and returns it to A. (2) The agent A assigns a degree
of belief Prgp(Q) to Q according to its knowledge base KB. (3) The oracle
responds by “correct” if L(Prkp(Q),Prw(Q)) < €, and “incorrect” otherwise.
In case of mistake, the oracle supplies the correct probability Pry (Q) to A.



The interaction protocol is modeled as a repeated game between the agent and
its interface. During each trial ¢, the agent receives a query @Q; supplied by the
oracle, makes a prediction according to its knowledge base KB; and, in case of
mistake, updates KB; in light of the correct response. The mistake bound for a
reasoning agent A on the problem (W, Q), denoted M4 (W, Q), is the maximum
number of mistakes that A can make by interacting with RQ (W, Q) over every
arbitrary infinite sequence of queries supplied by its oracle.

Definition 3. An algorithm A is an efficient mistake bound L2R algorithm for
the problem (W, Q) with background knowledge B, if there are polynomials p and q
such that the following conditions hold any € € (0,1]. (1) Ma (W, Q) < p(|B], 2),
(2) A evaluates any query Q € Q in q(|Q|,|B], 1) time.

The online learning to reason framework provides a natural way to make explicit
the dependence of the reasoning performance on the knowledge acquired from
the environment. After a “grace period” of interaction between the agent and its
oracle, the agent is expected to predict the degree of belief of any query supplied
by its interface without the help of the feedback response. Of course, we cannot
force the agent to make all the mistakes within the grace period. However, using
probabilistic tools developed in [6], the asymptotic behavior of the reasoner can
be derived from its mistake bound. In particular, for any mistake bound L2R
algorithm, the length of the grace period required to converge toward the desired
reasoning behavior is polynomial in the input dimension.

Observation 1. Let A be an efficient mistake bound L2R algorithm for the
problem (W, Q). Then for any probability distribution D over the target query
language Q and any 6, ¢ € (0,1], with probability 1 — ¢ the algorithm A will make
a correct prediction at any trial t > %MAG(W, Q), provided that every query
supplied by RQ (W, Q) is drawn independently at random according to D.

3 Exponentiated Gradient Learning to Reason

The L2R algorithm suggested in this study aims at combining exponentiated
gradient strategies in online learning and weighted model counting techniques
in probabilistic reasoning. Namely, the backbone of the algorithm is formed
by “implicitly” maintaining a probability distribution W over the space Z of
relational interpretations that approximates the world W. In the spirit of online
exponentiated gradient learning algorithms [3, 12|, the reasoning agent predicts
with its hypothesis W and, in case of mistake, adjusts the probabilities in W
according to a multiplicative weight update rule.

In relational probabilistic reasoning, a direct implementation of W is clearly
infeasible, as the agent would need to maintain 2/8 distinct probabilities. So,
in order to alleviate this issue, the key idea behind the algorithm is to encode
the probability distribution W into a weighted knowledge base KB, whose size
is polynomial in the number of mistakes made so far. In this representation, the
prediction task is thus translated into a weighted model counting problem [21].



Input:
background knowledge B
learning rate n > 0
Initialization:
set KB1 =9
Trials: in each trial ¢ > 1
receive a query

predict g, = Prgp, (Q:)

if the prediction is correct then
KB:y1 = KB,
else
receive y; = Pryy (Q4)
set KBt+1 = KB; A (Qt — qt) where P(Qt) = eM(ye—0t)

Algorithm 1: The EG-L2R algorithm

To this end, we shall assume that our relational vocabulary is extended with a
countable set {q1,qs, ...} of weighted relations of arity zero. Any ground atom
A defined over the extended vocabulary is assigned a weight p(A) with the
condition that p(A) = 1 whenever the predicate of A is a standard relation in
{r1, -+ ,r.}. An extended interpretation is a set of ground atoms defined over the
extended vocabulary. The weight of an extended interpretation I, denoted p(I),
is the product of weights of all ground atoms occurring in I. Given a formula KB
defined over the extended vocabulary, an extended interpretation I is a minimal
model of KB if 1) KB is true in I and 2) KB is false in each proper subset I’
of I obtained by removing from it any weighted relation q;. The weight of KB,
denoted p(KB), is the sum of weights of the extended interpretations that are
minimal models of KB. Based on these notions, the degree of belief in a query
Q@ according to a weighted formula KB is given by

