
HAL Id: lirmm-00184106
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00184106v1

Submitted on 24 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Look and Say Fibonacci
Patrice Séébold

To cite this version:
Patrice Séébold. Look and Say Fibonacci. RAIRO - Theoretical Informatics and Applications
(RAIRO: ITA), 2008, 42 (4), pp.729-746. �10.1051/ita:2007060�. �lirmm-00184106�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00184106v1
https://hal.archives-ouvertes.fr

Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

LOOK AND SAY FIBONACCI

Patrice SÉÉBOLD1, 2

Abstract. The LS (Look and Say) derivative of a word is obtained
by writing the number of consecutive equal letters when the word is
spelled from left to right. For example, LS(1 1 2 3 3) = 2 1 1 2 2 3 (two
1, one 2, two 3). We start the study of the behaviour of binary words
generated by morphisms under the LS operator, focusing in particular
on the Fibonacci word.

Résumé. La dérivée LS d’un mot est obtenue en décrivant les blocs
de lettres qui apparaissent quand on épelle le mot. Par exemple,
LS(1 1 2 3 3) = 2 1 1 2 2 3 (deux 1, un 2, deux 3). Nous commençons
l’étude de la transformation, par l’opération LS, des mots binaires en-
gendrés par morphismes. Notre attention se porte ici en particulier sur
le mot de Fibonacci.

1991 Mathematics Subject Classification. 68R15.

1. Introduction

Between remarkable words often studied for their combinatorial properties, the
Fibonacci infinite word plays a central role. It is the basic model for Sturmian
words, and almost all the nice properties of the Fibonacci numbers have a coun-
terpart in the Fibonacci infinite word.

Here we study an operation on words which has no counterpart (to our knowl-
edge) in numbers. The Look and Say derivative of a word is obtained by writing
the number of consecutive equal letters when the word is spelled from left to right.
It seems that this operation was first studied by Conway [9]. Other properties were

Keywords and phrases: Look and Say sequence, Conway, binary words, Fibonacci word, mor-

phisms, Lyndon factorization

1 LIRMM, Univ. Montpellier 2, CNRS - 161 rue Ada, 34392 Montpellier, France
e-mail: Patrice.Seebold@lirmm.fr

2 Département Mathématiques et Informatique Appliquées - UFR4, Université Paul Valéry,
Route de Mende, 34199 Montpellier, France

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

given by Germain-Bonne in a series of three unpublished papers [10–12]. This op-
eration may also be compared to run-length encoding (see, e.g., the recent work
of Brlek et al. on smooth infinite words [7]).

This is an unusual operation whose behaviour is rather hard to predict in gen-
eral. The goal of the present paper is to make the very beginning of the study of
the behaviour of binary words generated by morphisms under the Look and Say
operation. We will consider in particular the case of the Fibonacci word which is
interesting and gives some surprising results.

The paper is organized as follows. After some preliminaries, section 3 is dedi-
cated to a description of the Look and Say operation. Some elementary properties,
given in section 4, allow to narrow the study down to the case of words over al-
phabets with two or three letters, and the important notions of chains and cycles
are described in section 5. First general results are given in sections 6 and 7. Then
the main part of the paper is section 8 which presents the beginning of a study of
the behaviour of the Fibonacci infinite word under the action of the LS operator.

2. Preliminaries

The terminology and notations are mainly those of Lothaire, 2002 [14] and
Allouche and Shallit, 2003 [1].

Let A be an alphabet, finite set of letters, and A∗ the set of (finite) words over
A, free monoid generated by A. The identity element of A∗ is the empty word
denoted by ε. We denote by A+ the semigroup A∗ \ {ε}.

The length of a word u, denoted by |u|, is the number of occurrences of letters
in u. In particular |ε| = 0.

If n is a non-negative integer, un is the word obtained by concatenating n

occurrences of the word u. Of course, |un| = n|u|. The cases n = 2, n = 3, and
n = 4 deserve particular attention in what follows. A word u2 (resp. u3, u4), with
u 6= ε, is called a square (resp. a cube, a 4-power).

A word w is called a factor (resp. a prefix, resp. a suffix) of u if there exist words
x, y such that u = xwy (resp. u = wy, resp. u = xw). The factor (resp. the prefix,
resp. the suffix) is proper if xy 6= ε (resp. y 6= ε, resp. x 6= ε).

An infinite word (or sequence) over A is an application x : N → A. It is written
= x0x1 · · ·xi · · · , i ∈ N,xi ∈ A. The set of infinite words over A is Aω, and the
set of all the words (finite or infinite) over A is A∞.

The notion of factor is extended to infinite words as follows: a (finite, possibly
empty) word u is a factor (resp. prefix) of an infinite word a over A if there exist
n ∈ N (resp. n = 0) and m ∈ N (m = |u|) such that u = an · · · an+m−1 (by
convention an · · · an−1 = ε).

A factor u of an infinite word x is right special if there exist two different letters
of A, say a and b, such that both ua and ub are factors of x. An infinite word over
a two-letter alphabet is Sturmian if it contains exactly one right special factor of
each length.

TITLE WILL BE SET BY THE PUBLISHER 3

A (finite or infinite) word w over A is square-free if it contains no factor uu with
u ∈ A+.

In what follows, we will consider morphisms on A. Let B be an alphabet (often,
B = A).

A morphism on A (in short a morphism) is an application f : A∗ → B∗ such
that f(uv) = f(u)f(v) for all u, v ∈ A∗. It is uniquely determined by its value on
the alphabet A. A morphism f on A is nonerasing if f(a) 6= ε for all a ∈ A. When
|f(a)| = 1 for all a ∈ A, f is said to be a literal morphism.

Now suppose A = B. A nonerasing morphism is prolongable on x0, x0 ∈ A+, if
there exists u ∈ A+ such that f(x0) = x0u. In this case, for all n ∈ N the word
fn(x0) is a proper prefix of the word fn+1(x0) and this defines a unique infinite
word

x = x0uf(u)f2(u) · · · fn(u) · · ·

which is the limit of the sequence (fn(x0))n≥0. We write x = fω(x0) and say that
x is generated by f. A word w ∈ A∞ is a fixed point of a morphism f on A if
f(w) = w.

