
HAL Id: lirmm-00183378
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00183378

Submitted on 29 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Precalculating Component Interface Compatibility
Using FCA

Gabriela Arévalo, Nicolas Desnos, Marianne Huchard, Christelle Urtado,
Sylvain Vauttier

To cite this version:
Gabriela Arévalo, Nicolas Desnos, Marianne Huchard, Christelle Urtado, Sylvain Vauttier. Precalcu-
lating Component Interface Compatibility Using FCA. CLA: Concept Lattices and their Applications,
Oct 2007, Montpellier, France. pp.237-248. �lirmm-00183378�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00183378
https://hal.archives-ouvertes.fr


Precalculating Component Interface

Compatibility Using FCA

Gabriela Arévalo1, Nicolas Desnos2, Marianne Huchard3,
Christelle Urtado2, and Sylvain Vauttier2

1 LIFIA - Facultad de Informática (UNLP) - La Plata - Argentina
garevalo@sol.info.unlp.edu.ar

2 LGI2P / Ecole des Mines d’Alès - Nı̂mes - France
{Nicolas.Desnos, Christelle.Urtado, Sylvain.Vauttier}@ema.fr

3 LIRMM - CNRS and Univ. Montpellier 2 - Montpellier - France
Marianne.Huchard@lirmm.fr

Abstract. In component-based software engineering, software systems
are built by assembling prefabricated reusable components. The compat-
ibility between the assembled components is crucial. It is determined by
the comparison of their exposed interfaces: required interfaces (describ-
ing the services the component needs) and provided interfaces (describing
the services the other component offers) must match. Given a compo-
nent, finding a compatible component in a component repository is not
trivial. The idea of this paper is that organizing component directories
with a yellow-page-like structure makes the search for suitable compo-
nents more efficient. We propose a solution based on Formal Concept
Analysis to precalculate a concept lattice to organize our components. It
proves to be an efficient solution to both represent the component com-
patibility information and provide a browsable component organization
to support the component search mechanism.

1 Introduction

The component-based approach is a recent and successful paradigm for software
engineering, inspired by electronic engineering. In this approach, software sys-
tems are built by assembling prefabricated reusable components. The main ob-
jective is development cost reduction while maintaining high quality. Software
components are externally described, as their electronic counterpart, by func-
tionalities they support, and plugs which specify possible connections. In terms
of the component-based software engineering (CBSE) domain, a component has
required interfaces (needed services) and provided interfaces (offered services).
Building a component assembly consists in connecting components in order to
achieve a high-level functionality. Computation is then dispatched over the as-
sembled components. Nevertheless, given a component repository, finding and
connecting suitable components is not trivial because there is basically a need to
determine service compatibility. Component repositories generally rely on com-
ponent directories organized as white pages, that support component search by



name. Such an organization is not optimal because it leaves the burden of finding
suitable components to the assembly phase.

Previous work on component assemblies [1, 2] made us realize how critical
the component-search mechanism was for such software engineering processes as
component assembly building or evolution. The idea of this paper is that orga-
nizing component directories with a yellow-page-like structure makes the search
for suitable components more efficient. Our approach is based on Formal Con-
cept Analysis (FCA), where precalculating a lattice of service compatibilities is
a means to organize the component directory so as to both explicitly represent
relationships among components and efficiently search for suitable components
when needed. Having a user-readable component structure that shows compo-
nent compatibility is a plus and separating the concerns of compatibility calculus
and assembly is more rational. Such an organized component directory can then
be used to find a component that can assemble to (search for a compatible com-
ponent) or replace (search for a substitutable component) a selected one. It also
enables the discovery of new abstract components having a higher degree of
reusability which enriches the component directory.

The remainder of this paper is organized as follows. Using a small sale sys-
tem example, Section 2 shows how reasoning about component compatibility
is mainly based on functionality signatures. Section 3 describes an extension of
object-oriented type theory for functionality signature comparison. Then, after
recalling chosen basics of FCA, Section 4 shows the building of a lattice of func-
tionality signatures using the point of view of replacing a required functionality
by another. Section 5 presents several uses of the proposed lattice, Section 6
compares our approach to related work and Section 7 mentions future work.