Prip(Q) = p(f)ii;)@)

We are now in position to examine the algorithm. During each trial ¢, if the agent
makes a mistake on a query );, then KB, is expanded with a rule Q; < q; which
indicates that every minimal model of QQ; must satisfy the goal q; and conversely.
The update value is memorized by appropriately adjusting the weight of qs.
The entropy of a probability distribution W over the space p(B) is given by
H(W) = va:l w; log wi Based on this measure, the reasoning performance of
the exponentiated gradient L2R algorithm is captured by the following theorem.

Theorem 1. For any belief assignment problem (W, Q) with background knowl-
edge B, on input € > 0, when n = 4, the exponentiated gradient L2R algorithm
has the following mistake bound

M(W, Q) < —(IB| - H(W))

1
2¢



In a nutshell, the exponentiated gradient L2R algorithm is characterized by two
important features. First, the mistake bound is logarithmic in the number of pos-
sible interpretations, and hence, linear in the size of the background knowledge.
Interestingly, since H(W) is always nonnegative, the reasoning performance of
the algorithm improves with the entropy of its environment. Second, the size
of the hypothesis KB maintained by the reasoner is also linear in the number
of ground atoms. This follows from the fact the algorithm is conservative and
updates its knowledge base only if it makes a mistake.

4 Tractable Query Languages

This section highlights the utility of the framework by demonstrating that belief
assignment problems defined over various fragments of the relational language
R developed by Cumby and Roth [4] are “mistake bound learnable”. In the
following, the cardinality of the background knowledge B is denoted b, and the
largest size of any query in the target language is denoted I.

Formulas in R are defined to be restricted relational expressions in which
there is only a single predicate in the scope of each variable. A quantified atom
is an atomic expression where each variable occurs in the scope of a quantifier V
or 3. A quantified literal is a quantified atom or its negation. A quantified con-
Junctive (disjunctive) query is a conjunction (disjunction) of quantified literals.

To obtain tractable forms of model counting, we need to introduce an ad-
ditional restriction on the language. Given a quantified expression @, let B(Q)
be the set of ground atoms defined as follows: A € B(Q) if there is a ground
substitution 6 such that A € BN Q#. Then, two expressions @ and Q' are called
independent if B(Q)NB(Q') = @. A decomposable conjunctive (disjunctive) query
is a conjunction (disjunction) of pairwise independent quantified literals.

Theorem 2. For any decomposable conjunctive (disjunctive) query Q, the prob-
lem of counting the number of models of Q can be evaluated in O(|B||Q]) time.

Ezample 3. Let us return to our logistic domain. Initially, the knowledge base
KB of the agent is empty, so p(KB) = 2%°. Now, suppose that the agent is given
the decomposable conjunctive query @ = Vz In(z,t1) A Jy At(ty,y). Let B(Q) be
the set of all possible ground atoms that do not occur in B(Q). The number
of models of @) can be determined using a simple decomposition method that
factorizes the number of models of each component of ). Specifically, we have
p(Q) = p(VxIn(z,t1)) - p(Fy At(ty,)) - 21B@ = 1.3.214 = 3.2 Tt follows that
the degree of belief Prxp(Q) in the query Q according to KB is 2.

4.1 Hitting Query Languages

In propositional logic, an important class of formulas for which model counting
can be determined in polynomial time is the class of hitting formulas [2]. Based
on the notion of decomposable queries, we extend this class to the relational
setting and show that any belief assignment problem defined over a hitting query
language is mistake-bound learnable.
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Fig. 1. A hitting query language

Given two queries Q1 and @2, we say that Q1 entails QQ2, denoted Q1 = Q2,
if and only if for every interpretation I € p(B), if I is a model @1 then [ is a
model of Q3. Two queries Q1 and Q3 are called comparable if either Q1 = Q2 or
Q2 = Q1. Moreover, two queries Q1 and Qo are called mutually unsatisfiable if
there is no interpretation in g(B) satisfying Q1 A Q2.