A D0L-system is a triple G = (A, f, u) where A is an alphabet, f a morphism
on A and u ∈ A∗. An infinite word x is generated by G if x = (fk)ω(u) for some
k ∈ N.

A HD0L-system is a quintuple T = (A, u, f, g, B) where A and B are alphabets,
u ∈ A+, f is a nonerasing morphism on A, prolongable on u, and g is a morphism
from A onto B. An infinite word y is generated by T if y = g(fω(u)). When g is a
literal morphism T is called a tag-system. The name of tag-system comes from the
fundamental study of Cobham [8]. Chapter 5 of [18] is dedicated to a deep study
of D0L-systems (see also Pansiot, 1983 [16] who used the terminology extended
tag-systems for HD0L-systems).

3. The Look and Say derivative

Let Ak = {1, . . . , k} be the alphabet whose letters are the first k positive inte-
gers. In what follows we will consider finite or infinite words over Ak, but no word
will have any infinite run of one given letter.

The Look and Say derivative of a (finite or infinite) word u over Ak is the (finite
or infinite) word LS(u) obtained by describing the consecutive runs of letters in
u.

Example 3.1. Let u = 3 5 5 2. The description of u is ”one three, two fives, one
two” thus LS(u) = 1 3 2 5 1 2.

Now, let u = (1 2)ω. The description of u is ”one one, one two, one one, one
two, . . .” Here, LS(u) = (1 1 1 2)ω.

Remark 3.2. The alphabet on which LS(u) is written is not necessarily Ak. For
example, if u = 1 1 1 2 (u ∈ A∗

2) then LS(u) = 3 1 1 2 : LS(u) ∈ A∗
3.

4 TITLE WILL BE SET BY THE PUBLISHER

Other clarifications must also be given here.

• When describing the word u, occurrences of one given letter are collected
consecutively (in the order of a reading from left to right), not globally
(commutatively) in the whole word.

For example, if u = 3 5 5 2 5 5 5 3 then LS(u) = 1 3 2 5 1 2 3 5 1 3
(LS(u) 6= 1 2 2 3 5 5).

• On the other hand it is always understood that repetitions are collected
maximally: in the previous example the description cannot be ”one three,
one five, one five, one two, . . . ”.

This leads to a formal definition of the Look and Say derivative.

Definition 3.3. Let (αj)j≥1 be a sequence of positive integers.
If u = aα1

1 aα2

2 . . . aαn

n . . ., where ai−1 6= ai and ai 6= ai+1 for each i ≥ 2, then
LS(u) = α1a1 α2a2 . . . αnan

As usually LS(u) = LS1(u) and, for any positive integer k, LSk+1(u) =
LS(LSk(u)). They are all descendants of u. The word limn→∞ LSn(u) is denoted
by LSω(u).

4. Basic properties

The first basic property is obvious. It indicates that fixed points for the opera-
tion LS must be searched in the set of infinite words.

Property 4.1. [9,10] The empty word ε and the word 22 are the only finite fixed
points of LS. �

In the following, ε and 22 will be called trivial words. An important consequence
of the above property is that every non trivial finite word u has an infinite number
of descendants that are all different.

The next two properties indicate that, for the fixed points, the study of the
Look and Say derivatives can be reduced to the case of words over a three-letter
alphabet: indeed 4-powers can never be created by applying the operation LS, and
the existing letters greater or equal to 4 are rejected to the end of the derivative.

Property 4.2. [9, 10] For every positive integer k and for every word u ∈ A∞
k ,

the word LS(u) = aα1

1 aα2

2 . . . aαn

n . . . is such that αi ∈ {1, 2, 3} for all i ≥ 1.

Proof. Let yαxβzγ be any factor of u where x, y, and z are pairwise different
letters. In LS(u) this factor gives αyβxγz. Since y 6= x and z 6= x, the greatest
possible power is x3 when β = γ = x. �

A direct consequence of Property 4.2 is the following.

Property 4.3. Let u ∈ A∞
k be such that LS(u) ∈ A∞

3 . Then LSn+1(u) ∈ A∞
3 for

every positive integer n. �

Corollary 4.4. For every positive integer k and for every non trivial word u ∈
A∞

k , LSω(u) ∈ Aω
3 . �

TITLE WILL BE SET BY THE PUBLISHER 5

5. Chains and cycles

All the results of this section are due to B. Germain-Bonne [11]. They are given
without proof.

5.1. Chains

The operator LS is of course not a morphism: for example, LS(1 1) = 2 1 but
LS(1)LS(1) = 1 1 1 1. Conway [9] and Germain-Bonne [11] have designed sets of
elements on which LS acts as a morphism. The study of these sets (92 elements
in Conway, 1987 [9], 91 elements in Germain-Bonne, 1993 [11]!) is out of our
purpose. But in [11], Germain-Bonne has introduced the notions of sub-chains
and half-chains on which LS acts partially as a morphism, and that will be useful
in the present paper.

Let D be the following set of eight words

D = {1 1 1, 1 2 3, 1 3 1, 1 3 2, 3 1 1 2, 3 1 1 3, 3 1 2, 3 2 1}.

A sub-chain is any finite word over the alphabet A3 which starts with d ∈ D

and ends by the letter 2.
A half-chain is any infinite word starting with a factor d ∈ D.

An important result is the following.

Lemma 5.1. Let w be a word such that w = uv with u a sub-chain and v a half-
chain. Then LS3(u) is a sub-chain (longer than u), LS3(v) is a half-chain, and
LS3(w) = LS3(u)LS3(v). �

This result is useful because it indicates that, when a sub-chain u is followed
by a half-chain v, the value of the image of u by LS3 does not depend on the
value of v. Moreover, since this property is again true for LS3(u), the behaviour
of LSω(uv) is the same as this of LSω(u) : for every positive integer n, LS3n(uv)
starts with LS3n(u), which implies that LSω(uv) and LSω(u) have an infinitely
long common prefix. We say that LSω(uv) tends towards LSω(u).

Remark 5.2. The above property seems ”natural” (since uv starts with u then
LSω(uv) starts with LSω(u)). However, since LS is not a morphism, this is not
true in general. For example, consider the words 3 1 and 3 1 2.

LS7(3 1) starts with 1 3 2 1 1 3 2 1 3 2,
LS7(3 1 2) starts with 3 1 2 3 2 1.

