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Abstract. Within maintenance software methodologies that analyze ex-
isting applications, Relational Concept Analysis (RCA) is an efficient
approach to build abstractions in any language, using the existing re-
lations between different software artifacts. Nowadays, there are several
RCA-based tools, where a critical aspect is the lack of genericity in the
FCA mapping to translate input (and output) data to (and from) for-
mal/relational contexts. Most of the tools provide specific translators
that can be used only with the analyzed application domain and their
code needs to be changed when the framework of analysis evolves. Using
Model-Driven Engineering, we propose a generic encoding/decoding pro-
cess, which performs this translation with only the configuration of an en-
coder/decoder tool. This approach eases the integration of a FCA/RCA
process in a tool and facilitates its usage on a wide range of input data
formats.

1 Introduction

Within maintenance software methodologies that analyze existing applications,
Relational Concept Analysis (RCA) [1] is an efficient approach to build ab-
stractions in any language, such as modeling languages (UML) or programming
languages (Java), that provide specialization-generalization mechanism between
different software entities. Abstractions are built for entities using the existing re-
lations between them. Nowadays, there are several tools implementing the RCA
process. Starting from contexts and relational contexts, these tools automati-
cally build a set of lattices (called Concept Lattice Family (CLF)) that contains
new abstractions.

However, when applied in real case studies, these tools must cope with two
main difficult tasks. The first task is the encoding of the model or program to be
restructured using a Relational Context Family (RCF), and the second task is the
decoding back of the obtained Concept Lattice Family (CLF) into the initial lan-
guage. For example, several existing methodologies, such as [2,3], propose tools
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to encode a UML model into a RCF, then apply a RCA technique, and finally
decode back the CLF into a UML model. Note that the use of encoder/decoder
is a common problem to FCA and RCA: For each type of model or program one
may want to restructure with RCA, a new specific encoder/decoder is needed.
To cope with this problem, this paper presents a generic encoder/decoder, whose
configuration is based on the structure of the type of model or language to be
restructured. This means that, given the elements of the input model or lan-
guage and the elements that cause the abstractions’ building, the repetitive and
difficult work in creating RCF and then decoding CLF is fully automatic. For
example, in a UML model we will create abstractions for classes and associa-
tions, based on the name of the roles of the associations and the name of the
classes, whereas in Java we will create abstractions only for classes.

We achieve the design and configuration of the generic encoder/decoder
through the use of the Model-Driven Engineering (MDE) paradigm [4], in which
every used or produced artifact during the software development is a model.
The structure of the model is defined with a metamodel. We proceed in two
steps to solve the problem of the generic encoder/decoder. First, we have imple-
mented the RCA process in a MDE-oriented way [2], defining metamodels for
RCF and CLF. Second, we have defined a metamodel to define models of the en-
coding/decoding configuration corresponding to a given language to restructure.
To restructure a model, one just has to decide which elements of the model are
useful for the RCA-based restructuration, filling up a configuration model. In
this paper we focus on the configuration step, i.e. the way we provide a generic
encoder/decoder for a RCA-based restructuration.

The rest of the paper is organized as follows. Section 2 first briefly introduces
FCA and RCA, and analyses the existing FCA and RCA tools (in particular
w.r.t. their capacity to offer generic inputs and outputs). Then, Section 3 gives
an overview of Model-Driven Engineering and explains the reasons of the choice
of such a paradigm. Then, Section 4 details the mechanisms involved in the
generic encoder/decoder for RCA-based model restructuration and illustrates
them with UML and Java. Last, Section 5 concludes and gives feedback on the
use of MDE for RCA tools.

2 Formal and Relational Concept Analysis

2.1 Background and Definitions

Formal concept analysis (FCA) [5,6,7] is a branch of lattice theory that allows
us to identify meaningful groupings of objects that have common attributes.

