
HAL Id: lirmm-00184257
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00184257

Submitted on 30 Oct 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear Processing with Pregroups
Anne Preller

To cite this version:
Anne Preller. Linear Processing with Pregroups. Studia Logica, 2007, 87 (2/3), pp.171-197.
�10.1007/s11225-007-9087-0�. �lirmm-00184257�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00184257
https://hal.archives-ouvertes.fr

Linear Processing with Pregroups

Anne Preller

LIRMM-CNRS

161, rue Ada

Montpellier, France

preller@lirmm.fr
∗

Abstract

Pregroup grammars have a cubic recognition algorithm. Here, we de-

fine a correct and complete recognition and parsing algorithm and give suf-

ficient conditions for the algorithm to run in linear time. These conditions

are satisfied by a large class of pregroup grammars, including grammars

that handle coordinate structures and distant constituents.

1 Introduction

Pregroup grammars were introduced in [Lambek 99] as an algebraic tool for the
syntactical analysis of sentences and shown to be weakly equivalent to context
free grammars by [Buszkowski]. Therefore the usual cubic recognition algo-
rithms of [CYK] or [Earley] for context-free grammars can be used for pre-
group grammars after transforming them into rewrite-grammars. Cubic algo-
rithms tailored to pregroups were given in 2004 independently by [Oehrle] and
[Degeilh-Preller]. The algorithm proposed in the latter improves on the usual
algorithms for context-free languages by the fact the constant factor of n3 no
longer depends on the number of rules or the number of symbols in the grammar
and that it also works for infinite dictionaries. In particular it shows that proof
search in compact bilinear logic is proportional to the cube of the length of the
string of simple types.

However, cubic complexity easily exceeds human memory capacity and there-
fore natural languages are most likely to have grammars which permit linear
processing. Two observations are important as far as pregroup grammars are
concerned: A low number of types per word or a low number of basic types
does not diminish the complexity of the recognition algorithm nor the number
of different parsings. As an example, consider the rigid dictionary listing three
words, each with a single type, say saℓ, aaℓ and aara respectively. The general
algorithm still requires cubic time. Moreover, the number of different parsings

∗The original publication is available at www.springerlink.com

1

increases exponentially with the length of the string. It seems appropriate to
divide the task of finding a linear recognition and parsing algorithm as follows

1. choose a lexical entry for each word, i.e. choose a meaning

2. decide if the choice of types has a reduction to the sentence type and, if
there is one, provide at least one such reduction.

We impose conditions on the dictionary concerning both aspects. After the
basic notions on pregroups and reductions we present a dictionary covering dis-
tant dependencies and coordination in Section 3. as an example of the language
fragments for which complete linear parsing is possible. In Section 4. we in-
troduce a parsing algorithm and indicate a class of dictionaries for which it is
complete. Restricting the class of dictionaries even more we make the parsing
algorithm linear. These conditions are relaxed in Sections 5. where we define
the minimal reduction, representative for all reductions to the sentence type.
Finally in Section (6), we modify the earlier parsing algorithm by incorporating
minimal reductions and define a class of dictionaries for which it is complete.

2 Geometry of derivations

We briefly recall the definition of pregroups and the construction of a freely
generated pregroup defined in [Lambek 99]. As we are interested in parsing and
semantical interpretation, we look at the actual derivations in a free pregroup
concentrating on derivations that consist of generalized contractions only. The
geometrical structure of these derivations is at the base of the semantical inter-
pretation in Section 3.
A preordered monoid < P, 1, ·,→> is a set with at least one element 1 ∈ P , a
binary operation · and a binary relation → satisfying for all x, y, z, u, v ∈ P

1 · x = x = x · 1
(x · y) · z = x · (y · z)
x → x

x → y and y → z imply x → z

x → y implies u · x · v → u · y · v.
The dot denotes multiplication and is generally omitted. The arrow → denotes
the preorder.

A pregroup is a preordered monoid in which every element x has both a left

adjoint xℓ and a right adjoint xr satisfying

(Contraction) xℓx → 1, xxr → 1

(Expansion) 1 → xrx, 1 → xxℓ .

One derives

(1.) x → y if and only if yℓ → xℓ if and only if yr → xr,
(2.) x → y if and only if xyr → 1 if and only if yℓx → 1 .

The free pregroup P (B) generated by a partially ordered set of basic types

B = {a, b, ...} is characterized in [Lambek 99] as the preordered free monoid

2

generated from the set of simple types Σ consisting of the basic types and their
iterated adjoints

Σ =
{
a(z) : a ∈ B, z ∈ Z

}

where a(0) is identified with a. Note that the empty string is not a simple type.
Elements X ∈ P (B) are called types. They are strings of the form

X = a
(z1)
1 . . . a

(zk)
k ,

where a1, . . . , ak are basic types and z1, ..., zk are integers. The unit 1 denotes
the empty string and multiplication is the same as concatenation. The left and
right adjoints of a type are defined by

(a
(z1)
1 . . . a

(zk)
k)ℓ = a

(zk−1)
k . . . a

(z1−1)
1

(a
(z1)
1 . . . a

(zk)
k)r = a

(zk+1)
k . . . a

(z1+1)
1 .

Hence, identifying a ∈ B with a(0) ∈ Σ we have

aℓℓ = a(−2), aℓ = a(−1), a = a(0), ar = a(1), arr = a(2) etc.

If t = a(z) we call z the iterator of t.
Finally, the preorder on types is defined as the transitive closure of the union

of the following three relations

(Induced step) Xa(z)Y → Xb(z)Y

(Generalized contraction) Xa(z)b(z+1)Y → XY

(Generalized expansion) XY → Xa(z+1)b(z)Y

where either z is even and a → b or z is odd and b → a. Here X, Y are (possibly
empty) strings of simple types and a and b are basic.

As usual, a substring of a string s1 . . . sn has the form si0 . . . sik
where 1 ≤

i0 < . . . < ik ≤ n. A segment sl . . . sm is a substring such that l = i0, l+1 = i1,
. . . , l + k = ik and m = l + k. By convention, if m < l, then sl . . . sm stands for
the empty segment.

The property which makes the theory of pregroups decidable is expressed in
the so-called

Switching Lemma (Proposition 2 of [Lambek 99]):
Let s1, . . . , sn and t1, . . . , tm be simple types. Then s1 . . . sn → t1 . . . tm if and
only if there are a substring si1 . . . sik

of s1 . . . sn and a substring ti1 . . . tik
of

t1 . . . tm such that

s1 . . . sn → si1 . . . sik
→ ti1 . . . tik

→ t1 . . . tm,

sip
→ tip

, for 1 ≤ p ≤ k,

where si1 . . . sik
is obtained from s1 . . . sn by generalized contractions only,

t1 . . . tm is obtained from ti1 . . . tik
by generalized expansions only and

ti1 . . . tik
is obtained from si1 . . . sik

by induced steps only.