Definition 4. A hitting conjunctive (disjunctive) query language is a set Q of
decomposable conjunctive (disjunctive) queries such that for any Q1,Q2 € Q,
Q1 and Qs are either comparable or mutually unsatisfiable.

Ezxample 4. Interestingly, any hitting query language that does not contain a
pair of mutually equivalent queries can be represented by a directed tree, where
each vertex @); is a query and each edge (Q;, Q;) indicates that ()1 entails Q.
The tree must satisfy the property that any pair (Q1,Q;) of vertices that are
not joined by a path forms a pair of mutually unsatisfiable queries. Consider for
example the tree Q illustrated in figure 1. Then the corresponding set of vertices
forms a hitting conjunctive query language.

Theorem 3. Let Q be a hitting conjunctive (disjunctive) query language, and
KB = AN ,(Qi < qi) be a weighted knowledge base such that Q; € Q for
1 <i < m. Then for any Q in Q, Prigp(Q) can be evaluated in O(bl*>m?) time.

By theorem 1, we know that the worst-case number m of mistakes of the EG-L2R,
algorithm is linear in the size of the background knowledge. Thus, by coupling
this property with theorem 3, we can derive the following result.

Corollary 1. There ezists an efficient mistake-bound L2R algorithm for any
belief assignment problem (W, Q) with background knowledge B where Q is a
hitting conjunctive (disjunctive) query language.

4.2 Cluster Query Languages

The expressiveness of tractable query languages can be further increased by
forming clusters of hitting languages. Intuitively, a cluster formula is a union of
independent hitting formulas [17]. This notion can be ported to the relational
setting in the following way.
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Fig. 2. A cluster query language

Definition 5. A cluster conjunctive (disjunctive) query language is a set Q of
decomposable conjunctive (disjunctive) queries such that for any Q1,Q2 € Q,
@1 and Q2 are either independent, comparable, or mutually unsatisfiable.

Ezxample 5. Any cluster query language can be represented by a directed graph
where each vertex @); is a query and each edge (Q;, @;) indicates that @); entails
@;. The graph must satisfy the property that any pair (Q;, @) of vertices that
are not joined by a path denotes a pair of independent or mutually unsatisfiable
queries. For instance, the set of vertices of the directed graph in figure 2 forms
a cluster conjunctive query language.

Theorem 4. Let Q be a cluster conjunctive (disjunctive) query language, and
KB = N™,(Qi < q;) be a weighted knowledge base such that Q; € Q for
1 <i<m. Then for any Q in Q, Prgp(Q) can be evaluated in O(bl>m?) time.

Corollary 2. There exists an efficient mistake-bound L2R algorithm for any
belief assignment problem (W, Q) with background knowledge B where Q is a
cluster conjunctive (disjunctive) query language.

Ezample 6. Consider the learning interface RQ (W, Q) for the truck domain,
where Q is the cluster query language specified in example 5, and € = Tloo' In
the following scenario, we suppose that the agent is specified with n = 4.

At trial (1), the agent receives the query Q1 = Jy At(t1,y). As KB is initially
empty, the reasoner predicts Prgp(Q1) = 2. However, since Pry (Q1) = 2,
the resulting quadratic loss is ﬁ. Hence, the agent has made a mistake. Its
knowledge base KB is expanded with the rule ¢y < q; where p(q;) = e~ 3.

At trial (2), the agent is supplied the query Q2 = Va In(x,t;). We thus have
p(Q2 A KB) = p(VzIn(z,t1) A Jy At(ty,y) Adr) + p(Va In(z, t1) A Yy —At(t1,y)).
Hence, p(Q2 A KB) = (1+3¢73)2'. As p(KB) = (14 3¢~ 3)218, it follows that
Prip(Q2) = . Since Pryy(Q2) = 15 the prediction is therefore correct.