Since the words 1 3 2 1 1 3 2 and 3 1 2 are sub-chains, and words starting with 1 3 2
and 3 2 1 are half-chains, this implies that 3 1 and 3 1 2 respectively tends towards
the words X1 and X3 defined below, that are completely different.

6 TITLE WILL BE SET BY THE PUBLISHER

5.2. Cycles

An exhaustive study of the behaviour of all the beginnings of words over A3

indicates that the operators LS or LS2 admit no infinite fixed point. However
LS3 admits twelve fixed points (divided into four cycles of order 3).

Let n be a positive integer. A cycle of order n is a set of n infinite words
{u, LS(u), . . . , LSn−1(u)} such that for all i, 0 ≤ i ≤ n − 1, LSn+i(u) = LSi(u).

• Let x1 = 1 3 2 1 1 3 2, and let y1 be such that LS3(x1) = x1y1 (y1 =
1 3 2 2 1 1 3 3 1 1 2).

Let X1 = x1 y1 LS3(y1) LS6(y1) . . . = x1

∞∏

i=0

LS3i(y1) and X3 = 2 2 X1.

The sets {X1, LS(X1), LS2(X1)} and {X3, LS(X3), LS2(X3)} are cycles
(of order 3).

• Let x2 = 3 1 2, and let y2 be such that LS3(x2) = x2y2 (y2 = 3 2 1 1 2).

LetX2 = x2 y2 LS3(y2) LS6(y2) . . . = x2

∞∏

i=0

LS3i(y2) and X4 = 2 2 X2.

The sets {X2, LS(X2), LS2(X2)} and {X4, LS(X4), LS2(X4)} are cycles
(of order 3).

The following result indicates that these four cycles are the only one.

Property 5.3. Let u be an infinite word over A3. If there exists a positive integer
n such that LSn(u) = u then n = 3 and u ∈

⋃4

j=1
{Xj , d(Xj), d

2(Xj)}. �

Two natural questions arise:

• does every word tend towards some cycle after applying LS an infinite
number of times?

• in case of a positive answer to the previous question, in which cycle falls
a given word after applying LS an infinite number of times?

Remark 5.4. Each of the four sets {Xj , d(Xj), d
2(Xj)} is a cycle. Since LS ad-

mits no infinite fixed points, the word LSω(u) is never defined (except if u = ε or
u = 2 2, see Property 4.1). But the words limn→∞ LS3n(u), limn→∞ LS3n+1(u),
and limn→∞ LS3n+2(u) could be well defined, and if one of these limits is Xj

(j ∈ {1, 2, 3, 4}) then the two others are necessarily LS(Xj) and LS2(Xj) for the
same value of j. In this case we say that the limit of u is the cycle Xj and, since in
what follows we only need to know in which cycle falls the words limn→∞ LS3n(u),
limn→∞ LS3n+1(u), and limn→∞ LS3n+2(u), we will write LSω(u) = Xj to
indicate that {limn→∞ LS3n(u), limn→∞ LS3n+1(u), limn→∞ LS3n+2(u)} =
{Xj , LS(Xj), LS2(Xj)}.

TITLE WILL BE SET BY THE PUBLISHER 7

In the next two sections we answer the above questions in the cases of unary
and binary words. The general case (words over a three-letter alphabet) will be
discussed later.

6. Descendants of unary words

Let A1 = {1}. The only words over A1 are powers of the letter 1. Since our
assumption is that no word contains any infinite run of one given letter we only
consider, in this section, finite words u = 1n, n ≥ 1.

We start with a general property.

Lemma 6.1. For every integer n, n ≥ 2, LSω(1 n 1 1) = X1.

Proof. Since n ≥ 2, the word LS12(1 n 1 1) starts with x1y1. But x1 is a sub-chain
and y1 is the beginning of a half-chain. Thus by Lemma 5.1, for every non-negative
integer n, LS3n+12(1n11) starts with LS3n(x1). Since, by Corollary 4.4, LS3n(x1)
tends towards X1, the result is proved. �

The characterization of descendants of unary words is a direct consequence of
this lemma.

Proposition 6.2. For every word u ∈ A+
1 , LSω(u) = X1.

Proof. If u ∈ A+
1 then u = 1n for some positive integer n.

• If n ≥ 2 then LS(u) = n 1 and LS2(u) = 1 n 1 1.

• If n = 1 then LS(u) = 1 1, LS2(u) = 2 1, and LS3(u) = 1 2 1 1.

In both cases, from Lemma 6.1, LSω(u) = X1. �

7. Descendants of binary words

Let A2 = {1, 2}. Here words can be infinite and many different cases have to
be considered. The following proposition is the equivalent, in the binary case, of
Proposition 6.2.

Proposition 7.1. Let u be a word over A2.

• If u starts with 1 1 1 2 2 2, 2 2 2 1 1 2 1, 2 2 1 1 2 1 2, or 2 2 1 1 2 1 1 1 then
LSω(u) = X2 ;

• if u starts with 2 2 1 1 1 2 2 2 then LSω(u) = X4 ;
• if u starts with 2 2 1 2, 2 2 1 1 1 1 1, 2 2 1 1 1 2 1, or 2 2 1 1 1 2 2 1 then

LSω(u) = X3 ;
• otherwise LSω(u) = X1.

The whole proof of this proposition is long, tedious, and repetitive. We only
give below the proof of the first two items. It is based on the following corollary
of Lemma 5.1.

Lemma 7.2. Let u ∈ A∞
3 .

8 TITLE WILL BE SET BY THE PUBLISHER

• If u starts with 3 1 2 3 then LSω(u) = X2.

• If u starts with 2 2 3 1 2 3 then LSω(u) = X4.

Proof. Let u = 3 1 2 3 u′.