3

A string of simple types s1 . . . sn is irreducible if no two adjacent simple types
satisfy sisi+1 → 1. In particular, the empty string 1 is irreducible. A type
si1 ...sik

is an irreducible form of s1...sn if it is irreducible and obtained from
s1 . . . sn by generalized contractions only. If s and the si’s are simple for
1 ≤ i ≤ n, then s1 . . . sn → s if and only if for some i, si is an irreducible
form of s1 . . . sn and si → s.

In linguistic applications, a dictionary lists each word with types belonging
to a free pregroup. Then a string of words is a sentence, if one can assign to
every word a type from the dictionary such that the concatenation t1 . . . tm of
these types has a derivation to a distinguished basic type s, called sentence type.
In view of Property (2.) above, t1 . . . tm → s is equivalent to t1 . . . tms

r → 1.
By the Switching Lemma, a derivation to the empty string can be obtained by
generalized contractions only. For example, consider the set of basic types

B = {νs, π3s, o, ns, cs, s1, s},
where νs → π3s, νs → o, ns → π3s, ns → o, s1 → s. Here ν3 is the type for
proper names singular, π3s for 3-person singular subjects, o for direct object
complements of a verb, ns for singular noun phrases, cs for singular common
nouns and finally, s and s1 are sentence types, the latter for statements in the
present tense, the former for statements when the tense does not matter. Then
the dictionary may list

Mary : νs
buys : πr

3ss1o
ℓ

a : nsc
ℓ
s

book : cs
Therefore, the grammar generates the sentence

Mary buys a book

(νs) (π3s
r

s1 oℓ)(ns cℓ
s
)(cs) s

r

The underlinks indicate the generalized contractions used in the derivation,
namely νsπ

r
3s → 1, oℓns → 1, cs

ℓcs → 1 and s1s
r → 1. In fact, the underlinks

together uniquely determine a derivation to the empty string or more generally,
a derivation of s1 . . . sn to a substring si1 . . . sip

consisting of generalized contrac-
tions only. We decompose such a derivation into a geometrical part, consisting
of the set of underlinks, and an algebraic part, consisting of the generalized
contractions. The geometrical part R, also called reduction, has the following
definition

Definition 1. A reduction R with respect to n is a set of two-element subsets
{i, k} ⊆ {1, . . . , n}, called underlinks, which satisfy

1) for every i with 1 ≤ i ≤ n, there is at most one k such that {i, k} ∈ R,

2) if {i, k} ∈ R and i < l < k then there is i < m < k such that {l, m} ∈ R.

The algebraic part consists of the generalized contractions

3) sisk → 1, for i < k such that {i, k} ∈ R

4

Let {i1, . . . , ip} be the subset of {1, . . . , n} consisting of the elements il for which
there is no k such that {il, k} belongs to R . A reduction R is called a transition

from s1 . . . sn to si1 . . . sip
, written

R : s1 . . . sn ⇒ si1 . . . sip

if all three conditions above hold. If the substring si1 . . . sip
cannot be contracted

any further, it is called an irreducible form of s1 . . . sn.

The empty string 1 and every simple type is irreducible. A string of simple
types has at least one irreducible form. Some strings have several irreducible
forms, and there may be different reductions bringing it to the same irreducible
form, e.g. the first two reductions below are transitions to the empty string, the
third reduction is a transition to the irreducible ara

1) aℓ a aℓa ar a 2) aℓa aℓ aar a 3) aℓa aℓa ara (I)

On the other hand, the same reduction may constitute a transition to the empty
string for quite different strings of simple types. For example, assume a → b

and consider the three different transitions below
bℓ a bℓ a ar a , bℓa bℓ a ar a , c cℓ cr crr c cr .

The first and the third transition have the same links, the common geometri-
cal part is R = {{1, 6} , {2, 5} , {3, 4}}. The second transition, however, has a
different reduction R′ = {{1, 2} {3, 6} {4, 5}}. This geometrical difference corre-
sponds to different meanings of the same sentence, as illustrated by the examples
(1a) and (1b) of the next section.

Using the graphical representation of {i, k} ∈ R , i < k , by an underlink

. . . si . . . sk . . . ,

we may describe a reduction as a planar graph which has a linearly ordered set
of vertices labeled by simple types such that

• there are no loops

• every i 6∈ {i1, . . . , ip} is endpoint of exactly one underlink

• underlinks do not cross

• there is no underlink {i, k} such that i ≤ il ≤ k for 1 ≤ l ≤ p.

If i < k , we call i or si the left endpoint and k or sk the right endpoint of the
link {i, k} . If the reduction R is a transition R : s1 . . . sn ⇒ si1 . . . sip

, then the
iterator of the right endpoint of an underlink is the successor of the iterator of
its left endpoint: Indeed, if {i, k} ∈ R and i < k, then the algebraic condition
sisk → 1 implies that si = a(z) and sk = b(z+1) for some integer z and basic
types a and b.

Finally, we remark that an arbitrary transition can always be obtained as
the union of transitions to the empty string. Indeed, let Rl, 0 ≤ l ≤ p, be

5

reductions such that R0 : s1 . . . si1−1 ⇒ 1, Rl : sil+1...sil+1−1 ⇒ 1 for 1 ≤ l < p,
and Rp : sip+1 . . . sn ⇒ 1. Then the union

R =
⋃
{Rl : 0 ≤ l ≤ p}

is a reduction such that R : s1 . . . sn ⇒ si1 . . . sip
.

3 Coordinate Structures and Unbounded De-

pendencies

We illustrate parsing with pregoup grammars by a few examples on coordination
and unbounded dependencies involving the relative pronoun. The semantical
dependencies are expressed by (multi)links. Consider the dictionary

Mary : νs
bought : πrs2o

ℓ, πrôr ŝ2, π̂r ŝ2o
ℓ

a : nsc
ℓ
s

horse : cs
which : cr

s
csŝ

ℓô, cr
s
csŝ

ℓπ̂3s

John : νs
detests : πr

3ss1o
ℓ, πr

3sô
r ŝ1, π̂r

3sŝ1o
ℓ

Recall that o is the type of a direct object complement, π3s stands for the
subject third person singular and π for the subject if the person and number
do not matter. The dictionary lists three types for the definite verb form. This
reflects the grammatical distinction between statements and relative clauses.
In particular, the basic type ŝ1 is the sentence type for relative clauses in the
present and ŝ the type for relative clauses if the tense does not matter. The other
new basic types are used as dummies, namely ô for a direct object complement,
π̂3s for a third person subject in the singular, π̂ if the number and person do
not matter. The set of basic types occurring in the dictionary is

B = {s, s1, s2, π3s, π, o, νs, ns, cs, ŝ1, ŝ, π̂3s, π̂, ô}
where

νs → π3s, ns → π3s, νs → o, ns → o, π3s → π, s1 → s, s2 → s, ŝ1 → ŝ .

Then we use different type assignments for the relative pronoun which, according
to its role as an object complement or subject in the relative clause.
Example I

Mary bought a horse which John detests

(νs) (πr
s2 oℓ) (ns cℓ

s
) (cs) (cr

s
cs ŝℓ ô) (νs) (πr

3s ôr ŝ1) s
r (1a)

Mary bought a horse which detests John

(νs) (πr
s2 oℓ) (ns cℓ

s
) (cs) (cr

s
cs ŝℓ π̂3s) (π̂r

3s ŝ1 oℓ) (νs) s
r (1b)

The two reductions above differ only by the links whose left endpoint is under
which or later. This becomes more evident with the following abbreviation,
called a multilink :

Y Xr for t1 . . . tp sr
p . . . sr

1, where X = s1 . . . sp, Y = t1 . . . tp .