Definition 1 (Formal Context). A formal context is a 3-tuple K = (O, A, I),
where O and A are finite sets of objects and attributes respectively, and I ⊆ O×A

an incidence relation where ∀(o, a) ∈ I, a is an attribute of the object o.

With a formal context, several concepts can be produced. A concept is a set
of objects that share several attributes. It can be considered as an abstraction
of these objects.



Definition 2 (Concept). A concept is a pair (X, Y ) with X ⊆ O, Y ⊆ A and
X = {o ∈ O|∀y ∈ Y, (o, y) ∈ I} is the extent (covered objects),
Y = {a ∈ A|∀x ∈ X, (x, a) ∈ I} is the intent (shared attributes).

In other words, the sets of objects and attributes are maximal, i.e. there is
no other object that belongs to the concept extent and owns all the attributes
of the intent. Moreover, there is no other attribute that belongs to the concept
intent and that is owned by all the objects of the extent. These concepts can be
organized in a lattice: A concept c1 is lower than a concept c2 if the extent of c1

is included in the extent of c2 (and inversely, the intent of c2 is included in the
intent of c1).

FCA is efficient when considering objects described by binary attributes. In
order to deal with non binary attributes, FCA has to be extended. One inter-
esting possible extension is to classify several objects taking into account the
relations between them. Among the existing approaches, Relational Concept
Analysis [1] takes into account this possibility and considers the links between
the objects as relational attributes. At the beginning, these relational attributes
connect an object to several objects. Then, they connect an object to several con-
cepts that have emerged from the classification of the objects. Instead of having
just one formal context, RCA needs to define several formal contexts. Several
relational contexts, that represent relations between objects defined in the for-
mal contexts, can be added. Circularity between relations is admitted. Those
formal and relational contexts together are called a Relational Context Family
(RCF). Figure 1 shows a simple RCF, that deals with animals living in different
places. There is a formal context which describes the animals (Kanimals), an-
other one which describes the places (Kplaces), and finally a relational context
(Rlive) describing the living relation between the animals and the places.

Definition 3 (Relational Context Family). A Relational Concept Family R
is a pair (K, R). K is a set of formal contexts Ki = (Oi, Ai, Ii), R is a set of
relational contexts Rj = (Ok, Ol, Ij) (Ok and Ol are object sets of contexts Kk

and Kl).

Fig. 1. A relational context family

New abstractions emerge from a RCF by iterative building of concept lat-
tices, and enhancement of the RCF with the concepts discovered in the concept
lattices. The steps of this iterative construction are described below.



Initialization step. The created lattices at this step are the same as the one
that would have been created using classical FCA: for each formal context Ki, a
lattice L0

i is created. Figure 3 (left) shows the initial lattices corresponding to
the contexts of the Figure 1.

Step n+1. For each relational context Rj = (Ok, Ol, Ij), a context Rs
j = (Ok, A, I)

is created. A contains the extents of the concepts of the lattice Ln
l , and the inci-

dence function I contains the element (o, a) if S(R(o), a) is true. The function S

is called a scaling operator. The most common scaling operators are S∃(R(o), a),
that is true iff ∃x ∈ R(o), x ∈ a, and S∀(R(o), a), that is true iff ∀x ∈ R(o), x ∈ a.
Figure 2 shows such an updated relational context (we used the S∃ scaling oper-
ator). It connects animals with concepts of the lattice (shown in Figure 3 (left))
corresponding to Kplaces. In this lattice, the concept 7 is an abstraction of the
places on earth. The application of FCA on Kk ∪ {Rs

j = (Ok, A, I)} creates

new concepts that are added to Ln
k to obtain Ln+1

k . Figure 3 (right) shows such
an updated lattice family. Lanimals has been calculated using Kanimals ∪ Rs

live.
The concept 10 of Lanimals has been created using relational descriptions. It
represents the animals that live on earth.

Fig. 2. RCF of Fig. 1 after the first step

This process stops when all the lattices of a step n are isomorphic to those
of the step n − 1. After this step, the relational contexts will not be modified
and no more concepts will emerge.