• If u′ does not start with 3 then
LS(u) starts with 1 3 1 1 1 2 1 3
LS2(u) starts with 1 1 1 3 3 1 1 2 1 1
LS3(u) starts with 3 1 2 3 2 1 1 2

• If u′ starts with 3 3 then
LS(u) starts with 1 3 1 1 1 2 a, a 6= 2
LS2(u) starts with 1 1 1 3 3 1 1 2
LS3(u) starts with 3 1 2 3 2 1
LS4(u) starts with 1 3 1 1 1 2 1 3 1 2
LS5(u) starts with 1 1 1 3 3 1 1 2 1 1 1 3 1 1
LS6(u) starts with 3 1 2 3 2 1 1 2 3 1 1 3

• Otherwise u′ starts with 3 b, b 6= 3, then
LS(u) starts with 1 3 1 1 1 2 2 3
LS2(u) starts with 1 1 1 3 3 1 2 2
LS3(u) starts with 3 1 2 3 1 1
LS4(u) starts with 1 3 1 1 1 2 1 3
LS5(u) starts with 1 1 1 3 3 1 1 2 1 1
LS6(u) starts with 3 1 2 3 2 1 1 2

In both cases LS6(u) starts with x2y2, and x2 is a sub-chain and y2 is the beginning
of a half-chain. Thus by Lemma 5.1, for every non-negative integer n, LS3n+6(u)
starts with LS3n(x2). Since, by Corollary 4.4, LS3n(x2) tends towards X2, the
first part is proved.

For the second part, remark that in the previous case, for any positive integer
n, LSn(u) never starts with the letter 2. Thus, since 2 2 is a fixed point of LS,
if u starts with 2 2 3 1 2 3 then LS3n+6(u) starts with 2 2 LS3n(x2) which tends
towards 2 2 X2 = X4. �

Proof of the first two items of Proposition 7.1.

• If u = 1 1 1 2 2 2 u′ then
LS(u) starts with 3 1 n 2, n ≥ 3
LS2(u) starts with 1 3 1 1 1 n (because n 6= 2)
LS3(u) starts with 1 1 1 3 3 1 (because n 6= 1)
LS4(u) starts with 3 1 2 3

• If u = 2 2 2 1 1 2 1 u′ then
LS(u) starts with 3 2 2 1 1 2
LS2(u) starts with 1 3 2 2 2 1
LS3(u) starts with 1 1 1 3 3 2
LS4(u) starts with 3 1 2 3

• If u = 2 2 1 1 2 1 2 u′ or u = 2 2 1 1 2 1 1 1 u′ then
LS(u) starts with 2 2 2 1 1 2 n 1, n 6= 2
LS2(u) starts with 3 2 2 1 1 2 (because n 6= 2)

TITLE WILL BE SET BY THE PUBLISHER 9

LS3(u) starts with 1 3 2 2 2 1
LS4(u) starts with 1 1 1 3 3 2
LS5(u) starts with 3 1 2 3

In both cases LSk(u) starts with 3 1 2 3 for some positive integer k. Then, by
Lemma 7.2, LSω(u) = X2.

Now, if u starts with 22111222 then, from above, LS4(u) starts with 223123
which implies, from Lemma 7.2, that LSω(u) = X4. �

An interesting corollary of Proposition 7.1 will make the transition with the
next section. It indicates that almost all the Sturmian words tend towards the
same cycle.

Corollary 7.3. Let u be a Sturmian word over A2.

- If u starts with 2 2 1 then LSω(u) = 2 2 X1.

- Otherwise LSω(u) = X1. �

8. The Fibonacci case

After giving general properties about the behaviour of binary words under the
action of the operator LS, we now turn to a classical particular case of binary word,
the Fibonacci word F , and we give some interesting results about the descendants
of F.

Let ϕ be the morphism on A2 defined by ϕ(1) = 1 2, ϕ(2) = 1. The Fibonacci
word is the infinite word F = ϕω(1).

F = 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 . . .

From Corollary 7.3 we know that LSω(F) = X1.

Let F ′ = LS(F) be the first derivative of F. The word F ′ has interesting
properties that we start studying here.

F ′ = 1 1 1 2 2 1 1 2 1 1 1 2 2 1 1 2 2 1 1 2 1 1 1 2 2 1 1 2 1 1 1 2 2 1 1 2 . . .

8.1. Generating F ′

The first problem we consider is to determine how F ′ is generated.

Generating a word with a HD0L-system consists of applying a morphism to
an infinite word generated by another morphism. Berstel [3] gave an example
showing that the power of generation of HD0L-systems is greater than the power
of generation of D0L-systems (only one morphism is applied): he proved that the
Arshon word (a square-free word over a 3-letter alphabet, see Arshon, 1937 [2],
Séébold, 2002 [20]) is generated by a tag-system (a particular case of an HD0L-
system, see Cobham, 1972 [8]) whereas it cannot be obtained with a D0L-system.
Here we prove that F ′ is a new example of this phenomenon.

10 TITLE WILL BE SET BY THE PUBLISHER

We start by giving an HD0L-system to generate F ′.

Lemma 8.1. F ′ is generated by the HD0L-system < A2, ϕ̃ϕ, 2, d′, A2 > where d′

is the morphism defined on A2 by d′(1) = 2112, d′(1) = 1112 : F ′ = d′[(ϕ̃ϕ)ω(2)].

Proof. Let us recall that ϕ̃ is the morphism on A2 defined by ϕ̃(1) = 2 1, ϕ̃(2) = 1,
and consider the two morphisms on A2

ϕϕ̃ :
1 7→ 1 1 2
2 7→ 1 2

and ϕ̃ϕ :
1 7→ 2 1 1
2 7→ 2 1

The following equality is proved in Berstel and Séébold, 1994 [6].

2 F = (ϕ̃ϕ)ω(2). (8.1)

Now ϕϕϕ̃ = ϕ̃ϕ̃ϕ thus, for every non-negative integer n, ϕϕ̃(ϕ̃ϕ)n = ϕ2n+1ϕ̃.

Consequently ϕϕ̃(2 F) = ϕϕ̃[(ϕ̃ϕ)ω(2)]
= ϕϕ̃(limn→∞(ϕ̃ϕ)n(2))
= limn→∞ ϕϕ̃(ϕ̃ϕ)n(2)
= limn→∞ ϕ2n+1ϕ̃(2)
= ϕω[ϕ̃(2)]
= ϕω(1)
= F

which implies that F can be decomposed over {1 2, 1 1 2}.

In F , each occurrence of the letter 2 is preceded and followed by the letter 1.
So each occurrence of 2 in 2 F corresponds to an occurrence of 1 2 in F ′. Thus,
since F decomposes over {1 2, 1 1 2}, each occurrence of 1 2 in F corresponds to a
factor 1 1 1 2 in F ′, and each occurrence of 1 1 2 in F corresponds to a factor 2 1 1 2
in F ′.