At trial (3), the agent sees Q3 = Va In(z,t1) A Jy At(t1, y). Since Q3 = @1,
we have p(Qa A KB) = p(VaIn(z,t) A JyAt(ty,y) A qy) = 3e~3 - 214, Thus
Prip(Qs) ~ 0.01422. As Pryy (Qs) = 55, the prediction is still accurate.



5 Discussion

Along the lines of making relational probabilities applicable under tractable
conditions, this study has stressed the importance of combining learning and
reasoning processes together. By coupling exponentiated gradient strategies in
learning and weighted model counting techniques in reasoning, our results have
shown that some restricted though expressive classes of probabilistic reasoning
problems are mistake-bound learnable in the strong sense.

Related Work. The framework described here has natural connections with other
approaches on learning to reason. The foundations of this paradigm have been
established by Khardon and Roth [10, 11] in the setting of propositional deduc-
tion. In a similar spirit, the neuroidal architecture developed by Valiant in [22,
23] handles the relational setting by characterizing a variant of the language
R for which learning and deduction are polynomially bounded. Our framework
attempts to move one step further by showing that expressive fragments of R
are also tractable for relational probabilistic reasoning.

More generally, the problem of inducing a representation of a probability
measure on a space of relational interpretations has been a subject of intensive
research in statistical relational learning. Although most approaches are devoted
to classificatory purposes, several authors have suggested to learn Bayesian net-
works [5,13,24] in order to facilitate probabilistic reasoning. Yet, from a com-
putational viewpoint, the tractability of query evaluation in Bayesian networks
is only guaranteed for very restricted languages, such as Markov-blanket queries
[5]. In most cases, including even atomic formulas, the evaluation problem is #P-
hard [20]. By contrast, our framework seems to offer a gain of expressiveness by
efficiently handling nontrivial fragments of relational logic.

Perspectives. Clearly, there are many directions in which one might attempt
extensions. For example, we have restricted the study to degrees of belief, or un-
conditional subjective probabilities. This assumption is justifiable in many situ-
ations where the learner is allowed to evaluate the context of its queries. Namely,
based on a hitting language, the learner can estimate the value of Pry (Q|C)
using Prgp(Q A C) and Prgp(C). Yet, in some situations the learner is not
necessarily informed about the probability of the context, and further formal
steps need to be done in the direction of conditional reasoning. An other im-
portant research avenue is to extend the expressiveness of query languages. One
possible direction is to extend the scope of quantifiers, while maintaining com-
putational efficiency. For example a query such as Vz,y (In(y,z) — Truck(z))
can be transformed into a linear number of decomposable disjunctions. From an
orthogonal perspective, we can relax the assumption of strict cluster languages
and explore the larger setting of query languages with bounded “cluster-width”.
To this point, recent results on backdoors in model counting [17] look promising.
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Appendix

Theorem 1. For any belief assignment problem (W, Q) with background knowl-
edge B, on input € > 0, when n = 4, the exponentiated gradient L2R algorithm
has the following mistake bound M.(W, Q) < 5= (|B| — H(W)).

Proof. The proof is divided into two parts. First, we present a direct EG-L2R
algorithm that explicitly uses a distribution W on the space p(B), and we show
that the total number of mistakes of the direct algorithm is bounded by the above
result. Second, we show that our indirect EG-LR2 algorithm, which maintains
a weighted knowledge base, is an exact simulation of the direct algorithm.