2.2 Encoding and decoding input data in FCA/RCA-based tools

In order to understand the existing limitations of FCA/RCA-based tools, an
overview of the existing ones is needed taking into account their encoding/decoding
operation. This operation, named FCA mapping, consists in converting input
data into FCA contexts and then converting the built lattices back to the initial
format. Most of the existing FCA-based tools [8,9] do not consider the FCA
mapping as a crucial task. However, if a tool builder wants to integrate any
FCA-based tool, he has to build himself a mapping tool to convert the input
data to be analyzed into the input format of the FCA-based tool. Such an ap-
proach is expensive, moreover the knowledge of the configuration is included in
the mapping tool, and the code of this tool has to be modified if the configuration
changes.



Fig. 3. The lattice families corresponding to the RCF of Fig. 1 and Fig. 2

Some FCA-based tools like ConAn [10](a FCA-based reengineering tool) have
identified the importance of defining FCA mappings, and the advantages and
drawbacks respectively. ConAn uses a software model expressed in a language
independent way (called a FAMIX model), and FCA mappings to build a for-
mal context. After building the corresponding lattices, ConAn builds a new
model, called a high-level view (to help in the software analysis) in a format
understandable by a regular developer with no lattice theory knowledge. Un-
fortunately, ConAn is focused on software reengineering and does not provide
facilities to express neither FCA mappings nor high-level view formats. It is still
necessary to hand-code a translator between a base model (named as FAMIX)
and a formal context and then, between the concept lattices and the high-level
view.

From our viewpoint, the most advanced approaches are [3] and [11]. They aim
at discovering new abstractions in UML models using RCA. They use different
tools: (1) a CASE tool (Objecteering [12] for [3], Eclipse [13] for [11]) to generate
a context family, (2) Galicia [14] to build the corresponding lattice family, and
then, (3) the CASE tool again to build an improved UML model. The FCA
mapping between a UML model and a context family can be configured in both
tools. However, this configuration mechanism is specific to UML. Therefore these
tools cannot be used to analyze other input data, such as Java source code.

A FCA-based tool to easily define FCA mappings on a wide range of input
data formats (UML model, Java code, Smalltalk code, . . . ) is still missing. The
design of such a tool is the contribution of this paper. To realize it, we need to
introduce a high-level configuration mechanism which allows to express which
elements of the input data have to be transformed into FCA items. For that
purpose, it is necessary to use a high-level modeling language, which is able to
represent a UML model or a Java source code in a common way. Such support
is provided by the Model Driven Engineering paradigm, described in the next
section.



3 Model Driven Engineering

Model Driven Engineering [4] is a recent software development paradigm. It
was introduced to deal more with abstractions rather than code. In a MDE-
based development, every produced or used artifact (including code) is a model,
whose structure is defined by a metamodel (a model is said to conform to a
metamodel). To pragmatically handle two models that conform to two different
metamodels (for example to transform a UML model into a Relational Database
model), a program has to be written, dealing with both metamodels. For that
purpose, MDE assumes the existence of a unique meta-metamodel. Such a meta-
metamodel allows to define how a metamodel is structured. Mainly, two meta-
metamodels are used: EMOF [15] (defined by the OMG) and Ecore [16], (defined
by Eclipse). Since we have built our tool with the Eclipse platform, we have cho-
sen the meta-metamodel Ecore. However, Ecore and EMOF have no significant
differences. In the following, we will use Ecore. The meta-metamodel is the last
level in the modeling hierarchy (shown in Figure 4), and is expressive enough to
describe itself. Therefore a meta-meta-metamodel is not necessary.

Fig. 4. The metamodeling hierarchy

A fundamental element of MDE is the notion of model transformation. A
model transformation is a program or a set of rules that takes one or several
models in input (conform to one or several metamodels) and produces as output
one or several models.