Consequently F ′ = d(F) where d is the substitution on A2 defined by d(1 2) =
1 1 1 2 and d(1 1 2) = 2 1 1 2.

But, since from what precedes F = ϕϕ̃(2 F), the previous equality F ′ = d(F)
implies that F ′ = d[ϕϕ̃(2 F)].

Let d′ = dϕϕ̃ : d′(1) = 2 1 1 2, d′(2) = 1 1 1 2.
We deduce, using equation (8.1), that F ′ = d′[(ϕ̃ϕ)ω(2)]. �

It is known from Cobham, 1972 [8] (for a proof, see Pansiot, 1983 [16], or
Allouche and Shallit, 2003 [1]) that if an infinite word is generated by an HD0L-
system then there exists a tag-system which generates this word. Here we prove a
little more.

Theorem 8.2. The word F ′ is generated by a tag-system, but it cannot be gener-
ated by a D0L-system.

Remark 8.3. In [16], Pansiot gave an algorithm to transform an HD0L-system
generating a given infinite word in a tag-system generating the same word. Here we
do not use Pansiot’s algorithm; we construct directly a (more simple) tag-system
to generate F ′.

TITLE WILL BE SET BY THE PUBLISHER 11

Proof of Theorem 8.2.
We first give a tag-system generating F ′.

Let a, b be two new letters and let A′
2 = {1, 2, a, b}. Let h be the morphism

defined on A′
2 by h(2) = 2aab1aab, h(1) = 2aab1aab1aab, and h(a) = h(b) = ε. To

end, let c be the morphism from A′
2 onto A2 defined by c(2) = c(a) = 1 and c(1) =

c(b) = 2. We will prove that F ′ is generated by the tag-system < A′
2, h, 2, c, A2 >,

i.e., F ′ = c(hω(2)).

First remark that for every non-negative integer n, since hn(aab) = ε,

hn(2aab) = hn(2) and hn(1aab) = hn(1). (8.2)

Let R be the morphism from A′
2 onto A2 which erases the letters a and b:

R(1) = 1, R(2) = 2, R(a) = R(b) = ε.

We first prove that R(hω(2)) = 2 F.

From equation (8.1), it is enough to prove that R(hω(2)) = (ϕ̃ϕ)ω(2).
To do it we prove by induction that, for every non-negative integer n,
R(hn(1)) = (ϕ̃ϕ)n(1) and R(hn(2)) = (ϕ̃ϕ)n(2).
This is of course true if n = 0.
Now, R(hn+1(2)) = R(hn(2aab1aab))

= R(hn((2aab))R(hn(1aab))
= R(hn(2))R(hn(1)) (from (8.2))
= (ϕ̃ϕ)n(2)(ϕ̃ϕ)n(1) (by induction)
= (ϕ̃ϕ)n(21)
= (ϕ̃ϕ)n[(ϕ̃ϕ)(2)]
= (ϕ̃ϕ)n+1(2).

The same is done for R(hn+1(1)) = (ϕ̃ϕ)n+1(1).

Now, let S be the morphism from A2 onto A′
2 which adds aab after each letter:

S(1) = 1aab, S(2) = 2aab.

Since RS = Id and R[hω(2)] = 2 F , one has R[S(2 F)] = R[hω(2)] so S(2 F) =
hω(2).

But, as we saw in the proof of Lemma 8.1, F ′ = d′(2 F) where d′(1) = 2 1 1 2,
d′(2) = 1 1 1 2.

Since d′ = cS, one has then F ′ = cS(2 F) = c(hω(2)).

Now, we prove that F ′ cannot be generated by a D0L-system.
Let us suppose that F ′ is generated by a D0L-system < A2, f, u > .

Since F ′ starts with the cube 1 1 1, it would start with f(1)f(1)f(1).
If f(1) = 1 then it is clear that f(2) must start with 2 and end with 2 2, and

then f(2 1 1 1 2) contains 2 2 1 112 as a factor. This is impossible: indeed 221112
is not a factor of F ′ but, since 2 1 1 1 2 is a factor of F ′, if F ′ was generated by the
D0L-system < A2, f, u > then f(2 1 1 1 2) should be a factor of F ′.

Thus |f(1)| ≥ 2 which means that F ′ would start with a cube X3 with |X| ≥ 2.

In this case X starts with 1 1 1 and thus, necessarily, X ∈ {1 1 1 2, 2 1 1 2}+.

This implies (since F ′ = d(F) with d(1 2) = 1112, d(1 1 2) = 2112) that F would
start with a factor Y 3 with Y ∈ {1 2, 1 1 2}+.

12 TITLE WILL BE SET BY THE PUBLISHER

Let us suppose that Y is the smallest word over {1 2, 1 1 2}+ such that Y 3 is
a prefix of F. Since 1 2 = ϕ(1) and 1 1 2 = ϕ(2 1), there exists y ∈ A∗

2 such that
Y = ϕ(1 y 1). By injectivity of ϕ, this implies that F starts with 1 y1 1 1 y2 1 1 y3 1
(y1 = y2 = y3 = y).

Of course, since F does not start with 1 1 1 1 1 1, one has y 6= ε and, since F =
ϕ(F) and by definition of ϕ, there exists z ∈ A+

2 such that 1 y1 1 = 1 y2 1 = ϕ(z).
The word z necessarily ends with 2 thus there exists z′ ∈ A+

2 such that z = z′2
and, since y3 = y, 1 y1 1 1 y2 1 1 y3 = ϕ(z′2z′2z′) and z′2z′2z′ is a prefix of F.

It is easily verified that |z′| ≥ 3. Moreover, since z′ is a prefix of F , z′ starts
with 1 2.

If the prefix z′2z′2z′ is followed in F by the letter 1 then z′ cannot end with 11
(because F does not contain 1 1 1 as a factor) and, since 2 2 is not a factor of f ,
z′ ends with 2 1. But in this case, since z′ starts with 1 2, z′2z′ contains 2 1 2 1 2
as a factor which is impossible because 2 1 2 1 2 is not a factor of F.