The direct EG-L2R algorithm is specified as follows. Initially, W; is given by
the uniform distribution over p(B). In each trial ¢, the algorithm is first supplied
a query Q; from the oracle. Next, the algorithm predicts the belief 3; according

to its distribution W;, that is, g, = Pry, (Q). Finally, let y; = Pry;, (Q:) be the
correct probability. If L(g:,y:) < e then Wt+1 = W,. Otherwise, the algorithm
updates its probabilities w;; (1 <i < N ) according to the multiplicative rule
Wy eN(We—=91) 1 (Qx)

SN b g entue=0015(@0)

The mistake-bound analysis follows [12] with a notable difference in the derived
bounds. Let S = {(Q1,---,Qr)} be a sequence of queries by the oracle. We
proceed by showing that the divergence between W, and W decreases after each
mistake. The divergence function employed for the analysis is the relative entropy
D(W||W;) = Zi\;l w; log(w; /iy ;). We have
T
> D(W[Wi) = D(W|Wiya) = DW|[Wh) = D(W [ W) < [B] = H(W) (1)

t=1

We1,6 =

We therefore need to prove that the total number of mistakes is bounded by this
sum. In doing so, we show that there exists a positive coefficient a satisfying

a(ye — 9¢)> < DW|Wy) = D(W [ W) (2)

By developing and approximating the right-hand side, we can derive the following
bounds. The first inequality is obtained by using the property that the exponen-
tiated term is a convex function ¢” > 1 and (y; — 4:)1;(Q:) € [0,1]. The second
inequality is derived from the logarithmic bound log(1 — z(1 —e?)) < xz +22/8.

N
D(WHWt) - D(WHWt—‘rl) = nyt(yt — gt) J— 1og (Z wt,ien(yt'gt)li(Qt)>

i=1

> nye(ye — Ge) — log (1 — Z?t(l _ 6?7(%@)))

n?(ye — Gt)?

> nye(ye — 9¢) — n9e(ye — J¢) — 3



A sufficient condition to show (2) is a(y; — 9¢)* —n(ye — 9:)> + 1% (ye — 9:)%/8 < 0.
When the algorithm incurs a mistake we must have y; # 3. Hence a <7 (1 — g)
The maximum is obtained when 1 = 4 and, for this value, a = 2. Summing over
all trials and using the upper bound (1) we have Zthl(yt—ﬁt)Q < L(IB|-H(W)).
Finally, we know that a mistake arises only when (y; — 9:)? > €. By reporting
this condition into the last inequality we obtain the desired bound.

Now, we show that the indirect EG-L2R algorithm is an exact simulation of
the direct EG-L2R algorithm. To this end, we assume that both algorithms are
run on the same parameter 7 and the same sequence S = (Q1, - - -, @r) of queries

supplied by the same oracle. We must show that Pr;, (Qr) = Prgs,(Q:) on each

trial ¢. Given an interpretation I, let I be the conjunction of all ground literals
that are true in I. Given a query @, let ||Q|| denote the set of interpretations
in p(B) that are models of @Q. Finally, given a standard interpretation I and
an extended interpretation I’, we say that I’ is an extension of I if I C I’ and
I’ — I is a set of weighted relations. Now, consider the following invariant: for any
trial ¢t and any interpretation I € p(B), (1) there exists exactly one extension I*
which is a minimal model of KBy and (2) W,(I) = Prgp, (I). This property is
sufficient to prove that Pry, (Q¢) = Prkp, (Qt). Indeed, we have

Pry, (Q:) = Z Wi(I) = Z Prig, (1)

Te|lQqll Tel|Q:|l

_ p(KBy NI)  p(KB:AQy) )
. IG%A p(KB;) —  p(KB;) Prig, (Q1)

The existence of this invariant is proven by induction on the number of trials.
Let t = 1. Here, the knowledge base is empty. So I = I'* and we have

oo L pI)  p(KBy AT
M= § = 5% o) = KB

Now, consider that ¢ > 1 and assume by induction hypothesis that the property
holds at the beginning of the trial. We have g = Pry, (Q:) = Prgp,(Q:).
On receiving the oracle’s response, two cases are possible. First, suppose that
L(yt, §:) < e. In this case, the property trivially holds at the end of the trial.
Now suppose that L(y;, §:) > €. Before applying the update rule, we know that
any interpretation I has exactly one extension I; which is a minimal model of
KB;. After the update step, if I is a model of Q;, then I* = I U {q;} is the
unique minimal extension satisfying KB A (Q; < q;). Dually, if I is not a model
of Q¢, then I* = I} is the unique minimal extension satisfying KB; A (Q: <> qy).
In both situations, condition (1) is validated at the end of the trial. Finally,
condition (2) is validated according to the following equalities

