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Abstract: Agile methodologies can be enhanced by the use of shadows as this fea-
ture because of its inherent ability to dynamically change the behavior of classes and
objects, provides mechanisms to ease common tasks such as prototyping, deprecating,
dynamic classification and interclassing at run-time. We feel however that shadows
should be considered a notion beyond any specific programming languages, so that
they can as well be integrated in model-driven software engineering. Therefore we
introduce Shadows-UML, an UML extension, that would help to push forward the
convergence between model-driven and agile methodologies.

1 The Shadow Concept

Keeping in mind the current trends in software engineering there are indeed pragmatic
reasons to expect the UML to play a significant role in the agile software community
[TG02, Rum06]. We show how the concept of shadows, as introduced in LPC [PT98], is
an excellent means to support Agile Software Development strategies and go on to present
the integration of shadows into the UML.

The core concept behind the shadow functionality is to mask one or more methods in a
target object (the “shadowed” object). Every invocation of a shadowed method is first
received by the shadow. The shadow can then forward this call to the shadowed object or
do something else.

Obviously such a concept needs clarification in a number of issues as for instance shad-
owing of attributes, or about which object is allowed to add shadows to other objects etc.
On the programming language level these issues have been discussed in [CFH06].

In Software Engineering context shadows are useful in the following situations:

Deprecation and Prototyping. Experience shows that software libraries are under con-
stant evolution. Shadows are a means to add additional (temporary) functionalities to an
existing library. This is helpful when deprecated methods are to be “phased out” of a
software package or when methods are added during prototyping.

Realization of non-standard inheritance relationships. Features like reclassification
[DDDGO1] and interclassing [CLO2] that aim on a more dynamic use and extension of in-
heritance relationships are well known in the research community but indeed are virtually



never used in “real world” software development projects. Shadows provide a unified way
to make these features available. For details we refer the reader to [CFHT06].

2 Shadows and the UML

The examples in the previous section show that Shadows are an excellent means to enhance
the unanticipated evolution of written programs. In the context of model-driven develop-
ment however they are as well valuable for solving design-to-code problems: Shadows
help to translate almost unconstrained models that may include multiple inheritance, multi-
instantiation or dynamic classification into main-stream programming languages that are
extended with the single new feature of shadows (as shown in [CFH™06] for Java).

However with the increasing tendency to develop software driven by modelling in agile
contexts it is clear that shadows must be somehow integrated into the UML itself. An
UML-based notation for shadows (that we call Shadows-UML) is useful both for unantic-
ipated evolution and design-to-code translation. For the latter these Shadows-UML dia-
grams will specify the use of shadows in translating an unconstrained UML class diagram
(independently of a specific programming language). Only after this, code will be written.
In this context patterns of use of shadows can be defined for easing translation.

Following the UML 2.0 Superstructure Specification [Obj04] we extended the UML in
the standard way by providing a profile, composed of stereotypes, tagged values and con-
straints that specify the new semantics. This is indeed necessary as for instance to clarify
the behavior of objects that are equipped with multiple shadows and relevant priority rules.
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