Consequently F starts with z′2z′2z′2. But in this case Y 3 = ϕ(1 y 1 1 y 1 1 y 1) =
ϕ2(z′2z′2z′2) which implies that |z′2| < |Y |. Since F decomposes over {1 2, 1 1 2},
we conclude that z′2 ∈ {1 2, 1 1 2}+. Thus z′2 is a word of {1 2, 1 1 2}+ such that
(z′2)3 is a prefix of F , which contradicts the minimality of Y.

Consequently F ′ does not start with another cube than 1 1 1 which contradits
the existence of a morphism f 6= Id such that F ′ starts with f(1)f(1)f(1): F ′

cannot be generated by a D0L-system. �

8.2. The complexity of F ′

Another interesting question is that of the subword complexity of an infinite
word, i.e., the number of factors of each length in this word. It gives a sort of
measure of the randomness of an infinite word: the lower is the growing of its
subword complexity, the smaller is its randomness. For an overview of this notion
see, e.g., Allouche and Shallit, 2003 [1, Chapter 10].

Formally, the complexity function of an infinite word u is the function Pu which
gives for each non-negative integer n the number Pu(n) of different factors of length
n in u. We will prove the following.

Theorem 8.4. PF ′(0) = 1, PF ′(1) = 2, PF ′(2) = 4, PF ′(3) = 6, PF ′(n) =
n + 4, n ≥ 4.

In order to prove this, we state two intermediate results.

Lemma 8.5. Every right special factor of F ′ of length greater than or equal to 4
ends with 2 1 1 2.

Proof. First recall that F ′ = d′(2 F) where d′(1) = 2 1 1 2 and d′(2) = 1 1 1 2.

Let X ′ ∈ A∗
2 be such that X ′X is a prefix of F ′ with |X| = 4. Since F ′ does not

contain the factors 1 1 1 1, 1 2 1 2, 1 2 2 2, 2 1 2 1, 2 1 2 2, 2 2 1 2, 2 2 2 1, and 2 2 2 2,
X can take only eight values.

TITLE WILL BE SET BY THE PUBLISHER 13

• If X = 1 1 1 2 then necessarily X ′X = d′(x 2) where x 2 is a prefix of F

and, since 2 2 is not a factor of F , x 2 is followed in F by a 1 thus X is
followed in F ′ by a 2.

• If X = 1 1 2 1 or X = 1 1 2 2 then X ′ = d′(x) 1 or X ′ = d′(x) 2 because
1 1 2 can be only the end of d′(1) or d′(2). Thus the last letter of X is
necessarily the first letter of some d′(1) or d′(2), and is then followed in
F ′ by a 1.

• If X = 1 2 1 1 or X = 1 2 2 1 then, as above, 1 2 is necessarily the end of
some d′(x) and the last two letters of X are at the beginning of d′(1) or
d′(2), thus followed in F ′ by a 1.

• If X = 2 1 1 1 or X = 2 2 1 1 then, as above, 2 is necessarily the end of
some d′(x) and the last three letters of X are at the beginning of d′(1) or
d′(2), thus followed in F ′ by a 2.

In both of these seven cases the factor X has only one possible extension thus
X ′X is not right special.

On the other hand, since 2 1 1 2 1 and 2 1 1 2 2 are both factors of F ′, 2 1 1 2 is
a right special factor of F ′.

Consequently, the only possibility for a word to be a right special factor of F ′

is that this word ends with 2 1 1 2. �

The second result indicates that F ′ contains actually right special factors.

Proposition 8.6. The word F ′ contains exactly one right special factor of each
length n, for each integer n ≥ 4.

Proof. The word F contains exactly one right special factor of each length (Berstel,
1980 [4]).

Let x be such a factor: x 1 and x 2 are both factors of F. Thus d′(x 1) =
d′(x) 2 1 1 2 and d′(x 2) = d′(x) 1 1 1 2 are both factors of F ′, which implies that
each suffix of d′(x) is a right special factor of F ′. Consequently F ′ contains at least
one right special factor of each length n, n ≥ 4.

Now, suppose that F ′ contains two different right special factors of length at
least 4, say X and Y such that |X| = |Y |. From Lemma 8.5, X and Y both end
with 2 1 1 2 thus they are suffixes of some d′(x 1) and d′(y 1) where x 1 and y 1 are
factors of F , and |x| = |y|. But in this case x 1 and y 1 are two right special factors
of F of the same length, thus are equal which contradicts X 6= Y. �

Proof of Theorem 8.4.
Since F ′ decomposes over {1 1 1 2, 2 1 1 2} it contains all the possible factors

of length smaller than or equal to 3, except 2 1 2 and 2 2 2. Thus PF ′(0) = 1,
PF ′(1) = 2, PF ′(2) = 4, and PF ′(3) = 6.

By Proposition 8.6, F ′ contains exactly one right special factor of length n for
every integer n ≥ 4, thus one has PF ′(n + 1) = PF ′(n) + 1 for every n ≥ 4.

Since we have seen in the proof of Lemma 8.5 that F ′ contains exactly eight
factors of length 4, one has PF ′(n) = n + 4 when n = 4. Thus PF ′(n) = n + 4 for
every n ≥ 4. �

14 TITLE WILL BE SET BY THE PUBLISHER

8.3. Lyndon factorizations of descendants of F

In section 8.1, we have seen that for the generating process F ′ is different from
F because F ′ cannot be generated by one morphism when F is.

But, in section 8.2, we have seen that for the subword complexity F ′ is compa-
rable to F : for n ≥ 4, PF ′(n + 1) = PF ′(n) + 1 and also PF (n + 1) = PF (n) + 1.

In the present section, we will see that F ′ is again different from F when we
deal with the lexicographic order ≺.

In what follows we consider a two-letter alphabet A = {a, b}, totally ordered
by a ≺ b.

Before examining F ′ we need to recall some definitions and results.

Let u, v be two finite words over A. The word u is lexicographically smaller than
the word v (u ≺ v) if

- either u is a proper prefix of v,
- or there exist words w, u′, v′ ∈ A∗ such that u = wau′ and v = wbv′.

For infinite words, only the second case is possible.

Let u, v be two infinite words over A. The word u is lexicographically smaller
than the word v (u ≺ v) if there exists a word w ∈ A∗ and two words u′, v′ ∈ Aω

such that u = wau′ and v = wbv′.

