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Abstract. Symbolic objects were originally intended to bring both more structure
in data and more intelligibility in final results to statistical data analysis. We present
here a framework of similar motivation, i.e., combining a data analysis method, —
the concept analysis (fca) — with a knowledge description language inspired by
description logic (dl) formalism. The focus is hence on proper handling of relations
between individuals in the construction of formal concepts. We illustrate the re-
lational concept analysis (rca) framework which complements standard fca with
a dedicated data format, a set of scaling operators, an iterative process for lattice
construction, and translations to and from a dl language.

1 Introduction

Symbolic objects (so) (Diday (1998)) were designed to meet the urgent need
for processing of more realistically structured data, i.e., beyond mere real
number vectors, in statistical data analysis, while representing the final re-
sults in a more intelligible manner. On data formats, beside the variety of
value domains of the descriptive variables (taxonomic, interval, histogram,
etc.), higher-level structure is also provided for, e.g., in hordes which provide
for nesting of individuals. In the broader field of knowledge discovery from
data, structure and intelligibility have been pursued through a symbiosis with
knowledge representation (kr) (Brachman and Anand (1996))

Formal concept analysis (fca) (Ganter and Wille (1999)) as data anal-
ysis paradigm also endorsed kr concerns. In fact its target fca structure,
the concept lattice, represents a natural framework for both taxonomies and
conceptual hierarchies. While the standard fca framework barely admits
structure in the input datasets, recent trends targeted the complexly struc-
tured data. For example, a first trend admits explicit inter-individual links
which, once expressed as first-class objects within a power context family,
are dealt in a straightforward way, i.e., grouped into formal concepts repre-
senting new, and compound, relations (Prediger and Wille (1999)). Indepen-
dently, and somewhat closer to the so approach to structure, logic-based kr
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has been tentatively introduced in the conceptual scaling mechanism which
enables the processing of non-binary data in fca. Thus, in (Prediger and
Stumme (1999)), a language of the description logic dl family (Baader et
al. (2003)) was used to express conditions involving domain concepts and
relations, which were then applied to individuals as binary attributes. It is
noteworthy that the symbiosis of so and fca, i.e., the concept analysis of
symbolic datasets, has been investigated as well (Polaillon (1998)).

Our own study on concept analysis of complex datasets is motivated
by the rapidly growing need for interoperability between mining mechanism
and modern kr environments, especially in the wake of the Semantic Web
launch. In simple terms, this means mining tools must be able to process data
expressed in languages, such as OWL and SWRL, and output the discov-
ered knowledge in equally compatible formats. In this respect, our concerns
combine, on the one hand, the adequate clustering of relational datasets,
as logically-founded languages describe individuals by means of both unary
predicates (concepts) and binary ones (relations, or properties), and, on the
other hand, the design of compound expressions to intentionally describe the
discovered clusters. As an approach for the concept analysis of relational
data, we proposed a dedicated framework, called relational concept anal-
ysis (rca), which offers simple solutions to both concerns. Moreover, the
framework relies on three original components: a data format inspired by the
entity-relationship conceptual data model, a scaling method applying various
policies in the translation of inter-individual links into binary attributes, and
an iterative lattice construction process allowing many separate individual
sorts to be analyzed simultaneously.

The present paper summarizes the rca theoretical foundations and illus-
trates its modus operandi using a small-size, albeit realistically structured
dataset. The following Section 2 provides minimal background on fca and
then rca, and briefly examines the composition of a dl language. Section 3
introduces the sample dataset, which is then analyzed w.r.t. two different
scaling policies. The analysis processes based on wide and on narrow scaling
are followed in Section 4 and Section 5, respectively.

2 From FCA to RCA

The following is a brief presentation of the rca framework. Details may be
found in (Huchard et al. (2007)) while an implementation is available within
the Galicia platform1.