2 Component Compatibility: a Sale System Example

Service and functionality compatibility, as an a priori requirement for compo-
nent compatibility, is discussed based on elements of a sale management ap-
plication. Figure 1 shows several connection situations. When a component
(e.g., ChildOrder) is introduced in an assembly to satisfy a service (e.g., en-
abling children to order products), the required interfaces involved in the same
collaboration (here, CustomerCreation) have to be connected in the assembly.
This may demand finding a compatible component either among those of the
assembly, or in a component repository.

Component compatibility is generally defined as the syntactic comparison
between the components’ interfaces, which more precisely consists in comparing
pairs of functionality signatures from these interfaces. To easily understand the
discussion, the reader can draw a parallel with the ordinary function-call mech-
anism: required functionalities can be seen as function calls while provided func-
tionalities are function definitions. Functionalities are described by their signa-
tures, i.e., their name, parameter type list and return type. To be run, a function
needs its call to contain the expected information, as declared in its signature.
The position, where the call appears in the code, expects in return a resulting



Fig. 1. Type ordering information and three possible assembly situations

data corresponding to the declared return type of the function. Figure 1(b) illus-
trates the simplest assembly case: the SilverCustomerDB component provides
an interface which describes a create functionality that has exactly the same
signature as the create functionality of the required CustomerCreation inter-
face of the ChildOrder component – that is the same parameter type list and
the same return type. However, exact signature match is not always possible:
the component repository may only contain components with close capacities.
In Figure 1(c), the GoldCustomerDB component offers a close provided creation
functionality which turns out to be compatible with the one required by the
ChildOrder component. There are three differences between the two signatures:

– The provided create functionality needs information about a person. As
shown on Figure 1(a), ChildInformation is a subtype of PersonnalIn-

formation. This means that a child is described by more information than
a person. As a consequence, the required functionality is able to call the
provided functionality as the call contains more information than needed by
the provided functionality to run.

– The provided create functionality only needs information about a person:
it has no other parameter. The fact that the required create gives extra
information (an extra bankIdentity parameter is passed to the functionality
call) does not hamper the assembly.

– The provided create functionality returns a parameter of type GoldCustomer.
As shown in Figure 1(a), GoldCustomer is a subtype of SilverCustomer.



As in the other cases, the required create can still call the provided func-
tionality as it will receive in return more information than needed.

In these three cases, the extra information provided during the call or the return
phases can be ignored: the components can be assembled. Figure 1(d) presents
a case of functionality incompatibility. The CustomerDB component provides
a create functionality that is not compatible with the create functionality
of the ChildOrder component. Two signature differences make the assembly
impossible:

– The provided create needs information about the country of the customer:
the required create is unable to provide such information.

– The provided create returns a parameter of type Customer. As shown in
Figure 1(a), Customer is a supertype of SilverCustomer. The required
create therefore receives in return an object which is too general and con-
tains less information than expected.

This small example illustrates the need for signature comparison based on
a model of component compatibility, where parameter and return types have
a great place. In realistic examples, an interface generally contains more than
one functionality signature. This is why reasoning on component compatibility
requires to have a theory of functionality signature compatibility, which can be
extended to nesting (interface, component) levels. As shown in the example,
signature compatibility is the result of the combination of subtyping orders on
parameter and return types as well as presence / absence of parameters. In the
case where the component assembler is human, mentally calculating this com-
bination is rather difficult, increasing the errors when choosing a component
among the available ones. Besides, a mental image, by the means of a classifi-
cation of signatures, could be quite useful. At the same time, this could give us
keys for helper tools that guide the human designer in its component choice, or
even, in simple cases, that solve the choice problem automatically.

Thanks to its qualities for building classifications of entities, FCA is very
useful to cope with this problem. The produced signature classifications can be
used either to check compatibility if a component is available, to find a com-
ponent (using the classification as an index for component access) or to build
contingent interface or component classifications by propagating specialization
information. Thanks to FCA, signature classification is not reduced to the orga-
nization of existing signatures: new signatures emerge that are generalizations
(abstractions) of the existing ones, giving the opportunity to the component
developer to imagine new components that would be more reusable than the
existing ones.

