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An oriented coloring

of planar graphs with girth at least five

Alexandre Pinlou 1

LIRMM - Univ. Montpellier 2, CNRS

161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract

An oriented k-coloring of an oriented graph G is a homomorphism from G to an
oriented graph H of order k. We prove that every oriented graph with maximum
average degree strictly less than 10

3 has an oriented chromatic number at most 16.
This implies that every oriented planar graph with girth at least 5 has an oriented
chromatic number at most 16, that improves the previous known bound of 19 due to
Borodin et al. [Borodin, O. V. and Kostochka, A. V. and Nešeťril, J. and Raspaud,
A. and Sopena, É., On the maximum average degree and the oriented chromatic

number of a graph, Discrete Math., 77–89, 206, 1999].

Key words: Oriented coloring; Planar graph; Girth; Discharging procedure;
Maximum average degree.

1 Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. For an
oriented graph G, we denote by V (G) its set of vertices and by A(G) its set
of arcs. For two adjacent vertices u and v, we denote by −→uv the arc from u to
v or simply uv whenever its orientation is not relevant (therefore, uv = −→uv or
uv = −→vu). The number of vertices of G is the order of G.

An oriented k-coloring of an oriented graph G is a mapping ϕ from V (G) to
a set of k colors such that (1) ϕ(u) 6= ϕ(v) whenever −→uv is an arc in G, and
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(2) ϕ(u) 6= ϕ(x) whenever −→uv and −→wx are two arcs in G with ϕ(v) = ϕ(w). In
other words, an oriented k-coloring of G is a partition of the vertices of G into
k stable sets S1, S2, . . . , Sk such that all the arcs between any pair of stable
sets Si and Sj have the same direction (either from Si to Sj , or from Sj to
Si). The oriented chromatic number of an oriented graph, denoted by χo(G),
is defined as the smallest k such that G admits an oriented k-coloring.

Let G and H be two oriented graphs. A homomorphism from G to H is

a mapping ϕ : V (G) → V (H) that preserves the arcs:
−−−−−−→
ϕ(x)ϕ(y) ∈ A(H)

whenever −→xy ∈ A(G).

An oriented k-coloring of G can be equivalently defined as a homomorphism
from G to H , where H is an oriented graph of order k. The existence of such
a homomorphism from G to H is denoted by G → H . The vertices of H
are called colors, and we say that G is H-colorable. The oriented chromatic
number of G can then be defined as the smallest order of an oriented graph H
such that G→ H . Links between colorings and homomorphisms are presented
in more details in the recent monograph [6] by Hell and Nešetřil.

The notion of oriented coloring introduced by Courcelle [5] has been stud-
ied by several authors in the last decade and the problem of bounding the
oriented chromatic number has been investigated for various graph classes:
planar graphs (with given girth) [1–4,10,11], graphs with bounded maximum
average degree [3,4], graphs with bounded degree [7], graphs with bounded
treewidth [12,13], and graph subdivisions [15].

The average degree of a graph G, denoted by ad(G), is defined as twice the

number of edges over the number of vertices (ad(G) = 2|E(G)|
|V (G)|

). The maximum

average degree of G, denoted by mad(G), is then defined as the maximum of
the average degrees taken over all subgraphs of G:

mad(G) = max
H⊆G

{ad(H)}.

The girth of a graph G is the length of a shortest cycle of G.

Borodin et al. [3,4] gave bounds of the oriented chromatic number of graphs
with bounded maximum average degree:

Theorem 1 [3,4] Let G be a graph.

(1) If mad(G) < 12
5

and G has girth at least 5, then χo(G) ≤ 5 [3].
(2) If mad(G) < 11

4
and G has girth at least 5, then χo(G) ≤ 7 [4].

(3) If mad(G) < 3, then χo(G) ≤ 11 [4].
(4) If mad(G) < 10

3
, then χo(G) ≤ 19 [4].

When considering planar graphs, the maximum average degree and the girth
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are linked by the following well-known relation:

Claim 2 [4] Let G be a planar graph with girth g. Then, mad(G) < 2 + 4
g−2

.

Corollary 3 follows from Theorem 1 and the previous claim.

Corollary 3 [3,4] Let G be a planar graph.

(1) If G has girth at least 12, then χo(G) ≤ 5 [3].
(2) If G has girth at least 8, then χo(G) ≤ 7 [4].
(3) If G has girth at least 6, then χo(G) ≤ 11 [4].
(4) If G has girth at least 5, then χo(G) ≤ 19 [4].

In this paper, we consider the class of graphs with maximum average degree
strictly less than 10

3
. Our main result improves Theorem 1(4):

Theorem 4 Let G be a graph with mad(G) < 10
3
. Then χo(G) ≤ 16.

Actually, we prove a stronger result: we show that every oriented graph G
with mad(G) < 10

3
admits a homomorphism to T16, where T16 is the Tromp

graph of order 16 whose construction is described in Section 2.

We thus get:

Corollary 5 Let G be a planar graph with girth at least 5. Then χo(G) ≤ 16.

In the remainder, we use the following notions. For a vertex v of a graph
G, we denote by d−G(v) its indegree, by d+

G(v) its outdegree, and by dG(v) its
degree (subscripts are omitted when the considered graph is clearly identified
from the context). We denote by N+

G (v) the set of outgoing neighbors of v, by
N−

G (v) the set of incoming neighbors of v and by NG(v) = N+
G (v)∪N−

G (v) the
set of neighbors of v. A vertex of degree k (resp. at least k, at most k) is called
a k-vertex (resp. ≥k-vertex, ≤k-vertex ). If a vertex u is adjacent to a k-vertex
(resp. ≥k-vertex, ≤k-vertex) v, then v is a k-neighbor (resp. ≥k-neighbor, ≤k-
neighbor) of u. A path of length k (i.e. formed by k edges) is called a k-path.
If If two graphs G and H are isomorphic, we denote it by G ∼= H .

The paper is organised as follows. The next section is devoted to the target
graph T16 and some of its properties. We prove Theorem 4 in Section 3. We
finally give some concluding remarks in the last section.
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Fig. 2. The graph QR7.

2 The Tromp graph T16

In this section, we describe the construction of the target graph T16 used to
prove Theorem 4 and give some useful properties.

The Tromp’s construction was proposed by Tromp [14]. Let G be an ori-
ented graph and G′ be an isomorphic copy of G. The Tromp graph Tr(G) has
2|V (G)| + 2 vertices and is defined as follows:

• V (Tr(G)) = V (G) ∪ V (G′) ∪ {∞,∞′}

• ∀u ∈ V (G) : −−→u∞,
−−→
∞u′,

−−→
u′∞,−−→∞u ∈ A(Tr(G))

• ∀u, v ∈ V (G),−→uv ∈ A(G) : −→uv,
−→
u′v′,

−→
vu′,

−→
vu′ ∈ A(Tr(G))

Figure 1 illustrates the construction of Tr(G). We can observe that, for every
u ∈ V (G) ∪ {∞}, there is no arc between u and u′. Such pairs of vertices will
be called twin vertices, and we denote by t(u) the twin vertex of u. Remark
that t(t(u)) = u. This notion can be extended to sets in a standard way: for a
given W ⊆ V (G), W = {v1, v2, . . . , vk}, then t(W ) = {t(v1), t(v2), . . . , t(vk)}.