In Section 1, we explained that the goal of this paper is to provide a high-level
configuration mechanism allowing to define FCA mappings. Such a mechanism
must be able to define FCA mappings, for example, from a UML model as well
as from Java code, because Ecore can describe either a UML model or Java
code. Therefore, a FCA mapping can be considered as a model transformation
based on Ecore (and thus handling all kinds of models) from a model into a RCF
model, and reciprocally from a CLF model to an output model (we will introduce
what is a RCF and CLF model in the next section). Since all the information
from a UML model or Java code is not relevant for a RCA restructuration, the
tool builder still have to be able to select what kind of data he wants to place in
the FCA items, that will be produced by the transformation. The next section



explains our approach in detail, based on MDE, that allows an easy definition
of FCA mappings.

4 FCA/RCA with a MDE approach

A global view of a FCA/RCA process using a MDE approach is shown in Fig-
ure 5. The purpose of using such a process on an input data (called model in
the MDE approach) is to lead to the creation of output data that contains rel-
evant abstractions. In this process, we consider that input and output models
conform to the same metamodel. This is the most common case when using a
RCA process for restructuration or abstraction discovery.

Fig. 5. Process overview

The encoding transformation of the process aims at producing FCA/RCA
items from an input model. Only some configuration data is required in order
to perform that transformation. The FCA/RCA transformation (described in
section 2) builds the lattices corresponding to the input contexts. The decoding
transformation consists in converting the produced lattices back to output data,
conforming to the same metamodel as that before the encoding transformation.
Since the input and output data metamodels are the same, the decoding trans-
formation uses the same configuration as the encoding one to produce the output
model.

To illustrate how the decoding and the encoding steps work, we use two
sample input models: a UML model and a Java source code. Figure 6 shows
these models in a MDE fashion, detailing models, metamodels and the meta-
metamodel. The conforms to arrows show the connections between the elements
of the models and the elements of the metamodel; and between the metamodels
and the meta-metamodel. For the sake of clarity, the Java, UML and Ecore
metamodels have been presented in a reduced form. Next we describe how these
models are transformed through the encoding and decoding operations.



Fig. 6. The sample models

To remain in a MDE approach, a RCF metamodel was created, which is is
able to define data structures similar to the one described in Section 2. Figure 7
shows this metamodel: An RCF is composed of several formal contexts (called
EntityAttributeContext in the metamodel) and several relational contexts (called
InterEntityContext). These contexts contain an incidence relation (represented
as a set of Pair in the metamodel).

We use an UML and a Java model. In this restricted example, we are inter-
ested in using RCA on the UML model to create new superclasses by factorizing
the properties of the existing classes, based on their names. For Java, we want
to use RCA in order to create new superclasses that factorize methods from
the existing classes, based on their names. To achieve these goals, the encoding
operation has to generate formal and relational contexts describing the previ-
ously quoted elements. We introduce a configuration metamodel to give this
information to the transformation.

Figure 8 shows this metamodel. Models conform to this configuration meta-
model are used in the encoding transformation to dynamically choose the ele-
ments to consider and how to encode them. Figure 9 shows configuration models



Fig. 7. The Relational Context Family metamodel

Fig. 8. The encoding/decoding configuration metamodel

for UML and Java that lead to the creation of contexts describing the elements
we want to analyze.

The encoding transformation works as follows. First, several sets of elements
lead to the creation of several formal contexts, one for each kind of element. The
InspectedElement elements coming from the configuration model parameterize
this stage of the transformation. For each InspectedElement, a set of elements
is dynamically selected via the metaClass information. The binary attributes
that describe this set of elements are selected via the attributes information. A
formal context is finally created using these elements as objects and the binary
attributes. Given the configurations plotted by Figure 9, two formal contexts
are created for the UML model: one describing the classes and the other one,
the properties (using the name as attribute). For the Java code, two formal
contexts are created: one for the classes, the other one for the methods (using
name as attribute). Figure 10 and 11 show the formal contexts generated from
the examples.