2.1 Standard FCA

fca is the process of abstracting conceptual descriptions from a set of individ-
uals described by attributes (Ganter and Wille (1999)). Formally, a context K

1 http://sourceforge.net/projects/galicia/
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associates a set of objects (O) to a set of attributes (A) through an incidence
relation I ⊆ O×A, i.e., K = (O, A, I). For example, in Section 3, a context is
presented where objects are scientific publications (e.g., monographs, journal
articles, conference papers, theses, etc.), whereas attributes are general top-
ics (e.g., software engineering, lattice theory, etc.). The represented incidence
relation is therefore to be interpreted as “speaks about” or “deals with”.

In this settings, fca focuses at the way objects group together on grounds
of shared attributes. Intuitively, each subset of objects is examined together
with the respective set of shared attributes (e.g., a set of publications deter-
mines a list of all common topics). Among all object sets, only maximal ones
are kept, i.e., sets comprising all objects incident to the shared attributes.
This is formalized by two applications mapping object sets to attribute ones
and vice versa, both denoted ′ hereafter. For instance, on objects, the ′ appli-
cation is defined as follows: ′ : P(O) → P(A); X ′ = {a ∈ A | ∀o ∈ X, oIa}.

A basic result states that maximal sets of objects, called extents in fca,
are in one-to-one correspondence to maximal sets on attributes, or intents.
Furthermore, the pairs (X, Y ) ∈ P(O) × P(A), of mutually corresponding
sets, i.e., such that X = Y ′ and Y = X ′, called (formal) concepts, form a
complete lattice with respect to the inclusion of the extents, i.e., the X part.
Extracting the concept lattice L of a context K is the key task in fca. Fig. 2
shows, on its right-hand side, the concept lattice of the publication context
which is itself embedded in the table on the left-hand side (only the first four
columns).

The classical fca apparatus is limited to datasets that either originally
represent binary relations or can be easily, i.e., with no significant precision
loss, transformed to such relations. Indeed, the conceptual scaling mecha-
nism translating non-binary attributes (e.g., numerical or nominal) into bi-
nary ones, amounts to replacing attribute values by predicates on them. For
instance, the domain of nbOfPages attribute in publications could be split
into the ranges short, standard, and long (paper), each of them expressed as
a predicate (e.g, nbOfPages≤ 6 for short one). Observe that the definition
of the predicates precedes the scaling process and is usually the charge of a
domain expert.

Unsurprisingly, the data stored in a relational database remains well be-
yond the reach of the above approach, and for some good reasons. First,
the underlying entity-relationship (er) conceptual data model admits several
entities, i.e., sorts of individuals, that are connected by relationships, i.e., n-
ary predicates on entities, whereas fca typically focuses on a single set of
individuals (although these may generate a family of contexts) and yields
a single concept lattice. As an illustration, imagine a database modeling a
collection of scientific publications, researchers, topics, author-to-paper links,
references among publications, etc. Moreover, a natural way of analyzing such
data would be to form concepts that reflect commonalities both in individual
properties and in their links to other individuals, following, for instance, the
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way dl concepts are defined (see Section 2.3). Although approaches dealing
with relations have been studied in fca, none of them allows links and prop-
erties to be mixed in concept intents. To bridge the gap, we have proposed
a relational fca framework, called relational concept analysis (rca), that
basically adds a new data format, a set of scaling mechanisms for relational
links and an iterative method for the simultaneous construction of a set of
concept lattices.

2.2 RCA summary

The rca data format, a relational context family (rcf), combines fca and er

as it consists of a set of contexts and a set of binary relations, each involving
the objects from two contexts of the rcf.

Definition 1. A relational context family R is a pair (K,R), where K is a
set of contexts Ki = (Oi, Ai, Ii), R is a set of relations rk ⊆ Oi × Oj , where
Oi and Oj are the object sets of the formal contexts Ki and Kj .