By construction, the graph Tr(G) satisfies the following property:

∀u ∈ Tr(G) : N+(u) = N−(t(u)) and N−(u) = N+(t(u))

In the remainder, we focus on the specific graph family obtained via the
Tromp’s construction applied to Paley tournaments. For a prime power p ≡ 3
(mod 4), the Paley tournament QRp is defined as the oriented graph whose
vertices are the integers modulo p and such that −→uv is an arc if and only if
v − u is a non-zero quadratic residue of p. For instance, the Paley tourna-
ment QR7 has vertex set V (QR7) = {0, 1, . . . , 6} and −→uv ∈ A(QR7) whenever
v−u ≡ r (mod 7) for r ∈ {1, 2, 4}; see Figure 2. Note that the bounds of The-
orems 1(2), 1(3), and 1(4) have been obtained by proving that all the graphs
of the considered classes admit a homomorphism to the Paley tournaments
QR7, QR11, and QR19, respectively.
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Let T16 = Tr(QR7) be the Tromp graph on sixteen vertices obtained from
QR7. In the remainder of this paper, the vertex set of T16 is {0, 1, . . . , 6,
∞, 0′, 1′, . . . , 6′,∞′} where {0, 1, . . . , 6} is the vertex set of the first copy ofQR7

and {0′, 1′, . . . , 6′} is the vertex set of the second copy of QR7; thus, for every
u ∈ {0, 1, . . . , 6,∞}, we have t(u) = u′. In addition, for every u ∈ V (T16), we
have by construction |N+

T16(u)| = |N−
T16

(u)| = 7. The graph T16 has remarkable
symmetry and some useful properties given below.

Proposition 6 [8] For any QRp, the graph Tr(QRp) is such that:

∀u ∈ V (Tr(QRp)) : N+(u) ∼= QRp and N−(u) ∼= QRp

Proposition 7 [8] For any QRp, if {a1, a2, a3} and {b1, b2, b3} span triangles
t1 and t2 respectively in Tr(QRp) and the map ψ taking ai to bi (1 ≤ i ≤ 3)
is an isomorphism t1 → t2, then ψ can be extended to an automorphism of
Tr(QRp).

It is then clear that Tr(QRp) is vertex-transitive and arc-transitive.

Proposition 8 Let G be an oriented graph such that G→ T16. Then, for any
vertex v of G, the graph G′ obtained from G by reversing the orientation of
every arc incident to v admits a homomorphism to T16.

Proof. Let ϕ be a T16-coloring ofG. For every w ∈ V (T16), we have N+
T16

(w) =
N−

T16
(t(w)) and N−

T16
(w) = N+

T16
(t(w)). Therefore, the mapping ϕ′ : V (G′) →

V (T16) defined by ϕ′(u) = ϕ(u) for all u ∈ V (G′) \ {v} and ϕ′(v) = t(ϕ(v)) is
clearly a T16-coloring of G′. 2

An orientation n-vector is a sequence α = (α1, α2, . . . , αn) ∈ {0, 1}n of n
elements. Let S = (v1, v2, . . . , vn) be a sequence of n (not necessarily distinct)
vertices of T16; a vertex u is said to be an α-successor of S if for any i, 1 ≤
i ≤ n, we have −→uvi ∈ A(T16) whenever αi = 1 and −→viu ∈ A(T16) otherwise. For
instance, the vertex 3′ of T16 is a (1, 1, 0, 1, 0, 0)-successor of (1, 2, 6′, 1,∞, 2′)

since the arcs
−→
3′1,

−→
3′2,

−→
6′3′,

−−→
∞3′, and

−→
2′3′ belong to A(T16).

If, for a sequence S = (v1, v2, . . . , vn) of n vertices of T16 and an orientation
n-vector α = (α1, α2, . . . , αn), there exist i 6= j such that vi = vj and αi 6= αj ,
then it does not exist any α-successor of S; indeed, T16 does not contain
opposite arcs. In addition, if there exist i 6= j such that vi = t(vj) and αi = αj ,
then it does not exist any α-successor of S; indeed, for any pair of vertices x and
y of T16 with x = t(y), we have N+

T16
(x)∩N+

T16
(y) = ∅ andN−

T16
(x)∩N−

T16
(y) = ∅.

A sequence S = (v1, v2, . . . , vn) of n vertices of T16 is said to be compatible
with an orientation n-vector α = (α1, α2, . . . , αn) if and only if for any i 6= j,
we have αi 6= αj whenever vi = t(vj), and αi = αj whenever vi = vj . Note
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that if the n vertices of S is an n-clique subgraph of T16 (i.e. v1, v2, . . . , vn are
pairwise distinct and induce a complete graph), then S is compatible with any
orientation n-vector since a vertex u and its twin t(u) cannot belong together
to the same clique.

In the remainder, we say that T16 has Property Pn,k if, for every sequence S of
n distinct vertices of T16 and any orientation n-vector α which is compatible
with S, there exist k α-successors of S. This set of k α-successors is denoted
by Succα(S).

Proposition 9 The graph T16 has Properties P1,7, P2,3, and P3,1.

Proof.

(1) Property P1,7 is trivial since every vertex of T16 has seven successors and
seven predecessors.

(2) To prove that T16 has Property P2,3, we have to show that, for every
sequence S = (u, v) and any compatible orientation 2-vector α, there
exist at least three α-successors of S. We have two cases to consider: the
case uv ∈ A(T16) and the case u = t(v). Since T16 is arc-transitive, we
will consider w.l.o.g. S = (0, 1) and S = (∞,∞′).

A case study shows that the three α-successors of S = (0, 1) are 2, 6′,
and ∞ (resp. 2′, 6, and ∞′ ; 3′, 4, and 5′ ; 3, 4′, and 5) if α = (0, 0) (resp.
(1, 1) ; (0, 1) ; (1, 0)).

Consider now the case S = (∞,∞′). By definition, the only two com-
patible orientation 2-vectors with S are (0, 1) and (1, 0). It is then clear
by construction of T16 that we have seven α-successors of S in each case.

(3) Property P3,1 was proved by Marshall [8].

2

Proposition 10 Let u, v1, and v2 be three distinct vertices of T16, and Si =
(u, vi) for every 1 ≤ i ≤ 2. Let α be an orientation 2-vector compatible with
S1 and S2. Then Succα(S1) 6= Succα(S2).

Proof. Suppose to the contrary that there exist such S1 and S2 with
Succα(S1) = Succα(S2).