Secondly, several relations between the elements of the input model are trans-
formed into several relational contexts. The InspectedRelation elements coming
from the configuration model parameterize this stage of the transformation.
For each InspectedRelation, a relation is selected in the input model via the
metaProperty information. The source and target are used to select the elements



Config. for UML Class Model restructuring:

Inspected Elements:
Class: attributes = [],
specializationLink = "generalization.general"

Property: attributes = ["name"],
specializationLink = "redefinedProperty"

Inspected Relations:
ownedAttribute: source = Class,
target = Property

type: source = Property,
target = Class

Config. for Java source code restructuration:

Inspected Elements:
Class: attributes = [],
specializationLink = "generalization.general"

Method: attribute = ["name"]

Inspected Relations:
methods: source = Class, target = Method

Fig. 9. Two configuration models

Fig. 10. The generated Java contexts

(described in the previously built formal contexts) involved in this relational con-
text. With the configuration in Figure 9, two relational contexts are created for
the UML model: one for the ownedAttribute relation between the classes and
the properties, and the other for the type relation between the properties and
the classes. For the Java code, one relational context is created to describe the
methods relation between the classes and the methods. Figures 10 and 11 show
relational contexts generated from the examples.

Fig. 11. The generated UML contexts

The decoding transformation aims at producing a model using the concept
lattices produced with the RCA. Figure 12 shows the metamodel of a concept
lattice family. This transformation uses the same configuration model as the de-
coding transformation. The input is a family of concept lattices, one for each



context of the input RCF. These contexts are used to represent a kind of objects
present in the source model. For the UML model, there is one lattice for the
classes and one for the properties. For the Java code, there is one lattice for the
classes and one for the methods. Therefore, the elements built from a lattice have
the same metaclass as the elements that lead to the creation of this lattice. For
instance with UML, the class lattice coming from the class formal context pro-
duces classes in the ouput UML model. The partial order between the concepts
of a lattice is used to create relations between the elements generated from the
concepts of this lattice. The name of the relation to create is in the specializa-
tionLink information from the InspectedElement coming from the configuration
model associated with the lattice. With UML, the partial order between the
concepts of the class lattice is interpreted as a generalization.general between
the classes. Binary attributes and relational attributes from a concept of a lat-
tice need to be placed in the corresponding elements. The binary attributes lead
to the creation of attributes in the corresponding element. Relational attributes
generate relations in the output model between the element corresponding to the
concept and the element corresponding to the target concept of the relational
attribute.

Fig. 12. The Concept Lattice Family metamodel

5 Conclusions and Future Work

We have proposed a generic way to encode models and programs so that they
can easily benefit from a restructuration based on FCA or RCA, as well as the
reciprocal generic way to decode the obtained lattices. The genericity of the
approach has been designed using the Model-Driven Engineering paradigm, and
is based on the knowledge of the metamodels of the artifacts to restructure and
the underlying common meta-metamodel. To restructure a model, one has just
to give (in addition to the model itself): the metamodel of the model, and a
configuration model making precise which kinds of elements of the input model
are to be taken into account. This approach is implemented in a tool written in
Java EMF that has been experimented with UML models (from France Télécom
projects [17]), Java programs, OWL, and Ecore models.

MDE gave us further significant benefits. The parameters of the RCA process
have been identified and properly modeled, consequently the RCA restructura-
tion can be easily fine-tuned. We plan to go a step further in the parameterization



of the RCA process, allowing the user to choose the algorithm to build lattices
and the scaling operator, or to define the number of steps he wants the algorithm
to perform.

Further work will consist in adapting our approach so that the input meta-
model used for the encoding can be different from the output metamodel used for
the decoding. This is useful when the discovered abstractions cannot be expressed
with the input metamodel (but could be expressed with a similar metamodel).
For example, restructuring Java programs may create multiple class inheritance,
that cannot be represented with a Java program, but that can be represented
with a UML class model.
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