Regarding the lexicographic order, a very beautiful (and widely studied) notion
is that of Lyndon words (for an introduction, see Lothaire, 1983 [13]).

A (finite or infinite) word u ∈ A∞ is a Lyndon word if it is lexicographically
smaller than all its proper suffixes.

Here we are more specifically interested in infinite words. The following well
known result is fundamental.

Theorem 8.7. [21] Any infinite word x may be uniquely expressed as a non-
increasing product of Lyndon words, finite or infinite, in one of the two following
forms:

either x =
∏

k≥0
lk where (lk)k≥0 is an infinite non-increasing sequence of finite

Lyndon words (1)
or x = l0 · · · lm−1 y where l0, · · · , lm−1, m ≥ 0, is a (perhaps empty) finite

non-increasing sequence of finite Lyndon words, and y is an infinite Lyndon word,
y ≺ lm−1. (2)

�

In the first case the word x has a Lyndon factorization of type (1), in the second
case x has a Lyndon factorization of type (2).

An important question is then to know the type of the Lyndon factorization of
a given infinite word.

Melançon [15] has proved the following beautiful result.

TITLE WILL BE SET BY THE PUBLISHER 15

Theorem 8.8. The Lyndon factorization of the Fibonacci word F is of type (1):

F =
∏

n≥0

(ϕϕ̃)n(12)

where, for every non-negative integer n, (ϕϕ̃)n(12) is a finite Lyndon word and
(ϕϕ̃)n+1(12) ≺ (ϕϕ̃)n(12). �

Here we prove that the situation is different for F ′.

Theorem 8.9. The Lyndon factorization of the word F ′ is of type (2): F ′ is an
infinite Lyndon word.

The proof of this theorem is based on two results.

The first one is a restriction in the case of a two-letter alphabet of a strong gen-
eral result of Richomme [17] characterizing the morphisms which preserve infinite
Lyndon words.

A morphism f on A preserves infinite Lyndon words if f(u) is an infinite Lyndon
word whenever u ∈ Aω is an infinite Lyndon word.

Theorem 8.10. [17] A non-erasing morphism f on A preserves infinite Lyndon
words if and only if

• f(a) ≺ f(b),
• f(a) is a power of a Lyndon word,
• f(a b) is a Lyndon word. �

It is important to note that no condition is needed on the alphabet on which
are written f(a) and f(b), except that this alphabet must be totally ordered. In
particular, it is possible that this alphabet be also A, but with b ≺ a.

The second useful result is a lemma about characteristic Sturmian words of
which a proof can be found in Berstel and Séébold, 1993 [5].

A Sturmain word u over A is characteristic if both a u and b u are Sturmian
words.

Lemma 8.11. [5] Let u ∈ Aω. If u is a characteristic Sturmian word then a u is
lexicographically smaller than all its proper suffixes. �

Proof of Theorem 8.9.
Here, we order the alphabet A2 with 2 ≺ 1 (thus, in all the results given above,

the letter a is replaced by 2 and the letter b is replaced by 1).

• Since the words 1 F and 2 F are generated by Sturmian morphisms (see
Berstel and Séébold, 1994 [6]), they are both Sturmian words thus F is a
characteristic Sturmian word.

Thus, from Lemma 8.11, the word 2F is lexicographically smaller than
all its proper suffixes: it is a Lyndon word.

• Now, we have seen in the proof of Lemma 8.1 that F ′ = d′(2 F) where d′

is the morphism defined on A2 by d′(1) = 2 1 1 2 and d′(2) = 1 1 1 2.

16 TITLE WILL BE SET BY THE PUBLISHER

Here we consider that d′ is a morphism from the alphabet A2 onto a
two-letter alphabet A′

2 where A′
2 is a copy of A2 (A′

2 = {1, 2}) such that
1 ≺ 2.

Then we have the following:
– f(2) ≺ f(1),
– f(2) is a Lyndon word (thus a power of a Lyndon word),
– f(2 1) = 1 1 1 2 2 1 1 2 is a Lyndon word (over A′

2).

Consequently, by Theorem 8.10, d′ preserves infinite Lyndon words: F ′ is an
infinite Lyndon word. �

We complete this section by stating without proof a result about F ′′, the second
derivative of F (F ′′ = LS2(F)), which shows that the situation of F ′ regarding
the type of its Lyndon factorization is rather ”particular”.

F = 12 112 12 112 112 12 112 12 . . .

F ′ = 1112 2112 1112 2112 2112 1112 2112 1112 . . .

F ′′ = 31 22 21 12 31 22 21 22 21 12 31 22 21 12 . . .

As it is the case for F (F ∈ {1 2, 1 1 2}ω) and for F ′ (F ′ ∈ {1 1 1 2, 2 1 1 2}ω),
F ′′ decomposes over a two-element set of words (over A3):

F ∈ {3 1 2 2 2 1 1 2, 3 1 2 2 2 1 2 2 2 1 1 2}ω.

Let g be the substitution from A2 onto A3 defined by g(2 1) = 3 1 2 2 2 1 1 2
and g(2 1 1) = 3 1 2 2 2 1 2 2 2 1 1 2, and let L be the application defined over the
non-negative integers by

L(0) = 3 , L(1) = 1222
L(n) = 112g[(ϕ̃ϕ)n−1(1)](112)−1,∀n ≥ 2

Theorem 8.12. The Lyndon factorization of F ′′ is of type (1):

F ′′ =
∏

n≥0

L(n)

where, for every non-negative integer n, L(n) is a finite Lyndon word and L(n+1)
≺ L(n). �

8.4. Why F ′ is particular

In the previous section we have seen that F and F ′′ both have a Lyndon fac-
torization of type (2), while the Lyndon factorization of F ′ is of type (1). This
particularity is perhaps in relation with another one: F ′ is the only descendant
of F which is also written over A2; from F ′′ all the other descendants of F are
written over the alphabet A3. This property (F ′ ∈ Aω

2) is of course not true in
general, even for the Sturmian words (of which F is however a prototype).