By Proposition 8, we may assume w.l.o.g. that α2 = 0. If v1 = t(v2), we
clearly have Succα(S1) 6= Succα(S2) since N+

T16
(v1) ∩ N+

T16
(v2) = ∅. Thus, we

may assume w.l.o.g. that v1v2 ∈ A(T16), and since T16 is arc-transitive, we
assume w.l.o.g. that v1 = 0 and v2 = 1.
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Therefore, the vertices of Succα(S1) = Succα(S2) must be the common succes-
sors of 0 and 1. We have N+

T16
(0)∩N+

T16
(1) = {2, 6′,∞}. If α1 = 0, then a case

study allows us to check that T16 has no vertex u distinct from 0 and 1 having
2, 6′, and ∞ as successors. Therefore, we should have α1 = 1 and then we can
check that u should necessarily be either 0′ or 1′. However, in each case, we
will have | Succα(Si)| = 7 and | Succα(S3−i)| = 3 for some i ∈ [1, 2]. 2

Proposition 11 Let u, v1, v2, and v3 be four distinct vertices of T16, and
Si = (u, vi) for every 1 ≤ i ≤ 3. Let α be an orientation 2-vector compatible
with S1, S2, and S3. Then, for any pair of vertices W = {x, y} of T16, there
exists j ∈ [1, 3] such that | Succα(Sj) \W | ≥ 2.

Proof. Remark first that if there exists j ∈ [1, 3] such that uvj /∈ A(T16), then
we necessarily have u = t(vj) and thus α1 6= α2 since α is compatible with
Sj . In case, we have | Succα(Sj)| = 7 and it is clear that | Succα(Sj) \W | ≥ 2.
Therefore, uv1, uv2, uv3 ∈ A(T16), and thus, for every i ∈ [1, 3], | Succα(Si)| =
3.

Suppose that the proposition is false, that is there exist u, v1, v2, v3 and a pair
of vertices W = {x, y} such that W ⊂

⋂3
i=1 Succα(Si).

Remark that, for any sequence S of size n and any orientation n-vector β, the
set Succβ(S) cannot contain a vertex together with its twin. Therefore, x 6=
t(y) and since T16 is arc-transitive, we may assume w.l.o.g. that W = {0, 1}.

Therefore, u (resp. v1, v2, and v3) should belong to N+
T16

(0) ∩ N+
T16

(1) =
{2, 6′,∞} if α1 = 0 (resp. α2 = 0) or to N−

T16
(0) ∩ N−

T16
(1) = {2′, 6,∞′} if

α1 = 1 (resp. α2 = 1). This implies that, if α1 = α2 (resp. α1 6= α2), we would
have u = vj (resp. u = t(vj)) for some j ∈ [1, 3], that contradicts the fact that
uv1, uv2, uv3 ∈ A(T16). 2

3 Proof of Theorem 4

In this section, we prove Theorem 4, that is every graph G with mad(G) < 10
3

admits a homomorphism to T16.

Let us define the partial order �. Let n3(G) be the number of ≥3-vertices in
G. For any two graphs G1 and G2, we have G1 ≺ G2 if and only if at least one
of the following conditions hold:

• G1 is a proper subgraph of G2;
• n3(G1) < n3(G2).
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Note that this partial order is well-defined, since if G1 is a proper subgraph of
G2, then n3(G1) ≤ n3(G2). So � is a partial linear extension of the subgraph
poset.

Let H be an hypothetical minimal counterexample to Theorem 4 according
to ≺. We first prove that H does not contain a set of fifteen configurations.
Then, using a discharging procedure, we show that every graph which contains
none of these fifteen configurations has a maximum average degree greater
than 10

3
; this implies that H has mad(H) ≥ 10

3
, a contradiction.

3.1 Structural properties of H

A weak 5-vertex is a 5-vertex adjacent to three 2-vertices. A weak 4-vertex is
a 4-vertex adjacent to one 2-vertices.

Lemma 12 The graph H does not contain the following configurations:

(C1) a ≤1-vertex;
(C2) a k-vertex adjacent to (k − 2) 2-vertices for 3 ≤ k ≤ 4;
(C3) a k-vertex adjacent to (k − 1) 2-vertices for 2 ≤ k ≤ 7;
(C4) a k-vertex adjacent to k 2-vertices for 1 ≤ k ≤ 15;
(C5) a 3-vertex;
(C6) a triangle incident to a 2-vertex;
(C7) two vertices sharing three common neighbors whose two of them are 2-

vertices;
(C8) a k-vertex adjacent to (k − 2) 2-vertices and one weak 5-vertex for 5 ≤

k ≤ 6;
(C9) a 4-vertex adjacent to three weak 5-vertices;

(C10) a weak 5-vertex adjacent to two weak 4-vertices;
(C11) a 5-vertex adjacent to two 2-vertices and two weak 5-vertices;
(C12) a 5-vertex adjacent to one 2-vertex and four weak 5-vertices;
(C13) a 6-vertex adjacent to three 2-vertices and three weak 5-vertices;
(C14) a 7-vertex adjacent to five 2-vertices and two weak 5-vertices;
(C15) an 8-vertex adjacent to seven 2-vertices and one weak 5-vertex.

The drawing conventions for a configuration C contained in a graph G are the
following. If u and v are two vertices of C, then they are adjacent in G if and
only if they are adjacent in C. Moreover, the neighbors of a white vertex in
G are exactly its neighbors in C, whereas a black vertex may have neighbors
outside of C. Two or more black vertices in C may coincide in a single vertex
in G, provided they do not share a common white neighbor. Finally, an edge
will represent an arc with any of its two possible orientations.
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Fig. 3. Configurations C2-C7.

Let G be an oriented graph, v be a k-vertex with N(v) = {v1, v2, . . . , vk} and
α be an orientation k-vector such that αi = 0 whenever −→viv ∈ A(G) and αi = 1
otherwise. Let ϕ be a T16-coloring of G\{v} and S = (ϕ(v1), ϕ(v2), . . . , ϕ(vk)).
Recall that a necessary condition to have α-successors of S is that α must be
compatible with S, that is for any pair of vertices vi and vj , ϕ(vi) 6= ϕ(vj)
whenever αi 6= αj and ϕ(vi) 6= t(ϕ(vj)) whenever αi = αj. Hence, every vertex
vj forbids one color for each vertex vi, i ∈ [1, k], i 6= j. We define fϕ

vi
(vj) to

be the forbidden color for vi by ϕ(vj) (i.e. fϕ
vi

(vj) = ϕ(vj) whenever αi 6= αj

and fϕ
vi

(vj) = t(ϕ(vj)) whenever αi = αj). Therefore, α is compatible with S
if and only if we have ϕ(vi) 6= fϕ

vi
(vj) for every pair i, j, 1 ≤ i < j ≤ k. Note

that if ϕ(vi) 6= fϕ
vi

(vj), then we necessarily have ϕ(vj) 6= fϕ
vj

(vi).