6

Replacing the two links under ŝℓô . . . ôr ŝ1 by a multilink and omitting the types
in the first example, we get the dependencies

which John detests (1a)
. . .

giving the correct the semantical analysis of the relative clause. Applying the
same simplifications to the second example, we obtain the dependencies

which detests John (1b)
. . .

Dummies are entities not explicitly named in a sentence but are implied by
the statement. Their syntactical role is to fill what [Gazdar] calls a hole. It
is pointed out in [loc. cit.] that holes have a syntactic category. In pregroup
grammars, the hole is marked by a right or left adjoint of a dummy type and
therefore also has a syntactic representation. We take advantage of this fact
when analysing coordinate structures conjoined by and. The sample sentences
are adapted from [loc. cit.].

and : xrxxℓ, x = ôr ŝ1 (2a)
and : xrxxℓ, x = π̂r

3sŝ1 (2b)

Consider the case where the hole is the object complement of the verb in the
relative clause, i.e.

x = ôr ŝ1 .
Let y = ôr ŝ. Then

detests, loves : πr
3sx

and
which : cr

s
csy

ℓ .
It follows that x → y and we find the following reduction

Mary bought a horse which John detests and Jo loves

(νs) (πr
s2 oℓ) (ns cℓ

s
)(cs) (cr

s
cs yℓ) (νs) (πr

3s x) (xr x xℓ) (νs)(π
r
3s x) s

r .

The conjunction and distributes the holes both times to the position of the sec-
ond argument of the relation expressed by the verb. This position corresponds
by convention to the direct object of the verb:

horse which John detests and Jo loves

() () () () () () ()

Next, consider the case where the hole is the subject of the relative clause:
x = π̂r

3sŝ1, y = π̂r
3sŝ.

Then
detests, loves : xoℓ and which : cr

s
csy

ℓ

As before, we find x → y and with this construct the reduction of the sentence

Mary bought a horse which detests John and loves Jo

(νs) (πr
s2 oℓ) (ns cℓ

s
) (cs) (cr

s
cs yℓ) (x oℓ) (νs) (xr x xℓ) (x oℓ) (νs) s

r

This time, the holes are distributed by the conjunction and to the first argument
place of the verb, i.e. to the position of the subject:

7

which detests John and loves Jo

() () () () () ()

However the two different kinds of holes cannot be conjoined:
*Mary bought a horse which John detests and loves Jo

For a proof, it suffices to consider every type assignment from our dictionary
and verify that it has no reduction to the sentence type. Therefore which cannot
be both subject and object of verb phrases constituting the relative clause.

4 Lazy Parsing

We give a ‘lazy’ recognition and parsing algorithm and define sufficient condi-
tions on the dictionaries for which it is linear and complete.

In the following, the partially ordered set B and the free pregroup P (B)
generated by B are fixed. As usual, a dictionary D over B for a set of words

V is a map from V to the set of subsets of P (B). Instead of Tl ∈ D(vl) we
may write vl : Tl and call it a lexical entry. We distinguish a basic type s , the
so-called sentence type. A string of types T1 . . . Tn is called a type assignment

for v1 . . . vn if vl : Tl is a lexical entry for 1 ≤ l ≤ n. A parsing of a string v1...vn

consists of a type assignment Tl ∈ D(vl) and a reduction of T1...Tn to s.
We begin by describing an algorithm which combines the search for a reduc-

tion with type assignment. It processes by stages, reading the string of words
v1 . . . vn from left to right. At each stage, it either chooses a type for the word
under examination or processes the assigned type by reading its simple types
from left to right. The result is a reduction of the type processed so far to an
irreducible type.

The set of stages associated to v1 . . . vn consists of an initial stage sin and of
triples s = (l, T1 . . . Tl, p) where

l is the number of the word vl being processed
Tk = ak1 . . . akqk

in D(vk), 1 ≤ k ≤ l, a type assignment for v1 . . . vl

p a position, 0 ≤ p ≤ ql.

The stages are partially ordered as follows

sin < s for all s

(l, T1 . . . Tl, p) ≤ (l′, T ′

1 . . . T ′

l′ , p
′) ⇔ l ≤ l′, Tk = T ′

k for 1 ≤ k ≤ l, p ≤ p′ .

We remark that all non-initial stages s have a unique immediate predecessor,
which we denote by s − 1, i.e.

(l, T1 . . . Tl, p) − 1 =







(l, T1 . . . Tl, p − 1), if 1 ≤ p ;

(l − 1, T1 . . . Tl−1, ql−1) if p = 0 and l > 1,

sin , if p = 0 and l = 1.

It follows that the set of stages smaller than or equal to a given stage s is totally
ordered.

This total order can be used to control the way how the algorithm moves
through the stages and define the actual position p(s) and the type ap(s) read

8

at this position. At the initial stage p(sin) = 0, a0 = 1 . A stage of the form
(l, T1 . . . Tl, 0) , 1 ≤ l ≤ n, is called a downloading stage and serves to choose a
type Tl ∈ D(vl) as soon as the word vl has been given. At a downloading stage
s = (l, T1 . . . Tl, 0) , the examined position remains unchanged

p(s) = p(s − 1) = q1 + · · · + ql−1 + 0 .

After downloading, the string of simple types Tl is read from left to right. Each
stage which is not initial and not downloading is called a testing stage. To reach
the testing stage s = (l, T1 . . . Tl, p), p ≥ 1, the preceding position p(s − 1) is
incremented by 1:

p(s) = p(s − 1) + 1 = q1 + · · · + ql−1 + p .

It follows that the simple type occupying this position satisfies

ap(s) = alp .

The type processed at stage s = (l, T1 . . . Tl, p) can be defined inductively by
T (sin) = 1 = a0

T (s) = T (s − 1) = T1 . . . Tl−1 if 0 = p

T (s) = T (s − 1)ap(s) = T1 . . . Tl−1al1 . . . alp if 0 < p

More generally, for every i such that 1 ≤ i ≤ p(s) there are a unique k and a
unique p′ such that 1 ≤ k ≤ l, 1 ≤ p′ ≤ qk, i = q1 + · · · + qk−1 + p′ and

ai = akp′ .

The simple type ap(s) is tested for generalized contraction with the last not
contracted type in the string. This test can be done in one time unit by accessing
the partial order relation on the set of basic types. If it fails, p(s) is added on
the top of the stack indicating that ap(s) is the latest not (yet) contracted type.
The other data remain unchanged. If the test succeeds, the stack is popped
and the link consisting of the contracting positions is added to the reduction
computed so far.