Let now a relation r (e.g., authoring of papers by researchers) link objects
from a context Ki, the domain of r, to those of Kj , its range. In order to scale
upon r so that one can use the information it conveys in the concept anal-
ysis upon Ki, we consider the conceptual structure, i.e., all (known) formal
concepts, of Kj . The concepts are turned into binary predicates just as in
classical scaling. The key difference is that in assigning such a predicate to
an object oi from Ki, instead of comparing an attribute value to a range of
such values, a set of objects, i.e., the links of type r for oi, denoted r(oi),
is compared to the extent of a concept cj on Kj . For instance, to describe
researchers with respect to the authored papers, these will be compared to
the extents of the formal concepts on the entire papers collection (e.g., jour-
nal papers on statistics). Various relationships between r(oi) and the extent
of cj (e.g., inclusion, non-empty intersection, intersection of a certain size,
etc.) may be required in order for oi to acquire the corresponding attribute,
invariably denoted by r : cj . These are discussed in the next paragraph.

Relational scaling opens the way to lattice construction. However, the
global analysis process is not one-shot, it rather proceeds iteratively, i.e.,
by successive steps alternating scaling and concept formation. Indeed, as no
restriction is imposed in the relational structure of a rcf, there may well
be circuits in the way contexts are related by relations, hence the mutual
dependence between such contexts in the sense that each of them requires
the other(s) to be processed first in order to provide the formal concepts re-
quired for scaling. To break the deadlock, a bootstrapping step is performed
in the beginning of each rca process, in which all object sorts get the lat-
tice corresponding exclusively to their local properties (from the underlying
contexts). In the subsequent steps, scaling is used to translate the already
available structure, i.e., formal concepts, from the range context of a rela-
tion to the domain one. More precisely, the current lattices are first used to
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scale upon the relations of the rcf thus generating new attributes in the
respective domain contexts. The lattices of the extended contexts are then
constructed, possibly triggering a new scaling/construction step. Indeed, as
the new attributes may yield new extents, the lattices and hence the scales
they represent may evolve, hence the need to re-scale in order to keep the
domain contexts in line with the evolution. The global process of iterative
lattice construction, called Multi-fca, nevertheless converges to a set of
lattices representing a fixed-point. Section 4 and Section 5 illustrate the way
Multi-fca unfolds.

2.3 Description logics and relational scaling

Description logics (dl) are kr formalisms rooted in first order predicate
logic that offer means to structure the otherwise flat logical representation,
namely in terms of concepts, roles, and individuals (Baader et al. (2003)).
dl languages allow expressions, or descriptions, to be composed out of other
descriptions up to an arbitrary depth. A dl language is built on top of a
collection of primitive concept and role names which denote the meaningful
concepts and relations from a domain (e.g., Human, Female, Doctor, child,
father, etc.), individual names (e.g., Ann) and constants (⊤ and ⊥).

Concepts are interpreted as sets of individuals (their instances) and roles
as sets of individual pairs2. Further concepts and roles are defined by com-
bining concept and role names, either primitive or already defined, via a set
of constructors, e.g., conjunction (⊓), disjunction (⊔), negation (q). By def-
inition, a role has a domain and a range concept and is inherited by the
sub-concepts of the domain concept. It may be further restricted for every
concept it applies to, for instance, by applying universal or existential quan-
tifiers to the set of links. Thus, given a role r and a concept C, the following
concept expressions can be composed: (i) ∀r.C (value restriction), (ii) ∃r.C
(full existential quantification), and (iii) ∃r.⊤ (limited existential quantifica-
tion). All these work as filters on the individuals: (i) collects those whose
links of type r, if any, point exclusively to instances of the concept denoted
by the expression C, (ii) those with at least one r link to such an instance,
and (iii) those with at least one r link, regardless of the underlying concept.
As an illustration, consider the expression of the concept of “all fathers and
all parents of a female child whose children are all doctors” in dl:

Male ⊓ ∃child.⊤ ⊔ Human ⊓ ∃child.Female ⊓ ∀child.Doctor

Individuals are represented in a dl language as constants (e.g., Ann) and
characterized by a set of ground predicates, unary for the concepts they be-
long to and binary for the roles they possess (e.g., Human(Ann), Female(Ann),
child(Ann, Mary)). Consequently, the translation of a collection of dl indi-
viduals into an rcf is immediate: First, each individual is assigned a unique