For each configuration, we suppose that H contains it and we consider a
reduction H ′ such that H ′ ≺ H and mad(H ′) < 10

3
; therefore, by minimality

of H , H ′ admits a T16-coloring ϕ. We will then show that we can choose ϕ so
that it can be extended to H thanks to Proposition 9, contradicting the fact
that H is counterexample.

In the remainder, if H contains a configuration, then H∗ will denote the graph
obtained from H be removing all the white vertices of this configuration.

Proof of Configuration (C1). Trivial. 2

Proof of Configuration (C2). Suppose that H contains the configuration
depicted in Figure 3(a) and let ϕ be a T16-coloring of H ′ = H \ {v1, . . . , vn}.
Then, we clearly have ϕ(u′1) 6= fϕ

u′
1

(u′2) since v is colored in H ′. Therefore, by

Property P2,3, we can choose ϕ so that ϕ(v) /∈ {fϕ
v (v′1), . . . , f

ϕ
v (v′n)}. 2

Proof of Configuration (C3). Suppose that H contains the configuration
depicted in Figure 3(b) and let ϕ be a T16-coloring of H∗. By Property P1,7,
we can choose ϕ so that ϕ(v) /∈ {fϕ

v (v′1), . . . , f
ϕ
v (v′n)}. 2
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Fig. 4. Configurations of Lemma 13.

Proof of Configuration (C4). Suppose that H contains the configuration
depicted in Figure 3(c) and let ϕ be a T16-coloring of H∗. We can clearly
choose ϕ so that ϕ(v) /∈ {fϕ

v (v′1), . . . , f
ϕ
v (v′n)}. 2

Up to now, the reductions H ′ have been obtained from H by removing some
vertices and/or arcs; therefore, we clearly had mad(H ′) ≤ mad(H). To prove
that Configuration (C5) is forbidden in H , we considered a reduction H ′ ob-
tained from H by removing one 3-vertex and by adding new vertices and
arcs. The following lemma shows that this reduction H ′ has nevertheless a
maximum average degree strictly less that 10

3
.

Let G be a graph containing a 3-vertex v adjacent to three vertices u1, u2,
and u3; see Figure 4(a). We denote by R(G) the graph obtained from G \ {v}
by adding 2-paths joining respectively u1 and u2, u2 and u3, u3 and u1; see
Figure 4(b).

Lemma 13 If mad(G) < 10
3
, then mad(R(G)) < 10

3
.

Proof. Let G′ be a counterexample, i.e. mad(G′) < 10
3

and mad(R(G′)) ≥ 10
3
.

Let D ⊆ R(G′) be a minimal subgraph of R(G′) (in term of |V (D)|+ |E(D)|)
such that ad(D) = mad(R(G′)) (by definition of the maximum average degree,
D exists). Let W = V (D) \ {u1, u2, u3, v1, v2, v3} and F = E(D) \ {u1v1, v1u2,
u2v2, v2u3, u3v3, v3u1}. Hence, W (resp. F ) is the set of vertices (resp. edges)
of D belonging to G′ and R(G′) which are not drawn on Figure 4(b).

It is obvious that D is not a subgraph of G′ since otherwise we would have
mad(G′) ≥ 10

3
. Moreover, suppose that D contains a ≤1-vertex x and let

D′ = D\{x}; we then have ad(D′) > ad(D) since ad(D) > 2, that contradicts
the minimality of D.

Therefore, sinceD 6⊆ G′ and the minimum degree ofD is 2, we have to consider
w.l.o.g. two different cases:

(1) V (D) = W ∪ {u1, v1, u2, v2, u3, v3} and E(D) = F ∪ {u1v1, v1u2, u2v2,

10
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v2u3, u3v3, v3u1}. In this case, let D′ ⊆ G′ such that V (D′) = W ∪
{u1, u2, u3, v} and E(D′) = F ∪ {u1v, u2v, u3v}. Therefore, |V (D′)| =
|V (D)| − 2 and |E(D′)| = |E(D)| − 3. Since ad(D) ≥ 10

3
, we have

6|E(D)| ≥ 10|V (D)| and thus 6(|E(D)| − 3) ≥ 10(|V (D)| − 2). Hence
6|E(D′)| ≥ 10|V (D′)|, that proves that ad(D′) ≥ 10

3
and thus mad(G′) ≥

10
3
, a contradiction.

(2) V (D) = W ∪ {u1, v1, u2, v2, u3} and E(D) = F ∪ {u1v1, v1u2, u2v2, v2u3}.
The same kind of arguments lead us to a similar contradiction.

Therefore, the graph G′ does not exist. 2

Proof of Configuration (C5). Suppose that H contains the configuration
depicted in Figure 3(d). Since Configurations (C1) and (C2) are forbidden,
u1, u2, and u3 are ≥3-vertices. Let H ′ be the graph obtained from H∗ by
adding, for every 1 ≤ i < j ≤ 3, a 2-path joining ui to uj is such a way that
its orientation is the same orientation of the path [ui, v, uj] in H . We have
H ′ ≺ H since n3(H

′) = n3(H) − 1 and mad(H ′) < 10
3

by Lemma 13. Any
T16-coloring ϕ of H ′ induces a coloring of H∗ such that ϕ(ui) 6= fϕ

ui
(uj) for

any i, j, 1 ≤ i < j ≤ 3. 2

Proof of Configuration (C6). Suppose that H contains the configuration
depicted in Figure 3(e). Any T16-coloring ϕ of H∗ is such that ϕ(u) 6= fϕ

u (v)
since uv ∈ A(H). 2

Proof of Configuration (C7). Suppose that H contains the configuration
depicted in Figure 3(f). Let H ′ be the graph obtained from H∗ by adding
an alternating (resp. directed) 2-path joining u and w if the 2-path [u, v, w]
is directed (resp. alternating). We have H ′ ≺ H and at least two 2-paths
join u and w in H ′: the first one is alternating and the other one is directed.
Therefore, any T16-coloring ϕ of H ′ induces a coloring of H∗ such that ϕ(u) 6=
ϕ(w) and ϕ(u) 6= t(ϕ(w)). 2

Some sub-configurations appear several times in Configurations (C8) to (C15).
To shorten the proofs, we will often use the five following lemmas.
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Lemma 14 Let G be an oriented graph containing a weak 5-vertex u (see
Figure 5) and let ϕ be a T16-coloring of G∗. Then, for a fixed coloring of u′1,
u′2, u

′
3, and v1, at most two colors are forbidden for v2.