3 Basics of Static Types: Ordering Required and

Provided Functionalities

This section focuses on presenting the domain knowledge about signatures that
will be encoded into concept lattices in order to capture functionality substi-



tutability information. Part of assembly soundness is based on static types, in-
spired by statically typed object-oriented languages [3]. In this context, static
types are used to guide an efficient analysis that considerably limits dynamic
type errors potentially provoked by the intensive usage of polymorphism. In
object-oriented languages, polymorphic expressions can be bound to values of
several types (classes in this context). The correctness of this binding relies on
the possibility for an expression of a type to be seamlessly replaced (substituted)
by any value of another type. This substitutability is possible under some suf-
ficient conditions on types relative to their operations: the run-time type error
that static analysis wants to avoid is the reception by an object of an operation
request that it cannot deal with. In the object paradigm, when an operation is
redefined in a subclass (subtype), type-safe definitions of operations respect two
constraints:

– Parameter type contravariance. A parameter type has to vary in the opposite
direction as subclassing: in the subclass, the parameter has a more general
type (super-type) than in the superclass.

– Return type covariance. The return type has to vary in the same direction
as subclassing: in the subclass, the return type has a more specialized type
(subtype) than in the superclass.

Let us study how this theory extends to the component domain. In order
to define component substitutability, we only consider the smallest abstractions
(functionalities) because the whole problem reduces to determining if a com-
ponent that provides (resp. requires) a functionality can replace a connected
component that provides (resp. requires) another functionality. Functionalities
are described by their name (replacement is admitted only between same name
functionalities), parameter type list (IN parameter types), and return types (OUT
parameter types). Rules for substitutability are as follows for required function-
alities (rules for provided functionalities are obtained by a symmetric reasoning):

– IN parameter type specialization. If a required functionality is able to send
a parameter of some type, it can replace a required functionality which
sends a parameter of a more general type (because the called functionality
can ignore the information specific to the specialized type). In the example
of Figure 2(a), required functionality create(PersonalInformation) can
replace required functionality create(Information) because in the con-
text where required create(Information) can be connected (namely, to
provided create(Information)), required create(PersonalInformation)

can also be connected as it can connect to provided create(Information)

and to provided create(PersonalInformation) which is a superset.
This is an application of the substitutability rule in object-oriented languages
and obeys the contravariance principle (because in the provided point of
view, IN parameter types need generalization).

– IN parameter addition. If a required functionality is able to send a parameter
of a particular type, it can replace a required functionality which does not
send this kind of parameter (because the called functionality can ignore this



Fig. 2. Interface compatibility rules when parameter types and number vary

parameter). For example (Figure 2(c)), required create(Information,bank-

Identity) can replace required create(Information) because in the con-
text where required create(Information) can be connected, required cre-

ate(Information,bankIdentity) can be connected too.
– OUT parameter type specialization. If a required functionality needs to re-

ceive some return type, it can replace a required functionality which needs to
receive a more specialized type (as the extra information in the specific type
can always be ignored). For example (Figure 2(b)), required create():Cus-

tomer can replace required create():SilverCustomer because in the con-
text where required create():SilverCustomer can be connected, required
create():Customer can be connected too. This is another application of the
substitutability rule in object-oriented languages and obeys the covariance
principle (also considering the provided point of view).

4 Lattice of Functionality Compatibilities

This section firstly recalls the basics of FCA and then presents the building
principles of the functionality signature lattice.

4.1 A Survival Kit for Formal Concept Analysis

The classification we build is based on the partially ordered structure known as
Galois lattice [4] or concept lattice [5] which is induced by a context K, composed
of a binary relation R over a pair of sets O (objects) and A (attributes) (Figure 3).

A concept C is a pair of corresponding sets X and Y such that:

X = { x ∈ O| ∀ y ∈ Y, (x, y) ∈ R} is called extent (covered objects)
Y = { y ∈ A| ∀ x ∈ X, (x, y) ∈ R} is called intent (shared features)



For example, (12, bc)4 is a formal concept, but (2, bc) is not. Establishing
that (12, bc) is a concept highlights the fact that objects 1 and 2 exactly share
attributes b and c (and vice-versa). Furthermore, the set of all concepts C con-
stitutes a lattice L when provided with the following specialization order based
on intent / extent inclusion: (X1, Y1) ≤L (X2, Y2) ⇔ X1 ⊆ X2 (or equivalently
Y2 ⊆ Y1). Figure 4 shows the Hasse diagram of ≤L.

a b c d e f g h

1 × × × ×

2 × × × × ×

3 × × × × ×

4 × ×

5 × ×

6 × ×

Fig. 3. Binary relation of K = (O, A, R)
where O={1, 2, 3, 4, 5, 6} and A=

{a, b, c, d, e, f, g, h}.
Fig. 4. Concept lattice L.