2 See (Baader et al. (2003)) for formal definitions for dl syntax and semantics.
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concept to express its very nature (e.g., Human) in the same way entities
within an er schema do. Such concepts are translated as contexts while their
instances become the respective formal objects. Next, the remainder of the
concepts an individual belongs to are translated as binary attributes and
attached to the underlying context (e.g., Female for the context modeling
Human). Finally, all roles become relations in the rcf whose domain and
range contexts are determined following the individuals in the role pairs and
the contexts comprising their respective translations.

The dl formalism has a direct impact on the rca scaling mechanism as
well. Indeed, as mentioned previously, given a relation r that connects ob-
jects from Ki to those from Kj , the various ways to assign an attribute r : cj ,
where cj is a concept on Kj , to objects oi from Ki follow restriction con-
structors from dl. More precisely, we defined several scaling policies, termed
encoding schemes, including a value-restriction-like scheme, called strict nar-
row, a full existential-like one, or wide, and a third one, called simply narrow,
that amounts to a combination of both. Indeed, while strict narrow scheme
only requires r(oi) ⊆ extent(cj), the narrow adds the condition r(oi) 6= ∅.
The latter condition is implied by the requirement of a wide scheme, i.e.,
r(oi) ∩ extent(cj) 6= ∅. The way narrow and wide encoding scheme work is
illustrated below.

Given the forward translation from a dl language to an rcf and the
above scaling policies, the reverse translation of the formal concepts yielded
by rca into a dl knowledge base is immediate.

3 Running example

The sample rcf is made of a single context and two binary relations. The
Papers context assigns publications, as objects, to the topics they refer to
— software engineering (se), lattice theory (lt) and man machine interface
(mmi) — as attributes. The relation cites models citations while develops
connects a long publication, e.g., a thesis, to a paper whose key ideas the
former extensively develops. Fig. 2 depicts the rcf both as a conceptual
schema and as a data graph made of links and individuals (to whom codes
are assigned for subsequent use in the text). In order to eases the tracking of

P a p e r sc i t e sd e v e l o p s a ( g w 9 9 )b ( b m 7 0 )g ( b o t 9 1 ) )h ( m o o 9 6 )c ( a r e 0 3 )d ( d i c 9 6 )e ( a r e P H D )f ( h u c h H D R ) i ( v a l 0 2 )k ( r o u a P H D )l ( l e b e r H D R ) j ( l e b e r 0 2 )d e v e l o p sd e v e l o p sd e v e l o p sd e v e l o p s c i t e sc i t e sc i t e sc i t e s
Fig. 1. Sample rcf. Left: As UML schema; Right: As data graph.
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the gradual emergence of formal concepts, the example was stripped of a large
number of papers and citation links. It nevertheless shows a complex, three-
level link structure: Indeed, a set of four papers (level one) are substantial
developments of four other papers (level two) which cite papers on level
three. Moreover, though cycles in links are avoided, these are dealt with in
much the same way. The rcf corresponds to a dl knowledge base with two
roles (develops and cites) and four concepts, i.e., Papers, AboutLatticeTheory,
AboutSoftwareEngineering, and AboutManMachineInterface.

With an object set O = {a..l} and attribute set A = {lt, mmi, se} the
information content of the rcf can be summarized as follows (see Fig. 2):

• I ⊆ O × A ; I = {(a, lt), (b, lt), (g, mmi), (h, se)},

• cites ⊆ O × O ; cites = {(c, a), (c, g), (d, b), (d, h), (i, a), (j, b)},

• develops ⊆ O × O ; develops = {(e, c), (f, d), (k, i), (l, j)}.