Proof. The color ϕ(v1) together with each of the fifteen colors for v2 distinct
from f1 = fϕ

v2
(v1) give three possible colors for u by Property P2,3. Proposi-

tion 10 insures that at most one of these fifteen colors, say f2, gives the three
colors fϕ

u (u′1), f
ϕ
u (u′2), and fϕ

u (u′3) for u. Thus, for any ϕ(v2) /∈ {f1, f2}, we
have three available colors for u whose one of them is distinct from fϕ

u (u′1),
fϕ

u (u′2), and fϕ
u (u′3). 2

Lemma 15 Let G be an oriented graph containing a weak 5-vertex (see Fig-
ure 6) and let ϕ be a T16-coloring of G∗. Then, for any V1 ⊂ V (T16) and
V2 ⊂ V (T16) such that |V1| = |V2| = 2, ϕ can be extended to G so that the
colors of u′1, u

′
2, and u′3 are fixed and ϕ(vi) ∈ Vi.

Proof. Let W = {fϕ
u (u′1), f

ϕ
u (u′2), f

ϕ
u (u′3)}. Remark first that we must have

ϕ(u) /∈W .

Let V1 = {c1, c2} and V2 = {d1, d2} and let α = (α1, α2) be an orientation
2-vector such that, for every i ∈ [1, 2], αi = 0 whenever −→viu ∈ A(G), and
αi = 1 otherwise.

Suppose first that V1 = V2 (more precisely, ci = di for every i ∈ [1, 2]). If
α1 = α2, then we set ϕ(v1) = ϕ(v2), and we get | Succα(ϕ(v1), ϕ(v2))| = 7.
Thus, ϕ can be extended to G. If α1 6= α2, then let S1 = (c1, d2) and S2 =
(c2, d1). The sequences S1 and S2 are compatible with α, and by Property P2,3

we have | Succα(Si)| ≥ 3 for every i ∈ [1, 2]. Moreover, a case study shows
that Succα(S1) = t(Succα(S2)). Therefore, there exists i ∈ [1, 2] such that
Succα(Si) 6= W , and so ϕ can be extended to G.

Suppose now that V1 6= V2. If there exists i ∈ [1, 2] such that the arcs cid1 and
cid2 exist in T16, say i = 1, then c1 6= d1 6= d2 6= c1 and therefore the sequences
S1 = (c1, d1) and S2 = (c1, d2) are compatible with α and Proposition 10
insures that there exist i ∈ [1, 2] such that Succα(Si) 6= W . If there exists
i ∈ [1, 2] such that the arcs cid1 and cid2 do not exist in T16, say i = 1, then
it means that c1 = d1 and c1 = t(d2). This leads us to the previous case, that
is the two arcs c2d1 and c2d2 exist in T16 and c2 6= d1 6= d2 6= c2. The last
case to consider is the case where c1d1 and c2d2 exist in T16, and c1d2 and
c2d1 do not exist in T16. We can check that we then have either (1) c1 = d2

and c2 = t(d1), or (2) c1 = t(d2) and c2 = t(d1). If α1 6= α2, then for both
Cases (1) and (2), the sequence S = (c2, d1) is compatible with α and we
clearly have Succα(S) 6= W since | Succα(S)| = 7. Finally, if α1 = α2, then for
Case (1), the sequence S = (c1, d2) is compatible with α and we clearly have
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Succα(S) 6= W since | Succα(S)| = 7; for Case (2), the sequences S1 = (c1, d1)
and S2 = (c2, d2) are compatible with α, and since N+

T16
(c1)∩N

+
T16

(d2) = ∅, we
clearly have Succα(S1) 6= Succα(S2) and thus there exists i ∈ [1, 2] such that
Succα(Si) 6= W . 2

Lemma 16 Let G be an oriented graph containing a ≥3-vertex x adjacent to
three weak 5-vertices u, v, and w such that u and w (resp. v and w) share a
common 2-neighbor (see Figure 7). Let ϕ be a T16-coloring of G∗. Then, for
a fixed coloring of u′, u′1, u

′
2, v

′, v′1, v
′
2, w

′ and w′
1, at most five colors are

forbidden for x.

Proof. To prove this lemma, we will show that for any W ⊂ V (T16) such that
|W | = 6, ϕ can be extended to G so that the colors of u′, u′1, u

′
2, v

′, v′1, v
′
2 and

w′
1 are fixed and ϕ(x) ∈W .

Let W ′ = {fϕ
x (u′), fϕ

x (v′), fϕ
x (w′)}. Remark first that we must have ϕ(x) /∈W ′.

Let W ′′ = W \W ′ and consider the worst case |W ′′| = 3. By Proposition 11,
there exists a color c ∈W ′′ such that ϕ(x) = c and ϕ(u′) allow three colors for
u by Property P2,3 whose two of them are distinct from fϕ

u (u′1) and fϕ
u (u′2). We

then set ϕ(x) = c. By Property P2,3, ϕ(v′) and ϕ(x) allow three colors for v: we
can then set ϕ(v) /∈ {fϕ

v (v′1), f
ϕ
v (v′2)}. Then, by Property P2,3, ϕ(w′) and ϕ(x)

allow three colors for w: we can then set ϕ(w) /∈ {fϕ
w(w′

1), f
ϕ
w(v)}. Finally, recall

that ϕ(u′) and ϕ(x) allow three colors for v whose two of them are distinct from
fϕ

u (u′1) and fϕ
u (u′2): therefore, we can then set ϕ(u) /∈ {fϕ

u (u′1), f
ϕ
u (u′2), f

ϕ
u (w)}.

2

Lemma 17 Let G be an oriented graph containing ≥3-vertex adjacent to two
weak 5-vertices u and v sharing a common 2-neighbor (see Figure 8) and let
ϕ be a T16-coloring of G∗. Then, for a fixed coloring of u′1, u

′
2, v

′
1, v

′
2, u

′ and
v′, at most four colors are forbidden for x.

The proof of this lemma is very similar to the previous one and using the same
arguments leads us to the conclusion.

Lemma 18 Let G be an oriented graph containing ≥3-vertex x adjacent to
three weak 5-vertices u, v, and w such that u and w (resp. v and w; u and w)

13
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share a common 2-neighbor (see Figure 9). Let ϕ be a T16-coloring of G∗ and
let W ⊂ V (T16) containing the seven successors of any vertex of T16. Then,
for a fixed coloring of u′, u′1, v

′, v′1, w
′, and w′

1, ϕ can be extended to G such
that ϕ(x) ∈W .

Proof. Let G′ = G \ {t, y, z}. We first show that if we can extend ϕ to G′ so
that we have three choices of colors for one of the vertices u, v, or w, say u,
and two choices of colors for one the vertices v or w, say v, then there exists
a T16-coloring of G. Let Su and Sv be any two sets of vertices of T16 such that
|Su| = 3 and |Sv| = 2. If, for any colors cu ∈ Su and cv ∈ Sv, there exists a
T16-coloring ϕ′ of G′ such that ϕ′(u) = cu and ϕ′(v) = cv, then we can choose
ϕ(v) ∈ Sv \{f

ϕ′

v (w)} and ϕ(u) ∈ Su\{f
ϕ′

u (v), fϕ′

u (w)}; this coloring can clearly
be extended to G by Proposition 9.