A stack S(s) constructed by this algorithm at stage s is an ordered pair
〈S′, i〉 where i is a non-negative integer and S′ is either the empty stack ∅ or
the stack of a preceding stage. As the test is only performed for non-initial and
non-downloading stages, all positions i stored in the stack at stage s correspond
to a unique stage s′ ≤ s for which ap(s′) = i . The functions top and pop send a
stack 〈S′, i〉 to its top i and its tail S′ respectively. They are undefined for the
empty stack. A stack of positions defines a substring of a1 . . . an as follows

〈∅, 0〉 = 1
〈S′, i〉 = S′ai

Definition 2. Lazy Parsing Algorithm
H At the initial stage, let

S(sin) = 〈∅, 0〉 , R(sin) = ∅

9

H At a downloading stage s = (l, T1 . . . Tl, 0), the stack and reduction remain
unchanged

S(s) = S(s − 1), R(s) = R(s − 1)

H If s = (l, T1 . . . Tl, p) is not downloading and not initial, let t(s−1) = top(S(s−
1)) . Then

S(s) =

{

pop(S(s − 1)), if at(s−1)ap(s) → 1

〈S(s − 1), p(s)〉 , else

R(s) =

{

R(s − 1) ∪ {{t(s − 1), p(s)}} , if at(s−1)ap(s) → 1

R(s − 1), else
.

The stack can increase and decrease during processing, but it will never get
empty. Indeed, if S(s−1) = 〈∅, 0〉 then the test will fail, as a0ap(s) = ap(s) 6→ 1.
Hence S(s) = 〈〈∅, 0〉 , p(s)〉. Note also that the entries of the stack form a
strictly increasing string of integers between 0 and p(s). Moreover, the set R

computed at stage s is a reduction of the string processed so far to an irreducible
string, which is defined by the stack S:

Theorem 3 (Irreducible From). For every stage s = (l, T1 . . . Tl, p) , the string

S(s) associated to the stack S(s) is an irreducible substring of T (s) and R(s) is

a transition from T (s) to S(s) .

Proof: Use induction on the linearly ordered set of the predecessors of s.
Clearly, the property holds for the initial stage. Now assume that the property
holds up to s− 1. If s is a downloading stage, the property follows immediately
from the induction hypothesis. If s is a testing stage, let t(s) = top(S(s)) and
decompose the processed string T (s) = a1 . . . ap(s) into an initial and a terminal
segment

a1 . . . ap(s) = (a1 . . . at(s))(at(s)+1 . . . ap(s))
and show that R(s) is the union of two reductions

(1) R′(s) : a1 . . . at(s) ⇒ S(s)
(2) R′′(s) : at(s)+1 . . . ap(s) ⇒ 1 .

For that purpose, distinguish two cases:

Case I : at(s−1)ap(s) 6→ 1.

Then t(s) = p(s), S(s) = 〈S(s − 1), p(s)〉 and R(s) = R(s − 1) and S(s) =
S(s − 1)at(s) . Then at(s)+1 . . . ap(s) is the empty string and the restriction R′′(s)
of R(s) to this string is the empty set. Therefore (2) holds trivially.

Next, from at(s−1)at(s) 6→ 1 and the induction hypothesis follows that S(s) =

S(s − 1)at(s) is an irreducible form of a1...ap(s) = (a1...ap(s)−1)ap(s) . Recall that

p(s − 1) = p(s) − 1 and that R(s − 1) : a1...ap(s−1) ⇒ S(s − 1) by induction

hypothesis. Hence R(s) : a1...ap(s) ⇒ S(s − 1)ap(s)=S(s). As R′(s) = R(s), (1)
holds.

Case (II) : at(s−1)ap(s) → 1.
In this case,

10

S(s − 1) = 〈S′, t(s − 1)〉
where S′ is the stack computed at some stage s′ preceding s − 1. Moreover,

S(s) = pop(S(s − 1)) = S′

and
R(s) = R(s − 1) ∪ {t(s − 1), p(s)} .

Then t(s) = top(S′), S(s) = S′ and S(s − 1) = S′at(s−1) = S(s)at(s−1). By
induction hypothesis

(1) R′(s − 1) : a1 . . . at(s−1) ⇒ S(s − 1)
(2) R′′(s − 1) : at(s−1)+1 . . . ap(s−1) ⇒ 1 .

Now decompose a1 . . . ap(s) as follows
a1 . . . ap(s) =
(a1 . . . at(s))(at(s)+1 . . . at(s−1)−1)at(s−1)(at(s−1)+1 . . . ap(s−1))ap(s) .

Note that R′(s), the restriction of R(s) to {1, ..., t(s)}, is also the restriction of
R(s − 1) to {1, ..., t(s)}. Hence

R′(s) : a1 . . . at(s) ⇒ S(s) .

Next, let R∗(s) be the restriction of R(s − 1) to {t(s) + 1, . . . , t(s − 1) − 1} . It
reduces the segment at(s)+1 . . . at(s−1)−1 between two consecutive positions of

S(s − 1) to 1 . Finally, the restriction of R(s) to {t(s) + 1, . . . , p(s)} is

R′′(s) = R∗(s) ∪ R′′(s − 1) ∪ {t(s − 1), p(s)}) .

Hence

R′′(s) : (at(s)+1 . . . at(s−1)−1)(at(s−1)(at(s−1)+1 . . . ap(s−1))ap(s)) ⇒ 1 .

We remark that the number of steps necessary to compute S(s) from its pre-
decessor S(s−1) is bounded by a constant which depends only of the dictionary.
Hence we have the following property

Corollary 4. For every stage s = (n, T1 . . . Tn, qn), Lazy Parsing computes

the irreducible form S(s) and the reduction R(s) : T1 . . . Tn → S(s) in time

proportional to the length of T1 . . . Tn.

Note that Lazy Parsing also works on infinite dictionaries. Consider the
identity map on the set of simple types Σ, i.e. the dictionary with the entries
t : t, for t ∈ Σ . The set of stages associated to the string t1 . . . tn is {1, . . . , n}
and Lazy Parsing produces a derivation of t1 . . . tn to one of its irreducible forms.

Backward Lazy Parsing, that is to say reading a string of words from right
to left, is defined similarly. In particular, the positions stored in the stack are
decreasing and the test for contraction is ap(s)at(s−1) → 1. The appropriate
variant of the preceding theorem then holds for Backward Lazy Parsing. In
general, the computed irreducible form may be different from that computed
by ‘forward’ lazy parsing. For example, backward parsing finds the second
reduction of (I) in Section (2) and forward parsing the third.

11

If the computed irreducible form happens to be the sentence type, the algo-
rithm gives a parsing of the sentence. If this is not the case, we cannot conclude
in general that T1 . . . Tn has no reductions to the sentence type. Hence, the
algorithm is not complete unless we impose some conditions on the dictionary.
The rest of this section is devoted to define a class of pregroup grammars for
which the Parsing Algorithm is complete. An even more comprehensive class of
pregroup grammars can also be parsed in linear time by a slight variant of our
algorithm, as we shall see in the next section.

Definition 5. (Complexity:)
A connected component C of basic types has complexity K ≥ 0, if there is an
integer u satisfying the following two conditions

whenever b ∈ C and b(z) occurs in D, then u ≤ z ≤ u + K

there are bi ∈ C for which bi
(u+i) occurs in D, for 0 ≤ i ≤ K.