Thus, initially, only level-three papers share descriptions and hence form con-
cepts, e.g., a and b share the lt topic and therefore form the lattice theory
publication concept. The lattice yielded by the paper context, regardless of
the existing links, is given in Fig. 2 (on the right). Obviously, the aforemen-
tioned concept c0= ({a, b}, {lt}) is the only non-trivial one. This lattice, once
translated into binary attributes by scaling, enables new groupings, e.g., of
c, d, i, j which cite at least one paper on lattices. The resulting concept trig-a b

c i t e s d e v e l o p s
c d

xxxxxx g h
xx

i j
x x

a b cdefgh ijk l
a b cdefgh ijk lK p a p e r s

a b cdef xxxx
gh ijk l

g w 9 9b m 7 0a r e 0 3d i c 9 6a r e P H Dh u c H D Rb o t 9 1m o o 9 6v a l 0 3l e b e r 0 2r o u a P H Dl e b e r H D R
l t m m i s e

a bl t gm m i hs ea b c d e f g h i j k ll t m m i s e
20 3 41

Fig. 2. Left: Initial rcf on papers; Right: Lattice 1 on papers.

gers yet further sharing, this time at level one, and the whole process goes
on. The way the analysis process unfolds and its final result depend on the
exact scheme used for scaling, as shown by the next two sections.
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4 Narrow scaling-based RCA

Intuitively, the narrow scheme favors compact lattices as potentially less ob-
jects will get the new attributes due to the stronger requirements.

Step 1 Narrow scaling upon cites and w.r.t. lattice in Fig. 2 adds five
new attributes of the type cites:c to the context. However, given the non-
empty citation link sets (cites(c) = {a, g}, cites(d) = {b, h}, cites(i) = {a},
cites(j) = {b}), only two of them, i.e., cites:c2 and cites:c0, are effectively
assigned to a paper. Thus, all level-two papers, i.e., c, d, i, j, get the attribute
cites:c2 in the scaled context as c2 comprises the entire dataset, whereas
only i and j get cites:c0 as well. Correspondingly, the relation I is extended
with the pairs (c,cites:c2 ), (d,cites:c2 ), (i,cites:c2 ), (j,cites:c2 ), (i,cites:c0 ),
and (j,cites:c0 ) (see Fig. 3).

a b l tcd 0 3c i t e s d e v e l o p s
e f xxxx 4

gh
m m i s e

ij xxk l
2

xx
xx 2g w 9 9b m 7 0a r e 0 3d i c 9 6a r e P H Dh u c H D Rb o t 9 1m o o 9 6v a l 0 3l e b e r 0 2r o u a P H Dl e b e r H D R

xxxx
a b c d e f g h i jl ta b m m ig s eh c i t e s : c 0 , c 2i jl t m m i s e c i t e s : c 0 , c 2d e v e l o p s : c 2

0 3 4 65
2

1
c i t e s : c 2c d i j d e v e l o p s : c 2e f k l 7

Fig. 3. Narrow scaling, step 1. Left: The scaled context; Right: Lattice 2.

Narrow scaling upon develops ranges only over papers having such links,
i.e., e, f , k, and l. As none of the developed papers, i.e., c, d, i, and j, belongs
to a non-trivial concept in the scaling lattice (i.e., other than c2 ), level-one
papers only get the attribute develops:c2. The resulting scaled context and
its lattice are given in Fig. 3. Three new concepts appear in the lattice:

• c5=({c,d,i,j},{cites:c2}) – papers citing only papers of the rcf,

• c6=({i,j},{cites:c0, cites:c2}) – papers citing only papers about lattice
theory, i.e., in c0, as c2 is redundant,