We may suppose w.l.o.g. that the seven vertices of W are the seven successors
of ∞. Let W ′ = {fϕ

x (u′), fϕ
x (v′), fϕ

x (u′)}. Remark first that we must have
ϕ(x) /∈ W ′. Let W ′′ = W \ W ′ and consider the worst case |W ′′| = 4. By
Property P2,3, for each ϕ(x) ∈ W ′′, we have at least two colors distinct from
fϕ

u (u′1) (resp. fϕ
v (v′1), f

ϕ
w(w′

1)) for u (resp v, w) in G′.

Actually, we can show that at least one color ϕ(x) ∈ W ′′ allows three colors
for either u, v, or w, that is either three colors for u distinct from fϕ

u (u′1), three
colors for v distinct from fϕ

v (v′1), or three colors for w distinct from fϕ
w(w′

1).
A case study shows that if one of the following condition holds:

(1) ϕ(u′) = ∞,
(2) ϕ(u′) = ∞′,
(3) ϕ(u′) is a predecessor of ∞ and the 2-path [u′, u, x] is alternating,
(4) ϕ(u′) is a successor of ∞ and the 2-path [u′, u, x] is directed,

then, for any fϕ
u (u′1), there exists a color ϕ(x) ∈W ′′ such that the three colors

for u given by Property P2,3 are distinct from fϕ
u (u′1). The coloring ϕ can then

be extended to G by the above remark. By symmetry, these arguments apply
for v′ and w′.
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Fig. 10. Configuration (C8): a k-vertex adjacent to (k − 2) 2-vertices and one weak
5-vertex for 5 ≤ k ≤ 6.

Otherwise, suppose that ϕ(u′) = s is a successor of ∞ and the 2-path [u′, u, x]
is alternating. If s ∈ W ′′, then we can set ϕ(x) = s and we have seven
available colors for u, that completes the proof. If s /∈ W ′′, then this implies
that s ∈ W ′ = {fϕ

x (u′), fϕ
x (v′), fϕ

x (w′)} since s ∈ W by definition of W .
Therefore, we necessarily have w.l.o.g. either ϕ(v′) = s and [v′, v, x] is directed,
or ϕ(v′) = t(s) and [v′, v, x] is alternating, the only two cases which forbid the
color s for x. However, we have already shown that for these two cases, ϕ can
be extended to a T16-coloring of G (see above conditions (3) and (4)). 2

Proof of Configuration (C8). Suppose that H contains the configuration
depicted in Figure 10 and let ϕ be a T16-coloring of H∗. By Lemma 14, the
weak 5-vertex u forbids two colors for v, say f1 and f2. By Property P1,7, we
can choose ϕ such that ϕ(v) /∈ {f1, f2, f

ϕ
v (v′1), . . . , f

ϕ
v (v′n)}. 2

Recall that the case where two black vertices coincide in a configuration (pro-
vided they do not share a common white neighbor) is already taken into
account in the proofs. However, since we have no restriction on the girth of
the considered graphs, the cases where black vertices coincide with white ver-
tices have to be considered. To prove that Configurations (C8) to (C15) are
forbidden, we first begin by the following remarks:

Remark 19

(1) A black vertex cannot coincide with a white vertex at distance at most
two since otherwise it would imply either loops or multiple edges.

(2) A black vertex adjacent to a 2-vertex cannot coincide with a white vertex
at distance three, since otherwise it would imply Configuration (C6).

(3) A black vertex adjacent to a 2-vertex cannot coincide with a white 2-vertex
since otherwise it would imply Configuration (C3).

(4) Let u and v be two white weak 5-vertices sharing a common ≥3-neighbor
and let u1, u2, u3 be three black ≥3-vertices, each of them sharing a 2-
neighbor with u. Then, two ui’s cannot coincide together with v, since
otherwise it would imply Configuration (C7).

(5) A black vertex adjacent to a weak 5-vertex cannot coincide with a white
weak 5-vertex since otherwise it would imply Configuration (C8).
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Fig. 11. Configuration (C9): a 4-vertex adjacent to three weak 5-vertices.

Proof of Configuration (C9). Thanks to Remark 19, we just have to prove
that the configurations depicted in Figure 11 are forbidden in H to show that
H does not contain a 4-vertex adjacent to three weak 5-vertices.

(a) Suppose that H contains the configuration depicted in Figure 11(a) and
let ϕ be a T16-coloring of H∗. By Lemma 14, each of the weak 5-vertices
u, v, and w forbids two colors for x, say f1, f2, . . . , f6. By Property P1,7,
we can choose ϕ such that ϕ(x) /∈ {f1, f2, . . . , f6}.

(b) Suppose that H contains the configuration depicted in Figure 11(b) and
let ϕ be a T16-coloring of H∗. By Lemma 14, the weak 5-vertex v forbids
two colors for x, say f1, f2, and by Lemma 17, the vertices u and w forbid
four colors for x, say f3, . . . , f6. By Property P1,7, we can choose ϕ such
that ϕ(x) /∈ {f1, f2, . . . , f6}.

(c) Suppose that H contains the configuration depicted in Figure 11(c) and
let ϕ be a T16-coloring of H∗. By Lemma 16, the vertices u, v and w
forbid five colors for x, say f1, f2, . . . , f5. By Property P1,7, we can choose
ϕ such that ϕ(x) /∈ {f1, f2, . . . , f5}.

(d) Suppose that H contains the configuration depicted in Figure 11(d) and
let ϕ be a T16-coloring of H∗. By Proposition 8, we may assume w.l.o.g.

that
−→
x′x ∈ H . By Property P1,7, the seven color of N+

T16
(ϕ(x′)) are allowed

for x is H \ {u, u1, v, v1, w, w1, t, y, z}. Lemma 18 allows us to conclude.

2
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Fig. 12. Configuration (C10): a weak 5-vertex adjacent to two weak 4-vertices.
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Fig. 13. Configuration (C11): a 5-vertex adjacent to two 2-vertices and two weak
5-vertices.

Proof of Configuration (C10). Thanks to Remark 19, we just have to prove
that the configurations depicted in Figure 12 are forbidden in H to show that
H does not contain a weak 5-vertex adjacent to two weak 4-vertices.

(a) Suppose that H contains the configuration depicted in Figure 12(a) and
let H ′ = H \ {u, u1, u2, u3, v1, w1}. Let ϕ be a T16-coloring of H ′. We
clearly have ϕ(v′) 6= fϕ

v′(v
′′) (resp. ϕ(w′) 6= fϕ

w′(w′′)) since v (resp. w) is
colored in H ′. Property P2,3 insures that we have two available colors for
v (resp. w) distinct from fϕ

v (v′1) (resp. fϕ
w(w′

1)). Lemma 15 allows us to
conclude.