A simple type t = a(z) has complexity K if a belongs to a connected component
of complexity less than or equal to K. A string of simple types has complexity K

if every simple type in the string has complexity K . A grammar is of complexity

K if every type in its dictionary has complexity K .

Our sample dictionary of Section (3) has complexity 2 . Indeed, the simple
types occurring in the dictionary are either basic or right or left adjoints of basic
types. Without the words which and and, it would be of complexity 1 .

Grammars of complexity 1 are interesting because of their algorithmic prop-
erties, but they are not expressive enough. The next class, that of complexity
2 , is as expressive as the whole class of pregroup grammars. Indeed, every pre-
group grammar is strongly equivalent to a dictionary using only basic types,
right adjoints of basic types and left adjoints of basic types, see [Preller 07].
Here strongly equivalent means not only that the grammars generate the same
sentences but also that a reduction of a type-assignment in one grammar is also
a reduction for some type assignment in the other grammar. Hence the links
under the words are the same in both grammars.

We will show that the Lazy Parsing Algorithm is complete for dictionaries
of complexity 1 and indeed for an even larger class, the linear dictionaries.

Definition 6. (Critical types, critical triples and linear types)
A simple type t = c(z+1) is critical if there are simple types a, b in the connected
component of c such that a(z−1) and b(z) occur in D.
A simple type t = b(z) occurring in D is said to be right-only if c(z+1) does not
occur in D for all c in the connected component of b . The notion of left-only is
defined similarly.
Let T = t1 . . . tn be a string of simple types and assume that 1 ≤ i < j < k ≤ n .
We say that ti, tj , tk is a critical triple if

titj → 1, tjtk → 1,

ti+1 . . . tj−1 → 1, tj+1 . . . tk−1 → 1 .

A string of simple types without critical triples is called linear. A dictionary is
linear, if all type assignments with a reduction to the sentence type are linear.

12

Compare the notion of a critical triple with that of a critical type. The
former is relative to a given string of simple types, whereas the latter depends
only of the dictionary. The last of a critical triple is necessarily a critical type.
If the dictionary has complexity 2, the last of a critical triple . . . ti . . . tj . . . tk . . .

is right-only and the first left-only. A string is necessarily linear if no critical
type occurs in it. Hence dictionaries of complexity 1 are linear.

Lemma 7 (Uniqueness of Links in Linear Strings). Suppose t1 . . . tm is a linear

string of simple types. Then for every position k there is at most one i satisfying

i < k, titk → 1 and ti+1 . . . tk−1 → 1,
or

i > k, tkti → 1 and tk+1 . . . ti−1 → 1 .

Proof: Note that k can not be both the right endpoint of a link {i, k} and
the left endpoint of a link {k, j}, because if this was the case, the string would
have the critical triple ti . . . tk . . . tj . Show that k can not be endpoint of two
different links using induction on the length m of the longer link , i.e. m =
max {|k − i|, |k − j|} . If m = 1, tk would be linked to tk−1 and to tk+1, which
is impossible as we just saw. If m = 2 we would have a link {i, i + 2} with
ti+1 → 1, which is impossible for a simple type. Suppose the property holds up
to m − 1, with 3 ≤ m . Assume first that tk is right endpoint of two different
links, i.e. that for some i, j ≥ 1

i < j < k

titk → 1

ti+1 . . . tk−1 → 1

tjtk → 1

tj+1 . . . tk−1 → 1

By hypothesis, there are a reductions R and R∗ such that R : ti . . . tk ⇒ 1 and
{i, k} ∈ R and R∗ : tj . . . tk ⇒ 1 and {j, k} ∈ R∗. Using underbrackets for the
links of R and underbraces for the links of R∗, the situation is represented by
the graph

. . . ti . . . tj tk
︸ ︷︷ ︸

. . . .

Then R links j to some position k′ with i + 1 ≤ k′ ≤ k − 1 . Note that k′ is
necessarily to the right of j, as otherwise the string would have the critical triple

. . . tk′ . . . tj . . . tk
︸ ︷︷ ︸

. . . , which is impossible.

Hence, j < k′ < k and

. . . ti . . . tj . . . tk′ . . . tk
︸ ︷︷ ︸

. . . .

Then tj would be left endpoint of two different links. As |j − k| < |i − k| ,
this contradicts the induction hypothesis. The case where tk is left endpoint is
similar.

13

This local property of unique links has useful global consequences. The first
one is the following Lemma

Lemma 8 (Uniqueness of Reductions of Linear Strings). Every linear string

of simple types t1 . . . tm has a unique irreducible form ti1 . . . tip
and a unique

reduction R to that irreducible form. This reduction is computed by Lazy Parsing

Proof: If t1 . . . tm is irreducible, the property holds trivially. Else, note that
in all reductions to an irreducible form, the links with neighboring endpoints
must be identical. Indeed, let R and R′ be reductions such that R : t1 . . . tm ⇒
ti1 . . . tip

and R′ : t1 . . . tm ⇒ tj1 . . . tjq
with ti1 . . . tip

and tj1 . . . tjq
irreducible.

Assume {k − 1, k} ∈ R. As tk−1tk → 1, one of k − 1 or k must belong to
a link in R′. If it is k, it can not be the left endpoint of a link {k, i} ∈ R′,
because otherwise the string would have a critical triple, contradicting linearity.
Hence R′ can link k only to some position i < k. By the preceding lemma,
it follows that i = k − 1. Similarly, if it is k − 1 that is linked in R′ to some
position, the latter is necessarily the position k. Hence R and R′ coincide
on all links with neighboring endpoints. Omitting these links from R and R′

and the corresponding segments tk−1tk from t1 . . . tm, the new reductions are
reductions of the new string to the same irreducible forms ti1 . . . tip

and tj1 . . . tjq

respectively. It follows by induction hypothesis, that the same positions are
linked by R and by R′. But then the positions that are not linked also coincide
in both reductions. Therefore p = q, ik = jk , for 1 ≤ k ≤ p and ti1 . . . tip

=
tj1 . . . tjq

.

Theorem 9 (Linear Completeness). A string of words from a linear dictionary

v1 . . . vn is a sentence if and only if at some final stage s =
(n, T1 . . . Tn, qn), the reduction R(s) reduces T1 . . . Tn to the sentence type. More-

over, for a given final stage, the reduction has been computed by Lazy Parsing

in time proportional to the length of the corresponding type assignment.

Proof: The last assertion follows from the fact that the definition of R(s) only
involves the predecessors of s and that for each stage the number of computation
steps is constant. The rest is a straightforward consequence of Theorem 3 and
Lemma 8.

Hence Lazy Parsing finds the unique reduction of a linear string to an irreducible
form. The same algorithm does as well for certain strings with critical triples.
Consider a string which has all critical types at the end, like

b b bℓb bℓb br br .

Such a string has at most one reduction to the empty string, which is computed
by Lazy Parsing.

Lemma 10 (Quasi-Linearity). Suppose that none of the simple types in S =
s1 . . . sn is critical and all of the simple types in T = t1 . . . tm are right-only.