• c7=({e,f,k,l},{develops:c2}) – developments of papers citing papers of
the rcf.
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Step 2 Given Lattice 2, richer than the initial one, narrow scaling is applied
again upon cites and develops. While scaling upon cites does not add any-
thing new, develops makes new incidences appear. First, as all the developed
papers belong to the extent ofc5, all the level-on papers also get the devel-
ops:c5 attribute. Moreover, k and l also get develops:c6. The scaling yields a
new rcf and its corresponding lattice, both given in Fig. 4.a b s ecd l t 2 3c i t e s d e v e l o p s

e f xxxx 4
gh

m m i
ij xxk l xx

2 5 6
xx xx xx xx0

xx
x xg w 9 9b m 7 0a r e 0 3d i c 9 6a r e P H Dh u c H D Rb o t 9 1m o o 9 6v a l 0 3l e b e r 0 2r o u a P H Dl e b e r H D R

a b c d e f g h i jl ta b m m ig s eh c i t e s : c 0 , c 2i jl t m m i s e c i t e s : c 0 , c 2d e v e l o p s : c 2 , c 5 , c 60 3 4 652
1

c i t e s : c 2c d i j d e v e l o p s : c 2 , c 5e f k l7d e v e l o p s : c 2 , c 5 , c 6k l8
Fig. 4. Narrow scaling, step 2. Left: The scaled context; Right: Lattice 3.

The only new abstraction discovered at this stage is c8 comprising pub-
lications that develop papers citing only papers about lattice theory. Step
four terminates the analysis process, as no new concepts will be produced
by further scaling. The interpretations of the formal concepts from the final
lattice and their respective translations into dl are provided in Table 1.

5 Wide scaling-based RCA

The trace of the process with a wide scaling scheme starts immediately after
the basic step of lattice construction on the unscaled context (see Fig. 2).

Step 1 When the inital lattice is used to scale upon cites, only the descriptions
of papers c, d, i, j evolve. Hence all level-two papers get the attributes cites:c0
and cites:c2, whereas c gets cites:c3 as well, and d cites:c4. The result is to
be seen in the scaled context in Fig. 5.

Applying wide scaling to develops and the initial lattice yields the same
results as in the identical step of the narrow scaling-based process. Thus,
c2 being the only one whose extent comprises developed papers, all level-
one papers get the attribute develops:c2. This yields the rcf depicted in
Fig. 5 together with its lattice. The newly constructed concepts c5, c6, and c7
represent, respectively, papers citing at least one paper about lattice theory,
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Id textual interpretation translation into dl

c0 papers on lattice theory AboutLatticeTheory

c1 papers having all properties ⊥

c2 all papers of the dataset Paper

c3 papers on man machine interface AboutManMachineInterface

c4 papers on software engineering AboutSoftwareEngineering

c5 papers citing papers of the dataset C5 ≡ ∃cites.⊤ ⊓ ∀cites.Paper

c6 papers citing only papers on lattice
theory

C6 ≡ ∃cites.⊤
⊓ ∀cites.AboutLatticeTheory

c7 papers developing only papers that
cite only papers of the dataset

∃develops.⊤ ⊓ ∀develops.C5

c8 papers developing only papers that
cite only papers on lattice theory

∃develops.⊤ ⊓ ∀develops.C6

Table 1. Narrow scaling. Interpretation of the mined concepts.

papers citing at least one paper both about man machine interface and lattice
theory, and papers citing at least one paper both about software engineering
and lattice theory. Furthermore, c8 represents papers that develop at least
one paper of the experiment.abc d 0 3c i t e s

e f xxxx 4
gh ij xxk l

2
xx xx xxxxg w 9 9b m 7 0a r e 0 3d i c 9 6a r e P H Dh u c H D Rb o t 9 1m o o 9 6v a l 0 3l e b e r 0 2r o u a P H Dl e b e r H D R

l t m m i d e v e l o p s
xxx x

2s e a b c d e f g h i jl ta b m m ig s eh c i t e s : c 0 , c 2c d i jc i t e s : c 0 , c 2 , c 3c c i t e s : c 0 , c 2 , c 4d0 3 4 56 7l t m m i s e c i t e s : c 0 , c 2 , c 3 , c 4 d e v e l o p s : c 2
2

1
d e v e l o p s : c 2e f k l 8

Fig. 5. Wide scaling. Left: rcf 2; Right: Lattice 2 on papers.