4.2 Building the Lattice

We explain here the construction of the required functionality signature lattice.
As provided functionality signatures are reversely ordered, the lattice we obtain
can also be used to deal with them, when considered upside down.

We illustrate our explanation considering the required functionality create

(PersonalInformation,bankIdentity):SilverCustomer and comparing it to
create (Information):GoldCustomer. At first, for each functionality, attri-
butes are deduced from IN and OUT parameter types that explicitly appear
in the signature. These attributes are marked using × in Figure 5. Then, we
infer attributes (marked with ⊗ in Figure 5) when their types are compatible,
regarding specialization of signatures. Here are our inference rules:

– IN parameters. As explained previously, if a required functionality sends a
parameter of some type, it also implicitly sends a parameter of any more
general type (because the called provided functionality can ignore the part
of the information that is specific to the specialized type).

– OUT parameters. If a required functionality expects to receive a return value
of a type, any return value of a more specific type is also suitable (the received
extra information can be ignored).

In component-based systems, all the information about the functionalities
described in (provided or required) component interfaces is available at runtime.

4 (12, bc) is the compact notation for concept {1, 2} × {b, c}.



Indeed, thanks to reflexivity (based on either metadata or introspection), a com-
ponent can be asked each detail of one of its functionality signature (name of the
functionality, types of IN and OUT parameters, etc.) at runtime. This capability
could be used as the basis of an automatic process that would build the binary
context and identify the inferred attributes.

Figure 6 depicts the lattice corresponding to the binary relation shown in
Figure 5, built with the Galicia tool [6]. Concepts are presented using reduced
intents and extents for readability sake: an object (signature) which belongs to
the reduced extent of a concept is inherited by all concepts that are above (down-
to-up); a property (IN or OUT parameter type) which belongs to the reduced
intent of a concept is inherited by all concepts that are below (up-to-down).

The following section gives insights of the different operations this kind of
lattice can support for the management of component directories.

IN parameters OUT param.

I PI CI BI CCN ID Co A C SC GC FC

create(I):GC × ×

create(PI,BI):SC ⊗ × × × ⊗

create(CI,BI,CCN):C ⊗ ⊗ × × × × ⊗ ⊗ ⊗

create(I,A,ID):C × × × × ⊗ ⊗ ⊗

create(I,BI,CCN,Co):FC × × × × ×

Fig. 5. Encoding of a set of required functionality signatures

I Information

PI PersonalInfo.

CI ChildInfo.

BI BankIdentity.

CCN CreditCardNb

Co Country

ID InitialDeposit

A Address

C Customer

SC SilverCustomer

GC GoldCustomer

FC ForeignCustomer

Fig. 6. Lattice Ls of service signatures



5 Using the Lattice of Functionality Compatibility

The lattice of signatures supports three main usages. Firstly, it determines which
functionality can replace which other, in both cases of required or provided
functionalities (Section 5.1). Secondly, the validity of the connection of a required
functionality to a provided functionality can be stated (Section 5.2). Finally, in
a prospective section, it is used as the starting point of a construction chain that
goes from functionality signature to component type classification (Section 5.3).

5.1 Required/Provided Functionality Substitution

Consider the lattice of Figure 6 with the viewpoint of required functionalities. In
this lattice create(I):GC is represented by Concept 2 while create(PI,BI):SC
is represented by Concept 7. Concept 2 is more general than Concept 7 which can
be interpreted as Concept 7 can replace Concept 2. In a component architecture,
a connection to a required functionality corresponding to Concept 2 can be
replaced by a connection to a required functionality corresponding to Concept
7. In the general case, when there is a path between two concepts, the more
specific one (which has more properties) can replace the more general one (which
has a subset of properties) when the more general concept is connected (see
Figure 7(a)).

The same lattice can also be used for provided functionality substitution if
read in the reverse order (see Figure 7(b)). In the previous example, symmetric
assertion can be made: in situations where provided functionality corresponding
to Concept 7 are connected, provided functionality corresponding to Concept 2
can also be connected. Next rule formalizes how functionality substitution can
generally be deduced from the lattice.

Substitution rule. Let Cfather, Cson be two concepts of the functionality sig-
nature lattice such that Cson ≤Ls

Cfather. Functionalities of Cson can replace
functionalities of Cfather when the functionalities are required. Opposite replace-
ment applies when the functionalities are provided.