Then ST has at most one reduction to the empty string. Moreover, if a reduction

to the empty string exists, it is computed by Lazy Parsing.

14

Proof: Suppose R : ST ⇒ 1 . Every critical type is a right endpoint and
cannot be linked to another critical type. Hence it is linked to some si with
i ≤ n .

. . . si1 sim−1
. . . sim

. . . t1 t2 tm

Omitting these links from R, we obtain a reduction R′ of S to the irreducible
string si1 . . . sim−1

sim
. Indeed, the segment between sim

and t1 is reduced by
R to the empty string, because links do not cross. For the same reason, the
segments between two consecutive sik

’s and the initial segment up to s1 are
reduced to the empty string by R and hence by R′. Now assume Q : ST ⇒ 1 is
another reduction to the empty string. Then its restriction to Q′ to S as well is
a reduction of S to an irreducible form sj1 . . . sjm′

. By the Linearity Lemma, S

has a unique irreducible form and a unique reduction to this irreducible form.
Therefore Q′ = R′, m = m′ and ik = jk for 1 ≤ k ≤ m . As links do not cross, it
follows that Q = R . Finally, as S is linear, Lazy Parsing computes the unique
reduction R′ : S ⇒ si1 . . . sim

. The indices i1, . . . , im are stored in its stack in
increasing order. Thus im is on the top of the stack after computing at stage
n. Reading the type t1 at the next stage, it will pop im and add {im, n + 1} to
the reduction and so on.

We call a string of the form ST in the lemma above quasi-linear and remark
that it can have several irreducible forms. For example, the empty string and
bbℓ are two irreducible forms of bbℓbbℓbbr .

In the next section we relax the restrictive conditions above, motivated by
properties of the sample dictionary of Section 3. We also modify the parsing
algorithm slightly so that it is complete and linear for the larger class of dictio-
naries defined by the weaker conditions.

5 Minimal Reductions

Dictionaries of complexity 2 may have type assignments with critical triples.
Such strings often have different irreducible forms and even for a given irre-
ducible form there may be different reductions to it. The time necessary to find
all possible reductions to the sentence type can increase exponentially with the
number of words, and this even if the dictionary lists just one type per word.
The best we can attempt therefore is to compute one particular reduction to the
sentence type per type assignment, provided there is at least one. In this section
we single out the minimal reduction always present among all reductions to the
sentence type.

The critical triples of our sample dictionary of Section 3 are due to the lexical
entries

which : cr
s
csŝ

ℓô, cr
s
csŝ

ℓπ̂3s

and : xrxxℓ,

A critical type in these entries is followed by its own left adjoint or is in a
segment that is followed by its left adjoint. This property is the key to complete
linear parsing.

15

Definition 11. (Guards) A type T = XCY is guarded if
- there are no critical types in X nor Y

- every simple type in C is critical
- Cℓ is the smallest element in its connected component
- Y = CℓY ′ for some Y ′ .

If C is not empty, the following segment Cℓ is called the guard of C .
A dictionary D is guarded if every type T ∈ D(v) is guarded for all v . A pre-

group grammar is guarded if its dictionary is guarded.

Every dictionary of complexity 1 is guarded, because such a dictionary has
no critical types. In general, the dictionaries proposed for natural languages so
far are guarded or have equivalent guarded dictionaries. At this stage it is not
known if guarded grammars are as expressive as the whole class of pregroup
grammars.

Our aim is to define a subset of the set of all reductions that is small enough
for a slightly amended Lazy Parsing algorithm to compute its members. It also
must be big enough so that if a given string has a reduction to the sentence
type, one of them is in the subset. We can do this for guarded dictionaries of
complexity 2, for which we define the minimal reductions below.

Definition 12. (Fans:) Consider a reduction R of t1 . . . tn. A fan of R is
a subset of underlinks {{ip, k} , {ip−1, k + 1} . . . , {i1, k + p − 1}} such that the
right endpoints form a segment.

. . . ti1 tip−1
. . . tip

. . . tk tk+1 . . . tk+p−1

A fan is critical, if every right endpoint is a critical type. A guarded fan is
a critical fan such that tk+p . . . tk+2p−1 guards the segment tk . . . tk+p−1 of its
right endpoints.

A fan reduces the segments between to left endpoints to the empty type and the
same is true for the segment between the last left and the first right endpoint.
This follows at once from the following, more general property.

Lemma 13. Fan Lemma Consider the following underlinks

. . . ti1Γ1 tip−1
Γp−1 tip

Θtk Λ1tk+1 . . .Λp−1tk+p−1

of a reduction R. Then R : Γi ⇒ 1 if and only if R : Λp−i ⇒ 1 for 1 ≤ i ≤ p−1 .

Moreover, R : Θ ⇒ 1. In particular, the segments between two consecutive left

endpoints of a fan reduce to the empty string.

Proof: The last assertion holds in any reduction. Moreover, a link that has
one endpoint in Γi has the other endpoint either in Γi itself or in Λp−i . Hence
R : Λp−i ⇒ 1 implies R : Γi ⇒ 1 and vice versa.

16

Definition 14. (Minimal reductions:) Let t1 . . . tn be a string of simple
types. The fan

. . . tj1 tjp−1
. . . tjp

. . . tk tk+1 . . . tk+p−1 .

is shorter than the fan

. . . ti1 tip−1
. . . tip

. . . tk tk+1 . . . tk+p−1 .

if ip < j1 . A fan is minimal if there is no shorter fan with the same right
endpoints.
A reduction of t1 . . . tn to the empty string is minimal if all guarded critical fans
are the right endpoint of a minimal fan.

In the case where a minimal fan has just one right endpoint, we call it a minimal

link. Note that a minimal reduction may have non-minimal links. For example,
consider the reductions

aℓa aℓ a ar a aℓ a aℓa ar a b bℓb bℓb br aℓ bℓ b a aℓa ar br b a .

The first reduction is minimal because all its links are minimal. The second is
not minimal, it has a guarded non minimal link. The third reduction is also
minimal, because its only critical type br is not guarded and therefore is not
required to be minimal. The fourth is again minimal, even though the link
through ar is not.

Theorem 15 (Completeness of Minimal Reductions). Assume that D is a

guarded dictionary of complexity 2. Then for every type assignment Xi ∈ D(vi)
such that X1...Xn → s there is a minimal reduction of X1...Xn to s.

Proof: We must show that whenever R : X1...Xns
r = t1...tm ⇒ 1 is a reduc-

tion then there is a minimal reduction M such that M : t1...tm ⇒ 1. We use
induction on the number of critical types in t1...tm .

The property is trivially true if there is no critical type. Otherwise, let tk
be the leftmost critical type. Note that the string t1 . . . tk−1 is linear. As the
dictionary is guarded, tk is either the last type in the string or is followed by
another critical type or tk+1 is the guard of tk. In the first case the reduction
R is trivially minimal. Now assume that tk+1 is the guard of tk .

Consider two cases.

Case (i):
The link {i, k} is minimal.