= PrKBl(i)

Wi (1) Wy €W 901:(Q) p(KBy NT) - p(qy) (@0
1 i) — — = -
t4+1\43 Z;\; wt,jen(yt—yt)h(@t) Zj\/:l p(KB; A ;) - p(qt)lj(Qt)
Ir KB I s
i) _ pBBea L) _ Prgg,,, (1)

YNy p(EBe)



Theorem 2. For any decomposable conjunctive (disjunctive) query Q, the prob-
lem of counting the number of models of Q can be evaluated in O(|B||Q]) time.

Proof. Consider a decomposable query ) containing up to [ quantified literals.
Let B(Q) be the set of all possible ground atoms that do not occur in B(Q). If Q
is a conjunction, then p(Q) = 2/B8(@). Hi’:1 p(L;). Dually, if @ is a disjunction,
then p(Q) = 218l — p(=Q). Now, let L be a quantified literal. Then p(L) can
be obtained inductively by the following rules: (1) if L is a ground atom, then
p(L) = 1, (2) if L is of the form —A then p(L) = 25(@) — p(A), (3) if L is
of the form Va A(z) then p(L) = [[i; p(A[z/c;]), and (4) if L is of the form
Jz A(z) then p(L) = > i, 2" “p(A[z/c;]). Based on these decomposition rules,
the number of models of p(Q) can be determined in O(|B||Q)|) time. O

Lemma 1. Let Q; and Q2 be two decomposable conjunctive (disjunctive) queries
of the target language Q. Then the problem of deciding whether Q1 and Q2 are
either comparable or mutually unsatisfiable can be determined in O(bl?) time.

Proof. Consider two quantified literals A and —A’. Deciding whether A A —A’ is
unsatisfiable can be determined in O(b) time by enumerating all ground atoms
that are models of A and checking whether they are models of =A’. In any decom-
posable conjunction (disjunction), quantified literals are pairwise independent.
So, checking whether 1 A Q2 is unsatisfiable can be decided in O(bl?) time.
Finally, as entailment reduces to unsatisfiability, the result follows O

Two weighted formulas F' and G are equivalent, denoted F' = G, if every minimal
model of F' is a minimal model of G and conversely. Now, given a weighted
knowledge base KB = \!_,(Q; < q;), the canonical form of KB is

can(KB) = rem(KB)V \/;<,, ext(Q;, KB) where
ert(Qi, KB) = Qi A \jiq.rq, % N Njzig, o, ~Qs and
rem(KB) = Nyvj i, "Qi
Lemma 2. Let Q be a hitting conjunctive query language. Then any weighted

knowledge base KB = /\§=1(Qi — q;) where @Q; € Q for 1 < i <t is equivalent
to its canonical form.

Proof. This can be made by induction on the number ¢ of rules. The case where
t = 1 is immediate. So, let £ > 1 and suppose by induction hypothesis that
KBi_1 = can(KBt_1). We have KB; = can(KB:—1) A (Q: < q¢). By applying
distribution, four cases must be considered. First, observe each conjunction of
the form ext(Q;, KBi—1) N (Q: A qt). If Q; = @y, the conjunction reduces to
ext(Qq;, KBy). If Q; = Q;, the conjunction reduces to ext(Q:, KB;). Otherwise,
Q@; and @Q; are conflicting and the conjunction is hence unsatisfiable. Second,
observe each conjunction of the form ext(Q;, KBi—_1) A (=Q¢ A —qt). If Q; = Q4
then the conjunction is unsatisfiable. Otherwise, either Q; | Q; or Q; A @, is
unsatisfiable; in both situations the conjunction reduces to ext(Q;, KB;). Third,
examine the expression rem(KB;_1) A (Q¢ Aqz). If there is no query Q; in KBy
such that Q; = Q; then the conjunction reduces to ext(Q:, KB;). Otherwise, it
leads to an inconsistency. Finally, the expression rem(KBi—1) A (7Q: A —qy)
reduces to rem(KB;). By eliminating inconsistencies, KBy = can(KB}).