5.2 Inferring Valid Connections

Both points of view (provided and required) can be combined to address the issue
of component connection. Consider the signature create(PI,BI):SC. Required
create(PI,BI):SC evidently can connect to provided create(PI,BI):SC. Given
the substitution rule, provided functionalities which are upper in the lattice, for
example provided create(I):GC, can be connected to required create(PI,BI):

SC (see Figure 7(c)). Using the same rule in the symmetric case, required func-
tionalities which are below in the lattice, for example required create(CI,BI,

CCN):C, can be connected to provided create(PI,BI):SC. By transitivity, re-
quired create(CI,BI,CCN):C can be connected to provided create(I):GC. This
is expressed in the following connection rule that formalizes how valid function-
ality connection can be deduced from the lattice.



Fig. 7. Interpretation of the lattice of service signatures

Connection rule. Let C, Cfather, Cson be three concepts of the functionality
signature lattice such that Cson ≤Ls

C ≤Ls
Cfather, required functionalities of

Cson can be connected to provided functionalities of Cfather.

5.3 Towards Component Classification

Although several component models exist for CBSE, most of them include the
notions of interface and functionality. Components are reusable pieces of soft-
ware that can be chosen off-the-shelf and have a high-level objective (database
component, counter component, scheduler component, etc.). Interfaces group
functionalities that form meaningful collaborations together and have a direc-
tion (provided or required).

Functionality classification is the starting point of a classification chain that
ends in component classification, using a non-iterative version of Relational Con-
cept Analysis [7]. We detail only the level of interfaces to give an idea of the
process. An interface is described by a set of functionalities. Therefore, a formal
context for interfaces naturally associates functionalities with interfaces. How-
ever, to benefit from knowledge acquired in the lattice of service signatures,
a richer description of interfaces is obtained using the concepts of this lattice
as formal attributes. For example, let us consider two (required) hypothetic
interfaces: SilverCustomerDBcreation which includes create(PI,BI):SC and
ChildDBcreation which includes create(I,A,ID):C. As create(PI,BI):SC is
in Concepts 7, 5, 2 and 1, these concepts are used as formal attributes for in-
terface SilverCustomerDBcreation. Similarly, create(I,A,ID):C appears in
Concepts 10, 9, 5, 2, 4 and 1, giving part of the formal attributes of interface
ChildDBcreation. This kind of encoding corresponds to existential scaling op-
erator of the RCA approach [8]. Based on a discovered functionality of the first
lattice (create(I):SC in Concept 5), the technique can infer a new interface,
including at least this shared functionality. Here is a fundamental advantage
of FCA/RCA techniques compared to the simple computing of signature com-
parison: new signatures emerge that provoke emergence of new interfaces which
abstract the existing ones, etc. The process has to further be tuned by the direc-
tion of interfaces (provided versus required) which was not included in the above
discussion for simplicity sake and reverses the specialization order on signatures.

The next generalization level concerns components. Discovering new compo-
nent external specifications, in the final step of the process is of great interest for



component designers because they discover abstract, more reusable components
that can guide them in their development work.

6 Related Work

A service trader (yellow page mechanism) is a kind of directory that allows to in-
dex and locate components through the definition of the services they provide [9].
Existing proposals, such as CORBA Trading Object Service [10], mostly follow
the ODP standard principles [11]. A component exports to the directory a service
advertisement to be registered as a provider of a service. The service advertise-
ment conforms to a service type that specifies the properties and the syntactic
interfaces that a component must feature to provide this service. Service types
are organized as a specialization hierarchy. Requests are sent to the directory to
look for providers of some service, as defined by its type. Corresponding service
advertisements can be filtered by conditions defined on property values.

Previous works do not use FCA as a base methodology. In this kind of ap-
proaches, a semi-automatic indexing methodology is proposed in [12] to help the
developer identify suitable components in an existing repository. The retrieval
is based on grouping names and keywords, and incremental queries that help to
refine the search of a component. Within the context of identifying web services,
the approaches are based on machine learning techniques, to support service
classification and annotation [13, 14]. Starting from free text service documen-
tation, services are automatically classified in classes/domains using Support
Vector Machines or Ontologies. Successively, FCA is used to group text-based
information related to the components to be identified. Contrary to our pro-
posal, these approaches (some of which use FCA and some not) use an explicitly
and statically constructed service type hierarchy [15]. Service type hierarchy and
syntactic type hierarchy are only informally related. Moreover, only information
about provided services and interfaces are considered. This content definition
and organization limits the usages of this kind of component directories in dy-
namic, evolving and open environments.