Then the restriction R′ of R to {i, . . . , k} is a reduction R′ : ti . . . tk ⇒ 1.
Omit the segment ti . . . tk from t1 . . . tm and the links with an endpoint in
{i, . . . , k} from R, obtaining the string t1 . . . ti−1tk+1 . . . tm and a reduction
R1 : t1 . . . ti−1tk+1 . . . tm ⇒ 1. As the induction hypothesis applies to R1, there

17

is a minimal reduction M∗ : t1 . . . ti−1tk+1 . . . tm ⇒ 1. Inserting the segment
ti . . . tk with the underlinks of R′ into M∗ we obtain a minimal reduction of
t1 . . . tm to the empty type.

Case (ii): The link {i, k} is not minimal and tk+1 guards tk .
Let j be the rightmost position i < j < k such that there is a reduction R∗

satisfying

{j, k} ∈ R∗ (II)

tjtk → 1 (III)

R∗ : Θ = tj+1 . . . tk−1 ⇒ 1 (IV)

It suffices to construct a reduction R′ : t1 . . . tm ⇒ 1 linking j and k and conclude
by Case(i).

First we remark that R coincides with R∗ on Θ . Indeed, ti+1 . . . tk−1 is
linear and both R and R∗ link a type in Θ to a type in ti+1 . . . tk−1. Therefore
they coincide in Θ by the Linearity Lemma 7. Hence

R : Θ = tj+1 . . . tk−1 ⇒ 1. (V)

It follows that R links j to a position h between i and j. Hence

{h, j} ∈ R, h < j, thtj → 1 (VI)

R : ∆ = th+1 . . . tj−1 ⇒ 1 . (VII)

Then R has the underlinks

tiΓ th∆tj Θtk . (VIII)

As R links each position in Θ to another position in Θ, the same holds for Γ,
i.e.

R : Γ = ti+1 . . . th−1 ⇒ 1. (IX)

Let l be the position linked to k + 1 in R. Note that either l > k + 1 or l < i .
If l > k + 1 , i.e. if

R . . . tiΓ th∆tj Θtk tk+1 . . . tl . . . , (X)

construct a new reduction R′ : t1 . . . tm ⇒ 1 by omitting the links {i, k}, {h, j}
and {k + 1, l} from R and adding the links {j, k} , {h, k + 1} and {i, l} instead.
The other links remain unchanged. Then R′ looks like this

R′ . . . tiΓ th∆ tjΘtk tk+1 . . . tl (XI)

If l < i i.e. if

R . . . tl . . . tiΓ th∆tj Θtk tk+1 . . . , (XII)

18

let again R′ is obtained from R by omitting the links {i, k}, {h, j} and {k + 1, l}
from R and adding the links {j, k}, {h, k + 1} and {i, l} instead. Now, R′ looks
like this

R′ . . . tl . . . ti Γ th∆ tjΘtk tk+1 . . . (XIII)

To see that R′ : t1 . . . tm ⇒ 1 , note that the geographical conditions are satisfied
because of V, VII and IX. Moreover, the algebraic conditions obviously hold for
the unchanged links and for the minimal link {j, k}. They also hold for the new
links. Indeed, tk+1 = tℓk is the smallest element in its connected component by
assumption. Hence whenever ttk → 1 then t = tk+1 .

Remains the case where tk+1 is another critical type, i.e. where the leftmost
critical fan has several right endpoints. We only consider the case where R is
not minimal. Let R∗ be a reduction that defines a shorter fan than R .

R∗ a Λ b . . . br

︸ ︷︷ ︸
ar

︸ ︷︷ ︸

a b

Let Λq be the intermediary segment of any two successive left endpoints of
R∗. Using linearity of the string before the first critical type we show that R

coincides with R∗ on Λq and cancels the left endpoints of R∗ to the right of its
own left endpoints

R . . . a . . . b . . . bℓΓ aℓ . . . aΛ b . . . br ar a b

From this follows by the Fan Lemma,

R : Λq ⇒ 1, R : Γq ⇒ 1

Now we construct R′ as above. This ends the proof.

6 Minimal Parsing

Recall that a string with n critical types may have up to to 2n different reduc-
tions. Hence looking for only one of them should diminish the work considerably.
In fact, Lazy Parsing can be amended to find such a minimal reduction keeping
its run-time still linear. We formulate the relevant properties of Lazy Parsing
in the next two lemmas. For a fixed string of simple types T = t1 . . . tn , the
stages of Lazy Parsing identify with the positions {0, 1, . . . , n}, where 0 stand
for the initial stage. Hence, Lazy Parsing processes ti at stage i .

Lemma 16. Assume that the reduction R : T = t1 . . . tn ⇒ 1 includes the

critical fan

. . . tj1 tjp−1
. . . tjp

. . . tk tk+1 . . . tk+p−1

If T is of complexity 2 then tj1 . . . tjp
is an irreducible form of tj1 . . . tk−1 .

19

Proof: All we must show is that tjq
tjq+1

6→ 1 for 1 ≤ q ≤ p− 1 . Let a(z) = tjq

and b(u) = tjq+1
. As R links a(z) to tp+q−1 the latter has the form tp+q−1 =

a′(z+1) for an appropriate a′ in the connected component of a. Similarly, tp+q =
b′(u+1) for some b′ in the connected component of b . If tjq

tjq+1
→ 1 , then

u = z + 1 . Moreover, a, a′, b and b′ belong to the same connected component
and a(z), a′(z+1), b(z+1) and b′(z+2) occur in T . Then a′(z+1) cannot be a critical
type because T has complexity 2

Lemma 17. Assume that R : t1 . . . tn ⇒ 1, that tk is the leftmost critical type

with corresponding link {j, k} in R . Let i be the top of the stack constructed by

Lazy Parsing when processing tk−1 . Then i ≤ j ≤ k − 1 .

In particular, if i < j , then there are l and m such that i < l < j , k < m ,

Lazy Parsing links tl to tj , R links tl to tm and the latter is not a critical type.

Proof: Let R : t1 . . . tn ⇒ 1, i, j and k be as in the hypothesis of the Lemma.
As tk is a critical type in a dictionary of complexity 2, it can only be a right
endpoint, hence j ≤ k . To see that i ≤ j assume that this was not the case, i.e.
that

. . . tj . . . ti . . . tk

Hence R links i to some position l strictly between j and k . We remark first
that i < l is impossible. Indeed, Lazy Parsing reduces the segment ti+1 . . . tk−1

to the empty string by property (2) of Theorem (3). Hence it would link l to
some p strictly between i and k

. . . ti . . . tp . . . tl
︸ ︷︷ ︸

. . . tk . . . ,

contradicting the uniqueness of links in the linear segment ti . . . tk−1 . Therefore
R must link ti to tl for some l < i .

. . . tj . . . tl . . . ti . . . tk . . .

Next, we remark that l is put on top of the stack while processing tl, because
tl does not contract with any type on its left. For if it did, ti would be a
critical type, contradicting the assumption. When processing the string from
tl toward the right, Lazy Parsing cannot pop l from the stack before reaching
ti. Indeed, this would imply that tl is endpoint of two different links in a linear
string, contradicting Lemma (7). It follows that Lazy Parsing computes an
irreducible form of tl . . . ti different from the empty string, contradicting lemma
(8). Therefore j < i is impossible and so i ≤ j ≤ k − 1 .