Step 2 Applying wide scaling to cites and the lattice of Fig. 5 does not bring
any new incidence pair to the context. In contrast, scaling upon develops
creates new attributes out of the concepts discovered at the previous step,
i.e., c5 to c8, and hence abstractions. Thus, all level-one papers get the
develops:c5 attribute as the extent of c5 comprises all level-two concepts. In
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addition, e gets develops:c6 and f develops:c7. The rcf of step 2 is drawn in
Fig. 6 together with its lattice.a b cd 0 3c i t e s

e f xxxx 4
gh ij xxk l

2
xx
xx xxxxg w 9 9b m 7 0a r e 0 3d i c 9 6a r e P H Dh u c H D Rb o t 9 1m o o 9 6v a l 0 3l e b e r 0 2r o u a P H Dl e b e r H D R

l t m m i d e v e l o p s
xxxx

2s e 5 6 7x xx xx x
a b c d e f g h i jl ta b m m ig s eh c i t e s : c 0 , c 2c d i jc i t e s : c 0 , c 2 , c 3c c i t e s : c 0 , c 2 , c 4d0 3 4 56 7l t m m i s e c i t e s : c 0 , c 2 , c 3 , c 4d e v e l o p s : c 2 , c 5 , c 6 , c 7

2
1

d e v e l o p s : c 2 , c 5e f k l 8d e v e l o p s : c 2 , c 5 , c 6e9 d e v e l o p s : c 2 , c 5 , c 71 0f
Fig. 6. Wide scaling. Left: rcf 3; Right: Lattice 3 on papers.

The newly formed concepts c9 and c10 represent papers that develop
papers citing: papers about man machine interface and lattice theory and
papers about software engineering and lattice theory, respectively. Moreover,
the already existing concept c8 gets more focused as it turns out to represent
papers that develop papers citing work on lattice theory. The interpretation
and the translation into a dl format of all the concepts from the final lattice
is presented in Table 2.

Id textual interpretation translation into dl

c5 papers citing one+ paper on lattice theory ∃cites.AboutLatticeTheory

c6 papers citing one+ paper on lattice theory
and one+ on man machine interface

∃cites.AboutLatticeTheory
⊓ ∃cites.AboutManMachineInterface

c7 papers citing one+ paper on lattice theory
and one+ paper on software engineering

∃cites.AboutLatticeTheory
⊓ ∃cites.AboutSoftwareEngineering

c8 papers developing one+ paper that cites
one+ paper on lattice theory

∃develops.∃cites.AboutLatticeTheory

c9 papers developing one+ paper that cites
one+ paper on both lattice theory and man
machine interface

∃develops.∃cites.(AboutLatticeTheory
⊓ AboutManMachineInterface)

c10 papers developing one+ paper that cites
one+ paper on both lattice theory and soft-
ware engineering

∃develops.∃cites.(AboutLatticeTheory
⊓ AboutSoftwareEngineering)

Table 2. Wide scaling: interpretation of concepts (only unseen in Table 1).
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6 Conclusion

The rca framework illustrated here is a first step towards the complete in-
teroperability between data mining and kr tools. Indeed, its input is fully
compatible with the standard data models, e.g., the relational one, while
its results are easily expressible in terms of a dl language. Therefore, the
knowledge mined from the input data is directly available for reasoning and
problem-solving.

Many issues with rca are yet to be tackled: First, the scalability is still
an open issue, since the size of lattices grows rapidly w.r.t. the growth of
relations between contexts. Various tracks for preventing combinatorial ex-
plosion are currently explored, e.g. using reduced structures such as iceberg
lattices or Galois sub-hierarchies. Next, algorithmic aspects are among pri-
mary concerns. For instance, efficiency could be further improved by replacing
construction from scratch by incremental lattice maintenance. Finally, we are
currently studying further scaling policies, e.g., the quantified existential re-
strictions providing upper/lower limits of the number of links to lay in a
concept.
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