(b) Suppose that H contains the configuration depicted in Figure 12(b) and
let ϕ be a T16-coloring of H∗. Let W = {fϕ

u (u′1), f
ϕ
u (u′2), f

ϕ
u (u′3), f

ϕ
u (v′),

fϕ
u (w′)}. Remark that we must set ϕ(u) /∈W . Therefore, the eleven colors

of V (T16) \W are available for u in H \ {v1, w1, vw}. W.l.o.g. we may
assume that −→uw ∈ H by Proposition 8. We choose a color cu ∈ V (T16)\W
which is not a predecessor of fϕ

w(w′
1) and we set ϕ(u) = cu. By Property

P2,3, ϕ(u) together with ϕ(v′) allow at least one color cv for v distinct
from fϕ

v (v′1) and fϕ
v (w′); we set ϕ(v) = cv. By Property P3,1, we have

one color cw for w and since ϕ(u) is not a predecessor of fϕ
w(w′

1), we
necessarily have cw 6= fϕ

w(w′
1). We thus set ϕ(w) = cw.

2
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Fig. 14. Configuration (C12): a 5-vertex adjacent to one 2-vertex and four weak
5-vertices.

Proof of Configuration (C11). Thanks to Remark 19, we just have to prove
that the configurations depicted in Figure 13 are forbidden in H to show that
H does not contain a 5-vertex adjacent two 2-vertices and two weak 5-vertices.

Suppose that H contains the configuration depicted in Figure 13(a) (resp. Fig-
ure 13(b)) and let ϕ be a T16-coloring of H∗. The weak 5-vertices u and v for-
bid four colors for x, say f1, f2, f3, f4, by Proposition 14 (resp. Lemma 17). By
Property P1,7, we can choose ϕ such that ϕ(x) /∈ {f1, f2, f3, f4, f

ϕ
x (x′1), f

ϕ
x (x′2)}.

2

Proof of Configuration (C12). Thanks to Remark 19, we just have to prove
that the configurations depicted in Figure 14 are forbidden in H to show that
H does not contain a 5-vertex adjacent to one 2-vertices and four weak 5-
vertices.

(a) Suppose that H contains the configuration depicted in Figure 14(a) and
let ϕ be a T16-coloring of H∗. By Lemma 16, the weak 5-vertices u, v,
and w forbid five colors for x, say f1, . . . , f5. By Property P1,7, we can
choose ϕ such that ϕ(x) /∈ {f1, . . . , f5, f

ϕ
x (x′1)}.

(b)(c)(d) Suppose that H contains one of the configurations depicted in
Figures 14(b), 14(c), and 14(d) and let ϕ be a T16-coloring of H∗. By
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Fig. 15. Configuration (C13): a 6-vertex adjacent to three 2-vertices and three weak
5-vertices.

Lemmas 14 and 17, the weak 5-vertices u, v, w, and x forbid eight
colors for y, say f1, . . . , f8. We clearly can choose ϕ such that ϕ(y) /∈
{f1, . . . , f8, f

ϕ
y (y′1)}.

2

Proof of Configuration (C13). Thanks to Remark 19, we just have to prove
that the configurations depicted in Figure 15 are forbidden in H to show that
H does not contain a 6-vertex adjacent to three 2-vertices and three weak
5-vertices.

(a)(b) Suppose thatH contains one of the configurations depicted in Figures 15(a)
and 15(b) and let ϕ be a T16-coloring of H∗. The weak 5-vertices v, w, and
x forbid six colors for u, say f1, . . . , f6, by Lemmas 14 and 17. We clearly
can choose ϕ such that ϕ(u) /∈ {f1, . . . , f6, f

ϕ
u (u′1), f

ϕ
u (u′2), f

ϕ
u (u′3)}.

(c) Suppose that H contains the configuration depicted in Figure 15(c) and
let ϕ be a T16-coloring of H∗. The weak 5-vertices v, w, and x forbid five
colors for u, say f1, . . . , f5. We clearly can choose ϕ such that ϕ(u) /∈
{f1, . . . , f5, f

ϕ
u (u′1), f

ϕ
u (u′2), f

ϕ
u (u′3)}.
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Fig. 16. Configuration (C14): a 7-vertices adjacent to five 2-vertices and two weak
5-vertices.
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Fig. 17. Configuration (C15): an 8-vertex adjacent to seven 2-vertices and one weak
5-vertex.

(d) Suppose that H contains the configuration depicted in Figure 15(d) and
let ϕ be a T16-coloring of H∗. Let W = {fϕ

u (u′1), f
ϕ
u (u′2), f

ϕ
u (u′3)}. Remark

first that we must set ϕ(u) /∈W . Among the thirteen vertices of V (T16) \
W , we can check that there exist seven vertices which are the seven
successors of some vertex v of T16. Lemma 18 allows us to conclude.

2

Proof of Configuration (C14). Thanks to Remark 19, we just have to prove
that the configurations depicted in Figure 16 are forbidden in H to show that
H does not contain a 7-vertex adjacent to five 2-vertices and two weak 5-
vertices.

Suppose that H contains one of the configurations depicted in Figures 16(a)
and 16(b) and let ϕ be a T16-coloring of H∗. The weak 5-vertices v and w
forbid four colors for u, say f1, . . . , f4, by Lemmas 14 and 17. We clearly can
choose ϕ such that ϕ(u) /∈ {f1, . . . , f4, f

ϕ
u (u′1), f

ϕ
u (u′2), . . . , f

ϕ
u (u′5)}. 2

Proof of Configuration (C15). Suppose that H contains the configurations
depicted in Figure 17 and let ϕ be a T16-coloring of H∗. The weak 5-vertex
u forbids two colors for v, say f1, f2, by Lemma 14. We clearly can choose ϕ
such that ϕ(v) /∈ {f1, f2, f

ϕ
v (v′1), f

ϕ
v (v′2), . . . , f

ϕ
v (v′7)}. 2
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3.2 Discharging procedure

To complete the proof of Theorem 4, we use a discharging procedure. We
define the weight function ω by ω(v) = 3d(v) − 10 for every v ∈ V (H). Since
mad(H) < 10

3
, we have:

∑

v∈V (H)

ω(v) =
∑

v∈V (H)

(3d(v) − 10) < 0.

In what follows, we will define discharging rules (R1), (R2) and (R3) and
redistribute weights accordingly. Once the discharging is finished, a new weight
function ω∗ is produced. However, the total sum of weights is fixed by the
discharging rules. Nevertheless, we can show that ω∗(v) ≥ 0 for every v ∈
V (H). This leads to the following obvious contradiction:

0 ≤
∑

v∈V (H)

ω∗(v) =
∑

v∈V (H)

ω(v) < 0.

Therefore, no such counterexample H exists.

The discharging rules are defined as follows:

(R1) Each weak 4-vertex gives 2 to its 2-neighbor.
(R2) Each non weak 4-vertex gives 1 to their weak 5-neighbors.
(R3) Each ≥5-vertex gives 2 to their 2-neighbors and 1 to their weak 5-

neighbors.

Let v be a k-vertex of H . Note that k > 1 by (C1) and k 6= 3 by (C5).