Theorem 5. Let Q be a hitting conjunctive (disjunctive) query language, and
let KB = N",(Q; < q;) be a weighted knowledge base such that Q; € Q for
1 <i<m. Then for any Q € Q, Prxp(Q) can be evaluated in O(bl*>m?) time.

Proof. We first examine conjunctive queries. Consider an arbitrary trial and
let @ be the supplied query. By assuming that KB is in canonical form and
that p(KB) was memorized during the last mistake, we only need to evaluate
p(KB A Q). Consider each extension ext(Q;, KB). If Q A Q; is unsatisfiable, then
plext(Q;, KB) A Q) = 0. Otherwise, Q A Q; can be reduced to @; or Q. Let Q;
denote the resulting query. Now, let ); be a query such that Q; = @; and —Q5
be the formula obtained by removing each literal in —@); which is conflicting
with a literal in @}. Finally, let §; = |B(/\j#;Qj —g; "@;)|. We thus have

pleat(Qi KB)AQ) = p(@)) - [T wla)- (2% = > w(@))
J:QiFQ; J#1Q; FQ:
As there are at most m queries @); in the extension of @);, the evaluation takes
O(bl?m) time. Now, consider the reminder of KB. If Q | Q; for some Q; in
KB, then p(rem(KB) A Q) = 0. Otherwise, let Q¥ be the formula obtained by
removing each literal in —@); which is conflicting with a literal in Q). We have

p(rem(KB) A Q) = 2/BEBII _ Z p(Q7)

Qi€rem(KB)

The evaluation requires O(bl?m) time. By taking the weighted sum of the differ-
ent components, the prediction step takes O(bl?m?) time. Now, let us turn to the
update step. In case of mistake, p(KByy1) = p(KB:)+p(KB;AQy)(e" W= —1).
The transformation of can(KBy) into can(KB,41) takes O(bl?>m) time. Now, let
us turn to disjunctive queries. For any @, we have Prgp(Q) = 1 — Prgp(—Q).
As =@ is a conjunction, the prediction step takes O(bl?m?) time, provided that
KB is defined over a conjunctive language. The condition is fulfilled using the
dual update policy: if the learner has made a mistake on trial ¢, then expand
KBy with the rule Q; < q; where p(q;) = eyt =3t)

Theorem 6. Let Q be a cluster conjunctive (disjunctive) query language, and
let KB = N",(Q; < q;) be a weighted knowledge base such that Q; € Q for
1 <i<m. Then for any Q € Q, Prxp(Q) can be evaluated in O(bl*>m?) time.

Proof. Any cluster query language Q is the union Q; U --- U Qp of up to b
pairwise independent hitting query sets. Not that some of these sets can be
empty. Thus any knowledge base KB over Q is a conjunction KBy A--- A KBy,
of weighted formulas such that the set of queries occurring in each formula KB;
is included in the cluster Q;. By lemma 2, each KB; can be rewritten into its
canonical form. Now, consider an arbitrary trial and suppose that the supplied
query Q) belongs to Q;. The task of finding KB; takes O(blm) time, as there
are at most m nonempty sub-bases. If KB; is empty, then Prxp(Q) = p(Q)/N,
which takes O(bl) time. Otherwise, Prxp(Q) = p(can(KB; AQ))/p(can(KB;)).
By application of theorem 3, this takes O(bl?m?) time. Additionally, the cost of
updating KB; simply takes O(bl?m?) time.