7 Conclusions and Future Work

Applications of FCA, besides their contribution to a specific domain, partici-
pate in constructing a shared expertise about FCA-based methodologies. The
contribution of this paper mainly focuses on technical aspects of encoding into
formal contexts and on the definition of relevant usages of the built lattice in
identifying compatible components. The main difficulty we encountered when
encoding was to capture type specialization in opposite ways depending on pa-
rameter (IN /OUT) and functionality (provided / required) directions. The gain
of FCA for functionality signature classification consists in proposing a clas-
sification where not only substitution and connection can be read, but also in
which new, more abstract, signatures appear. These new functionality signatures



enable the construction of component directories via interface and component
classifications.

Perspectives include integrating complementary features of components as
proposed in some component models [16, 17, 2]. Further research will also con-
sider fully integrating such a pre-calculation in a yellow page components mech-
anism. Incrementally building the lattice will then be an extra advantage to
manage incoming and outgoing components in a very dynamic environment.

References

1. Desnos, N., Vauttier, S., Urtado, C., Huchard, M.: Automating the building of
software component architecture. In Gruhn, V., et al., eds.: Software Architecture:
3rd EWSA Workshop. Vol. 4344 of LNCS, France, Springer (2006) 228–235

2. Desnos, N., Huchard, M., Urtado, C., Vauttier, S., Tremblay, G.: Automated and
unanticipated flexible component substitution. In Schmidt, H.W., et al., eds.: Proc.
of 10th ACM SIGSOFT CBSE. Vol. 4608 of LNCS, USA, Springer (2007) 33–48

3. Cardelli, L.: A semantics of multiple inheritance. Vol. 173 of LNCS., Berlin,
Springer-Verlag (1984) 51–64

4. Barbut, M., Monjardet, B.: Ordre et Classification. Hachette (1970)
5. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-

cepts. Ordered Sets 83 (1982) 445–470
6. GaLicia: Galois lattice interactive constructor Université de Montréal.

http://www.iro.umontreal.ca/∼galicia.
7. Dao, M., Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Improving gener-

alization level in UML models iterative cross generalization in practice. In Wolff,
K.E., et al., eds.: ICCS. Vol. 3127 of LNCS, USA, Springer (2004) 346–360

8. Huchard, M., Rouane Hacene, M., Roume, C., Valtchev, P.: Relational concept
discovery in structured datasets. Annals of Mathematics and Artificial Intelligence
49(1-4) (2007) 39–76

9. Iribarne, L., Troya, J.M., Vallecillo, A.: A trading service for COTS components.
The Computer Journal 47(3) (2004) 342–357

10. OMG: Trading Object Service Specification v1.0. (2000)
11. International Organization for Standardization and International Telecommunica-

tion Union: ISO/IEC 13235, ITU-T X.9tr, Information Technology Open Dis-
tributed Processing ODP Trading Function. (1996)

12. Lindig, C.: Concept-based component retrieval. In Köhler, J., et al., eds.: Working
Notes of the IJCAI-95 Workshop: Formal Approaches to the Reuse of Plans, Proofs,
and Programs. (1995) 21–25

13. Bruno, M., Canfora, G., Penta, M.D., Scognamiglio, R.: An approach to support
web service classification and annotation. In: Proc. of the EEE’05 Conference,
USA, IEEE Computer Society (2005) 138–143

14. Corella, M.A., Castells, P.: Semi-automatic semantic-based web service classifi-
cation. In: International Workshop on Advances in Semantics for Web Services,
Springer Verlag (2006) 459–470

15. Marvie, R., Merle, P., Geib, J.M., Leblanc, S.: Type-safe trading proxies using
TORBA. In: ISADS. (2001) 303–310

16. OMG: Unified modeling language: Superstructure, version 2.0 (2002)
http://www.omg.org/uml.

17. Bures, T., Hnetynka, P., Plásil, F.: SOFA 2.0: Balancing advanced features in a
hierarchical component model. In: SERA, IEEE Computer Society (2006) 40–48