Consider the case i < j. Recall Property (2) of Theorem (3) which says that
Lazy Parsing reduces ti+1 . . . tk−1 to the empty string. Hence it links j to some
position l with i < l < k . Moreover, we have l < j because tk is the first critical
type. Hence

. . . ti . . . tl . . .
︸ ︷︷ ︸

tj . . . tk . . . ,

20

where the underbraces designate links of Lazy Parsing. Note that tl is left-only,
because the dictionary has complexity 2 . Therefore R links l to some m > l .
Moreover, if we had m ≤ k−1, then l would be linked to two different positions
in the linear string t1 . . . tk−1 which is impossible. Hence k + 1 ≤ m .

Lemma 18. Assume the notations of the preceding lemma and that tk is the

leftmost critical type of a fan

. . . tj1 tjp−1
. . . tjp

. . . tk tk+1 . . . tk+p−1

If jp > i then jq > i for 1 ≤ q ≤ p . Moreover, there are j1 > l1 > · · · > lp > i

such that Lazy Parsing links tlq to tjq
.

Proof: Use induction on the number of critical types p. The case p = 1 is
the preceding lemma. For the induction step, omit the segment tjp

. . . tk from
t1 . . . tn and the corresponding links from R . Apply the induction hypothesis to
this string to obtain lp−1 < · · · < l1 and the corresponding links of Lazy Parsing

. . . ti . . . tlp−1
. . . tl1 . . . tj1

︸ ︷︷ ︸
.

︸ ︷︷ ︸

tjp−1
Γp tjp

. . . tk tk+1 . . . tk+p−1

Use the usual argument to show that Lazy Parsing links tlp to tjp
for some lp

between i and jp

. . . ti . . . tlp . . .
︸ ︷︷ ︸

tjp
. . . tk

We have lp < lp−1 or jp−1 < lp , for Lazy Parsing links lp−1 to jp−1 . We remark
that the latter is impossible. Indeed, if tlp was inside of Γp it would be linked
by R to some type before tjp

contradicting the uniqueness of links in the linear
string Γp. Therefore lp < lp−1 .

Minimal Parsing
Let t1 . . . tn = T1 . . . Tms

r be a type assignment and assume that the dictionary
is guarded. Then the first critical type is the leftmost type of a segment CCℓ

within the type of some word. Hence the length of C is a constant depending
only on the dictionary.

We amend Lazy Parsing by back-tracking when arriving at the first critical
type tk with i on the top of the stack. Instead of processing tk, we process the
string ti . . . tk−1 backward, starting at k−1 , but no further than i+1 included.
We construct a separate stack and set of links for the backward parsing. At
each position, we compare the computed irreducible form, say tj1 . . . tjq

, with
the string Cℓ. If and when it satisfies Cℓ = tj1 . . . tjp

, we stop and update Lazy
Parsing following the construction of a minimal reduction in Theorem (15). We
omit the links {lq, jq} from the reduction computed so far and add the links
{jq, k + q − 1} and {lq, k + p − 1 + q} instead. The stack remains unchanged.
Then we continue processing forward with Lazy Parsing from tk+2p on. If on the
contrary, the irreducible form computed by backtracking never becomes equal
to Cℓ for k − 1 ≥ q ≥ i + 1 , we continue with forward Lazy Parsing from tk on,

21

with the stack and set of links as they were before backtracking. If this proce-
dure links the critical types successfully on the left, the corresponding segment
tj1 . . . tk+p−1 will be omitted in later backtracks. Hence every simple type in
the string is processed at most twice.

It follows from Lemmas (17) and (18) that Minimal Parsing is complete if the
dictionary is guarded and has complexity 2. Moreover, it computes a reduction
to the sentence time or fails if there is none, and does so in time proportional
to the length of the string T1 . . . Tm .

We can use Minimal Parsing for recognizing ‘losing’ type assignments with
no reduction to the sentence type, when processing a word that introduces a
critical type. If k + q is pushed onto the stack for some 0 ≤ q ≤ p − 1, then
t1 . . . tn has no reduction to the empty string. Indeed, if Minimal Parsing does
not find a link for the critical type tk+q then there is no such link by Theorem
(15) and Lemmas (17) and (18). As tk+q cannot be cancelled from the right,
it remains in every irreducible form of t1 . . . tn. Note that we do not even need
to know what will come after the critical segment and its guard. We only need
to know the critical segment C so that we can test the irreducible form during
backtracking for equality with Cℓ .

7 Conclusion

The conditions which make the Minimal Parsing algorithm linear apply to a
large class of pregroup grammars. Indeed, a pregroup grammar has a finite
dictionary and therefore is strongly equivalent to one of complexity 2. Practice
shows that guarded dictionaries cover quite expressive natural language frag-
ments. However, Minimal Parsing depends on the selected type assignment.
Future work must investigate dictionaries for which the criterion for recognizing
losing type assignments during processing lowers the number of processed type
assignments sufficiently. The present work is only a first step toward the claim
that pregroup grammars can provide natural language processing with linear
algorithms.

References

[Buszkowski] Wojciech Buszkowski, Lambek Grammars based on pregroups,
in: P. de Groote et al., editors, Logical Aspects of Computa-
tional Linguistics, LNAI 2099, Springer, 2001

[CYK] David Younger, Recognition and Parsing of Context-Free Lan-
guages in Time n3, Information and Control, 10:2, 1967

[Degeilh-Preller] Sylvain Degeilh, Anne Preller, Efficiency of Pregroups and the
French noun phrase, Journal of Language, Logic and Informa-
tion, Springer, Vol. 14, Number 4, pp. 423-444, 2005

22

[Earley] Jay Earley, An efficient context-free parsing algorithm, Com-
munications of the AMC, Volume 13, Number 2, pp 94-102,
1970

[Gazdar] Gerald Gazdar, Unbounded Dependency and Coordinate
Structure, in: The Formal Complexity of Natural Language,
Walter Salvitch, ed., Reidel Publishing Company, pp. 183-226,
1987

[Lambek 99] Joachim Lambek, Type Grammar revisited, in: A. Lecomte
et al., editors, Logical Aspects of Computational Linguistics,
Springer LNAI 1582, pp.1 -27, 1999

[Lambek 04] Joachim Lambek, A computational algebraic approach to En-
glish grammar, Syntax 7:2, pp. 128-147, 2004

[Oehrle] Richard Oehrle, A parsing algorithm for pregroup grammars,
in: Proceedings of Categorial Grammars 2004, Montpellier
France, pp.59-75, 2004

[Preller-Lambek] Anne Preller, Joachim Lambek (2007), Free compact 2-

categories, Mathematical Structures for Computer Sci-
ences, vol. 17, pp.309-340, Cambridge University Press.
doi:10.1017/S0960129506005901

[Preller 07] Anne Preller (2007), Toward Discourse Representation

Via Pregroup Grammars, JoLLI, Vol.16, pp. 173-194.
doi:10.1007/s10849-006-9033-y

23