• If k = 2, then ω(v) = −4. Since every 2-vertices of H has two ≥4-neighbors
by (C2) and (C3), v receives 2 from each neighbor by (R1) and (R3). Hence
ω∗(v) = 0.

• If k = 4, then ω(v) = 2. By (C2), a 4-vertex has at most one 2-neighbor.
If v has one 2-neighbor (i.e. v is weak), then it gives 2 by (R1). If v has no
2-neighbor, then it has at most two weak 5-neighbors by (C9). Therefore, v
gives at most 1 × 2 by (R2). Hence ω∗(v) ≥ 2 − max{2; 1 × 2} = 0.

• If k = 5, then ω(v) = 5. By (C3), a 5-vertex has at most three 2-neighbors.
If v has three 2-neighbors (i.e. v is weak), then it has no weak 5-neighbors
by (C8); it thus gives 2×3 by (R3). Moreover, by (C10), v has at most one
weak 4-neighbor; therefore, v has at least either one non weak 4-neighbor
or one ≥5-neighbor; thus, v receives at least 1 by (R2) or (R3). If v has two
2-neighbors, then it has at most one weak 5-neighbor by (C11), and then
gives at most 2 × 2 + 1 by (R3). If v has one 2-neighbor, then it has at
most three weak 5-neighbors by (C12), and then gives at most 2 + 1 × 3
by (R3). Finally, if v has no 2-neighbor, it gives at most 1 × 5 by (R3).
Hence, ω∗(v) ≥ 5 − max{2 × 3 − 1; 2 × 2 + 1; 2 + 1 × 3; 1 × 5} = 0.
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• If k = 6, then ω(v) = 8. By (C3), a 6-vertex has at most four 2-neighbors.
If v has four 2-neighbors, then it has no weak 5-neighbor by (C8), and then
gives 2 × 4 by (R3). If v has three 2-neighbors, then it has at most two
weak 5-neighbors by (C13), and then gives at most 2 × 3 + 1 × 2 by (R3).
Finally, if v has l 2-neighbors, 0 ≤ l ≤ 2, then v has at most (6 − l) weak
5-neighbors and then gives at most 2 × l + 1 × (6 − l) by (R3). Hence,
ω∗(v) ≥ 8 − max{2 × 4; 2 × 3 + 1 × 2; 2 × l + 1 × (6 − l)} = 0 for any
0 ≤ l ≤ 2.

• If k = 7, then ω(v) = 11. By (C3), a 7-vertex has at most five 2-neighbors.
If v has five 2-neighbors, then it has at most one weak 5-neighbor by (C14)
and then gives at most 2 × 5 + 1 by (R3). Finally, if v has l 2-neighbors,
0 ≤ l ≤ 4, then it has at most (7−l) weak 5-neighbors and then gives at most
2×l+1×(7−l) by (R3). Hence, ω∗(v) ≥ 11−max{2×5+1; 2×l+1×(7−l)} =
0 for any 0 ≤ l ≤ 4.

• If k = 8, then ω(v) = 14. By (C4), an 8-vertex has at most seven 2-
neighbors. If v has seven 2-neighbors, then it has no weak 5-neighbor by (C15)
and then gives 2×7 by (R3). Finally, if v has l 2-neighbors, 0 ≤ l ≤ 6, then it
has at most (8−l) weak 5-neighbors and then gives at most 2×l+1×(8−l)
by (R3). Hence, ω∗(v) ≥ 14 − max{2 × 7; 2 × l + 1 × (8 − l)} = 0 for any
0 ≤ l ≤ 6.

• If k = 9, then ω(v) = 17. By (C4), a 9-vertex has at most eight 2-neighbors.
If v has l 2-neighbors, 0 ≤ l ≤ 8, then it has at most (9 − l) weak 5-
neighbors and then gives at most 2× l+1× (9− l) by (R3). Hence, ω∗(v) ≥
17 − 2 × l + 1 × (9 − l) ≥ 0 for any 0 ≤ l ≤ 8.

• If k ≥ 10, then ω(v) = 3k− 10. If v has l 2-neighbors, 0 ≤ l ≤ k, then v has
at most (k − l) weak 5-neighbors and then gives at most 2× l+ 1× (k − l)
by (R3). Hence, ω∗(v) ≥ 3k− 10− 2× l+1× (k− l) ≥ 0 for any 0 ≤ l ≤ k.

Thus, for every v ∈ V (H), we have ω∗(v) ≥ 0 once the discharging is finished,
that completes the proof.

4 Concluding remarks

In 1999, Nešetřil and Raspaud [9] introduced the notion of strong oriented
coloring, which is a stronger version of the notion of oriented coloring studied
in this paper.

Let M be an additive abelian group. An M-strong-oriented coloring of an
oriented graph G is a mapping ϕ from V (G) to M such that ϕ(u) 6= ϕ(v)
whenever −→uv is an arc in G and ϕ(v) − ϕ(u) 6= −(ϕ(t) − ϕ(z)) whenever −→uv

and
−→
zt are two arcs in G. The strong oriented chromatic number of an oriented

graph is the minimal order of a groupM such that G has anM-strong-oriented
coloring. It is clear that any strong oriented coloring of an oriented graph G
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is an oriented coloring of G and therefore the oriented chromatic number of
G is less than its strong oriented chromatic number.

Nešetřil and Raspaud showed that a strong oriented coloring of an oriented
graph G can be equivalently defined as a homomorphism ϕ from G to H ,
where H is an oriented graph with k vertices labeled by the k elements of an
abelian additive group M , such that for any pair of arcs −→uv and

−→
zt of A(H),

v − u 6= −(t − z). For every prime power p ≡ 3 (mod 4), the Paley graph
QRp (defined in Section 2, page 4) is clearly an oriented graph with p vertices
labeled by the p elements of the field Z

pZ
and such that for any pair of arcs −→uv

and
−→
zt of A(QRp), v − u 6= −(t− z).

Let G be an oriented graph with mad(G) < 10
3
. Borodin et al. [4] proved that

the oriented chromatic number of every such graph G is at most 19. In this
paper, we improved this result by showing that 16 colors are enough. However,
to prove their result, Borodin et al. showed that every such graph G admits a
homomorphism to the Paley graph QR19. Therefore, their result is stronger:
every graph with maximum average degree strictly less that 10

3
has a strong

oriented chromatic number at most 19. So, a natural question to ask is:

Question 20 Does there exist an abelian additive group M on 16 elements
such that we can label the vertices of T16 with the elements of M in such a
way that v − u 6= −(t− z) whenever −→uv and

−→
zt are two arcs of T16 ?

If it is true, that would imply that 16 colors are enough for any strong oriented
coloring of an oriented graph with maximum average degree strictly less that
10
3
.
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[11] A. Raspaud and É. Sopena. Good and semi-strong colorings of oriented planar
graphs. Inform. Process. Lett., 51(4):171–174, 1994.
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