TITLE WILL BE SET BY THE PUBLISHER 17

Indeed F ′ ∈ Aω
2 because F does not contain 1 1 1, nor 2 2 2 as a factor, and it

is a general property: if u is any word over A2 then LS(u) is also a word over A2

if and only if u does not contain any factor 1 1 1, nor 2 2 2. A natural question is
to characterize, among Sturmian words generated by morphisms, those having the
above property. This is done in the following Proposition 8.13.

Let St = {ϕ, ϕ̃, E}+ be the set of all the Sturmian morphisms (E : 1 7→ 2 , 2 7→
1). Except ϕ, are there some other morphisms from St generating words without
1 1 1 and 2 2 2? The answer is of course yes since it is known that compositions of
ϕ and ϕ̃ generate infinite words having the same set of factors as the Fibonacci
word F (see, e.g., Berstel and Séébold, 1994 [6]). Thus all these words do not
contain any factor 1 1 1, nor 2 2 2. On the other hand, it is also already known
that morphisms from the set T = {ϕE, ϕ̃E}+ ∪ {Eϕ,Eϕ̃}+ generate words with
arbitrarily large powers of one single letter (see, e.g., Séébold, 1998 [19]).

The result below is based on the observation that, for a morphism to generate
a Sturmian word having no factor 1 1 1, nor 2 2 2, it is necessary that this word
has the same factors of length 4 as the Fibonacci word F (or as its inverse E(F)).

Proposition 8.13. A Sturmian morphism generates words containing neither
1 1 1 nor 2 2 2 if and only if either f = ϕ or f = ϕ̃, or f or Ef starts with ϕ2, ϕ̃2,
ϕϕ̃, or ϕ̃ϕ.

Proof. It is an easy task to verify that morphisms starting with the required factors
generate words containing neither 1 1 1, nor 2 2 2.

Conversely, if a morphism has not the required form then it is a basic element
of the set T described above, or its decomposition starts with

ϕEϕ, ϕEϕ̃ = ϕ̃Eϕ, ϕ̃Eϕ̃, EϕEϕ, EϕEϕ̃ = Eϕ̃Eϕ, or Eϕ̃Eϕ̃.

In other words,
f ∈ {ϕE, ϕ̃E,Eϕ, Eϕ̃, g, Eg} where g ∈ {ϕEϕ,ϕEϕ̃ = ϕ̃Eϕ, ϕ̃Eϕ̃}.St.

It is again an easy task to verify that such a morphism cannot generate an
infinite word without 1 1 1 or 2 2 2. �

References

[1] J.-P. Allouche, J. Shallit, Automatic sequences: theory, applications, generalizations,
Cambridge University Press, Cambridge, UK, 2003.

[2] S. Arshon, Démonstration de l’existence de suites asymétriques infinies, Mat. Sb. 44 (1937),
769–777 (in Russian), 777–779 (French summary).

[3] J. Berstel, Mots sans carré et morphismes itérés, Discrete Math. 29 (1980), 235–244.
[4] J. Berstel, Fibonacci words – a survey, in: G. Rozenberg, A. Salomaa (ed), The Book

of L, Springer-Verlag 1986, 13–27.
[5] J. Berstel, P. Séébold, A characterization of Sturmian morphisms, MFCS’93, Gdansk

(Poland), Lect. Notes Comp. Sci. 711 (1993), 281–290.
[6] J. Berstel, P. Séébold, A remark on morphic Sturmian words, Informatique théorique et

applications 28 (1994), 255–263 (Special Issue in Honor of K. Culik II).
[7] S. Brlek, S. Dulucq, A. Ladouceur, L. Vuillon, Combinatorial properties of smooth

infinite words, Theoret. Comput. Sci. 352 (2006), 306–317.

[8] A. Cobham, Uniform tag sequences, Math. Systems Th. 6 (1972), 164–192.

18 TITLE WILL BE SET BY THE PUBLISHER

[9] J. H. Conway, The weird and wonderful chemistry of audioactive decay, in: T. M. Cover,

B. Gopinath (eds), Open problems in communication and computation, Springer-Verlag,
New-York 1987, 173–188.
See also Eureka 46 (1986), 5–18.

[10] B. Germain-Bonne, À propos d’une itération sur châınes de caractères numériques, Lab-

oratoire d’Analyse Numérique et d’Optimisation, Université Lille 1, Research Report ANO

293, january 1993, 8 pp.
[11] B. Germain-Bonne, Châınes alphanumériques ; cycles et points fixes, Laboratoire d’Analyse

Numérique et d’Optimisation, Université Lille 1, Research Report ANO 301, march 1993,
23 pp.

[12] B. Germain-Bonne, Mots autodescriptifs et co-descriptifs, Laboratoire d’Analyse Numé-

rique et d’Optimisation, Université Lille 1, Research Report ANO 332, june 1994, 32 pp.
[13] M. Lothaire, Combinatorics on Words, vol. 17 of Encyclopedia of Mathematics and Ap-

plications, Addison-Wesley, Reading, Mass., 1983.
Reprinted in the Cambridge Mathematical Library, Cambridge University Press, Cambridge,

UK, 1997.
[14] M. Lothaire, Algebraic Combinatorics on Words, vol. 90 of Encyclopedia of Mathematics

and its Applications, Cambridge University Press, Cambridge, UK, 2002.
[15] G. Melançon, Lyndon factorization of sturmian words, Discrete Math. 210 (2000), 137–

149.

[16] J.-J. Pansiot, Hiérarchie et fermeture de certaines classes de tag-systèmes, Acta Informatica

20 (1983), 179–196.
[17] G. Richomme, On morphisms preserving infinite Lyndon words, Discrete Math. and Theo-

ret. Comput. Sci. 9 (2007), 89–108.
[18] G. Rozenberg, A. Salomaa (Eds), Handbook of Formal Languages Vol. 1, Springer, 1997.
[19] P. Séébold, On the conjugation of standard morphisms, Theoret. Comput. Sci. 195 (1998),

91–109.
[20] P. Séébold, About some overlap-free morphisms on a n-letter alphabet, Journal of Au-

tomata, Languages and Combinatorics 7 (2002), 579–597.
[21] R. Siromoney, L. Mathew, V.R. Dare, K.G. Subramanian, Infinite Lyndon words, In-

form. Proc. Letters 50 (1994), 101–104.

Communicated by (The editor will be set by the publisher).
(The dates will be set by the publisher).

